DO NOT OPEN THIS EXAMINATION BOOKLET UNTIL THE SIGNAL IS GIVEN.
Part I

Answer all 28 questions in this part. Each correct answer will receive 2 credits. For each statement or question, choose the word or expression that, of those given, best completes the statement or answers the question. Record your answers on your separate answer sheet. [56]

1. The midpoint of AB is $M(4, 2)$. If the coordinates of A are $(6, -4)$, what are the coordinates of B?
 - (1) $(1, -3)$
 - (2) $(2, 8)$
 - (3) $(5, -1)$
 - (4) $(14, 0)$

2. Which diagram shows the construction of a 45° angle?

 (1)
 (2)
 (3)
 (4)
3 What are the coordinates of the center and the length of the radius of the circle whose equation is \((x + 1)^2 + (y - 5)^2 = 16\)?

(1) \((1, -5)\) and 16
(2) \((-1,5)\) and 16
(3) \((1, -5)\) and 4
(4) \((-1,5)\) and 4

4 If distinct planes \(R\) and \(S\) are both perpendicular to line \(\ell\), which statement must always be true?

(1) Plane \(R\) is parallel to plane \(S\).
(2) Plane \(R\) is perpendicular to plane \(S\).
(3) Planes \(R\) and \(S\) and line \(\ell\) are all parallel.
(4) The intersection of planes \(R\) and \(S\) is perpendicular to line \(\ell\).

5 If \(\triangle ABC\) and its image, \(\triangle A'B'C'\), are graphed on a set of axes, \(\triangle ABC \cong \triangle A'B'C'\) under each transformation except

(1) \(D_2\)
(2) \(R_{90^\circ}\)
(3) \(r_y = x\)
(4) \(T_{(-2,3)}\)

6 A right rectangular prism is shown in the diagram below.

Which pair of edges are not coplanar?

(1) \(BF\) and \(CG\)
(2) \(BF\) and \(DH\)
(3) \(EF\) and \(CD\)
(4) \(EF\) and \(BC\)
7 How many points in the coordinate plane are 3 units from the origin and also equidistant from both the x-axis and the y-axis?

(1) 1 (3) 8
(2) 2 (4) 4

8 As shown below, the medians of \(\triangle ABC \) intersect at \(D \).

If the length of \(BE \) is 12, what is the length of \(BD \)?

(1) 8 (3) 3
(2) 9 (4) 4

9 The solution of the system of equations \(y = x^2 - 2 \) and \(y = x \) is

(1) \((1,1)\) and \((-2,-2)\) (3) \((1,1)\) and \((2,2)\)
(2) \((2,2)\) and \((-1,-1)\) (4) \((-2,-2)\) and \((-1,-1)\)

10 Line \(\ell \) passes through the point \((5,3)\) and is parallel to line \(k \) whose equation is \(5x + y = 6 \). An equation of line \(\ell \) is

(1) \(y = \frac{1}{5}x + 2 \) (3) \(y = \frac{1}{5}x - 2 \)
(2) \(y = -5x + 28 \) (4) \(y = -5x - 28 \)
11 In the diagram below of quadrilateral $ABCD$, E and F are points on AB and CD, respectively, $BE \equiv DF$, and $AE \equiv CF$.

Which conclusion can be proven?

(1) $ED \equiv FB$
(2) $AB \equiv CD$
(3) $\angle A \equiv \angle C$
(4) $\angle AED \equiv \angle CFB$

12 In the diagram below, four pairs of triangles are shown. Congruent corresponding parts are labeled in each pair.

Using only the information given in the diagrams, which pair of triangles can not be proven congruent?

(1) A
(2) B
(3) C
(4) D
13 In $\triangle ABC$ shown below, L is the midpoint of BC, M is the midpoint of AB, and N is the midpoint of AC.

If $MN = 8$, $ML = 5$, and $NL = 6$, the perimeter of trapezoid $BMNC$ is

(1) 35
(2) 31
(3) 28
(4) 26

14 In the diagram below, \overline{RCT} and $\triangle ABC$ are shown with $m\angle A = 60$ and $m\angle ABT = 125$.

What is $m\angle ACR$?

(1) 125
(2) 115
(3) 65
(4) 55
15 Which equation represents circle O shown in the graph below?

(1) $x^2 + (y - 2)^2 = 10$
(2) $x^2 + (y + 2)^2 = 10$
(3) $x^2 + (y - 2)^2 = 25$
(4) $x^2 + (y + 2)^2 = 25$

16 For which measures of the sides of $\triangle ABC$ is angle B the largest angle of the triangle?

(1) $AB = 2, BC = 6, AC = 7$
(2) $AB = 6, BC = 12, AC = 8$
(3) $AB = 16, BC = 9, AC = 10$
(4) $AB = 18, BC = 14, AC = 5$

17 What is the measure of the largest exterior angle that any regular polygon can have?

(1) 60°
(2) 90°
(3) 120°
(4) 360°
18 As shown in the diagram below, a landscaper uses a cylindrical lawn roller on a lawn. The roller has a radius of 9 inches and a width of 42 inches.

To the nearest square inch, the area the roller covers in one complete rotation is

(1) 2,374
(2) 2,375
(3) 10,682
(4) 10,688

19 In the diagram below, \overline{AC} and \overline{BC} are tangent to circle O at A and B, respectively, from external point C.

If $m\angle ACB = 38$, what is $m\angle AOB$?

(1) 71
(2) 104
(3) 142
(4) 161
20 What is the perimeter of a square whose diagonal is $3\sqrt{2}$?
(1) 18 (3) 9
(2) 12 (4) 6

21 The coordinates of point P are $(7,1)$. What are the coordinates of the image of P after R_{90° about the origin?
(1) $(1,7)$ (3) $(1,-7)$
(2) $(-7,-1)$ (4) $(-1,7)$

22 Lines p and q are intersected by line r, as shown below.

If $m\angle 1 = 7x - 36$ and $m\angle 2 = 5x + 12$, for which value of x would $p \parallel q$?
(1) 17 (3) 83
(2) 24 (4) 97
23 What is the equation of the circle with its center at \((-1,2)\) and that passes through the point \((1,2)\)?

(1) \((x + 1)^2 + (y - 2)^2 = 4\)
(2) \((x - 1)^2 + (y + 2)^2 = 4\)
(3) \((x + 1)^2 + (y - 2)^2 = 2\)
(4) \((x - 1)^2 + (y + 2)^2 = 2\)

24 In the diagram below, diameter \(AB\) bisects chord \(CD\) at point \(E\) in circle \(F\).

If \(AE = 2\) and \(FB = 17\), then the length of \(CE\) is

(1) 7
(2) 8
(3) 15
(4) 16

25 Which quadrilateral does not always have congruent diagonals?

(1) isosceles trapezoid
(2) rectangle
(3) rhombus
(4) square

26 A circle with the equation \((x + 6)^2 + (y - 7)^2 = 64\) does not include points in Quadrant

(1) I
(2) II
(3) III
(4) IV
27 Trapezoid $QRST$ is graphed on the set of axes below.

Under which transformation will there be no invariant points?

(1) $r_y = 0$
(2) $r_x = 0$
(3) $r_{(0,0)}$
(4) $r_y = x$

28 How many common tangent lines can be drawn to the circles shown below?

(1) 1
(2) 2
(3) 3
(4) 4
29 The diameter of a sphere is 5 inches. Determine and state the surface area of the sphere, to the nearest hundredth of a square inch.
30 Using a compass and straightedge, construct the perpendicular bisector of AB.
[Leave all construction marks.]
31 The endpoints of \overline{AB} are $A(3, -4)$ and $B(7, 2)$. Determine and state the length of \overline{AB} in simplest radical form.
32 A right prism has a square base with an area of 12 square meters. The volume of the prism is 84 cubic meters. Determine and state the height of the prism, in meters.
33 State whether the lines represented by the equations \(y = \frac{1}{2}x - 1 \) and
\(y + 4 = -\frac{1}{2}(x - 2) \) are parallel, perpendicular, or neither.

Explain your answer.
A tree, T, is 6 meters from a row of corn, c, as represented in the diagram below. A farmer wants to place a scarecrow 2 meters from the row of corn and also 5 meters from the tree.

Sketch both loci.

Indicate, with an X, all possible locations for the scarecrow.
Part III

Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [12]

35 In the diagram of \(\triangle BCD \) shown below, \(BA \) is drawn from vertex \(B \) to point \(A \) on \(DC \), such that \(BC \equiv BA \).

\[\text{In } \triangle DAB, \ m\angle D = x, \ m\angle DAB = 5x - 30, \text{ and } m\angle DBA = 3x - 60. \text{ In } \triangle ABC, \ AB = 6y - 8 \text{ and } BC = 4y - 2. \text{ [Only algebraic solutions can receive full credit.]}

Find \(m\angle D \).

Find \(m\angle BAC \).

Find the length of \(BC \).

Find the length of \(DC \).
36 The coordinates of the vertices of $\triangle ABC$ are $A(-6,5)$, $B(-4,8)$, and $C(1,6)$. State and label the coordinates of the vertices of $\triangle A'B'C'$, the image of $\triangle ABC$ after the composition of transformations $T_{4,-5} \circ r_{y}$-axis.

[The use of the set of axes below is optional.]
37 In right triangle \(ABC \) below, \(CD \) is the altitude to hypotenuse \(AB \). If \(CD = 6 \) and the ratio of \(AD \) to \(AB \) is 1:5, determine and state the length of \(BD \).

[Only an algebraic solution can receive full credit.]
Part IV

Answer the question in this part. A correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. A correct numerical answer with no work shown will receive only 1 credit. The answer should be written in pen, except for graphs and drawings, which should be done in pencil. [6]

38 In the diagram of circle O below, diameter RS, chord AS, tangent TS, and secant TAR are drawn.

![Diagram of circle O with diameter RS, chord AS, tangent TS, and secant TAR]

Complete the following proof to show \((RS)^2 = RA \cdot RT\)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. circle O, diameter RS, chord AS, tangent TS, and secant TAR</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (RS \perp TS)</td>
<td>2. (\triangle RST) is a right angle</td>
</tr>
<tr>
<td>3. (\angle RST) is a right angle</td>
<td>3. (\perp) lines form right angles</td>
</tr>
<tr>
<td>4. (\angle RAS) is a right angle</td>
<td>4. (\triangle RST \sim \triangle RAS)</td>
</tr>
<tr>
<td>5. (\angle RST \equiv \angle RAS)</td>
<td>5. Reflexive property</td>
</tr>
<tr>
<td>6. (\angle R \equiv \angle R)</td>
<td>6. (\triangle RST \sim \triangle RAS)</td>
</tr>
<tr>
<td>7. (\triangle RST \sim \triangle RAS)</td>
<td>7. (\triangle RST \sim \triangle RAS)</td>
</tr>
<tr>
<td>8. (\frac{RS}{RA} = \frac{RT}{RS})</td>
<td>8. (\triangle RST \sim \triangle RAS)</td>
</tr>
<tr>
<td>9. ((RS)^2 = RA \cdot RT)</td>
<td>9. ((RS)^2 = RA \cdot RT)</td>
</tr>
</tbody>
</table>
Reference Sheet

Volume

<table>
<thead>
<tr>
<th>Shape</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder</td>
<td>(V = Bh) where (B) is the area of the base</td>
</tr>
<tr>
<td>Pyramid</td>
<td>(V = \frac{1}{3}Bh) where (B) is the area of the base</td>
</tr>
<tr>
<td>Right Circular Cone</td>
<td>(V = \frac{1}{3}Bh) where (B) is the area of the base</td>
</tr>
<tr>
<td>Sphere</td>
<td>(V = \frac{4}{3} \pi r^3)</td>
</tr>
</tbody>
</table>

Lateral Area (\(L \))

<table>
<thead>
<tr>
<th>Shape</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Circular Cylinder</td>
<td>(L = 2\pi rh)</td>
</tr>
<tr>
<td>Right Circular Cone</td>
<td>(L = \pi rl) where (l) is the slant height</td>
</tr>
</tbody>
</table>

Surface Area

<table>
<thead>
<tr>
<th>Shape</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td>(SA = 4\pi r^2)</td>
</tr>
</tbody>
</table>
Scrap Graph Paper — This sheet will not be scored.
Scrap Graph Paper — This sheet will not be scored.
GEOMETRY
Mechanics of Rating

The following procedures are to be followed for scoring student answer papers for the Regents Examination in Geometry. More detailed information about scoring is provided in the publication Information Booklet for Scoring the Regents Examinations in Mathematics.

Do not attempt to correct the student’s work by making insertions or changes of any kind. In scoring the open-ended questions, use check marks to indicate student errors. Unless otherwise specified, mathematically correct variations in the answers will be allowed. Units need not be given when the wording of the questions allows such omissions.

Each student’s answer paper is to be scored by a minimum of three mathematics teachers. No one teacher is to score more than approximately one-third of the open-ended questions on a student’s paper. Teachers may not score their own students’ answer papers. On the student’s separate answer sheet, for each question, record the number of credits earned and the teacher’s assigned rater/scorer letter.

Schools are not permitted to rescore any of the open-ended questions on this exam after each question has been rated once, regardless of the final exam score. Schools are required to ensure that the raw scores have been added correctly and that the resulting scale score has been determined accurately.

Raters should record the student’s scores for all questions and the total raw score on the student’s separate answer sheet. Then the student’s total raw score should be converted to a scale score by using the conversion chart that will be posted on the Department’s web site at: http://www.p12.nysed.gov/assessment/ on Wednesday, January 29, 2014. Because scale scores corresponding to raw scores in the conversion chart may change from one administration to another, it is crucial that, for each administration, the conversion chart provided for that administration be used to determine the student’s final score. The student’s scale score should be entered in the box provided on the student’s separate answer sheet. The scale score is the student’s final examination score.
If the student’s responses for the multiple-choice questions are being hand scored prior to being scanned, the scorer must be careful not to make any marks on the answer sheet except to record the scores in the designated score boxes. Marks elsewhere on the answer sheet will interfere with the accuracy of the scanning.

Part I

Allow a total of 56 credits, 2 credits for each of the following.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(13)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(14)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(15)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(16)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(17)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(18)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(19)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(20)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(21)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(23)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(24)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(26)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(27)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(28)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Updated information regarding the rating of this examination may be posted on the New York State Education Department's web site during the rating period. Check this web site at: http://www.p12.nysed.gov/assessment/ and select the link “Scoring Information” for any recently posted information regarding this examination. This site should be checked before the rating process for this examination begins and several times throughout the Regents Examination period.

Beginning in June 2013, the Department is providing supplemental scoring guidance, the “Sample Response Set,” for the Regents Examination in Geometry. This guidance is not required as part of the scorer training. It is at the school’s discretion to incorporate it into the scorer training or to use it as supplemental information during scoring. While not reflective of all scenarios, the sample student responses selected for the Sample Response Set illustrate how less common student responses to open-ended questions may be scored. The Sample Response Set will be available on the Department’s web site at: http://www.nysedregents.org/Geometry/.
General Rules for Applying Mathematics Rubrics

I. General Principles for Rating

The rubrics for the constructed-response questions on the Regents Examination in Geometry are designed to provide a systematic, consistent method for awarding credit. The rubrics are not to be considered all-inclusive; it is impossible to anticipate all the different methods that students might use to solve a given problem. Each response must be rated carefully using the teacher’s professional judgment and knowledge of mathematics; all calculations must be checked. The specific rubrics for each question must be applied consistently to all responses. In cases that are not specifically addressed in the rubrics, raters must follow the general rating guidelines in the publication Information Booklet for Scoring the Regents Examinations in Mathematics, use their own professional judgment, confer with other mathematics teachers, and/or contact the State Education Department for guidance. During each Regents Examination administration period, rating questions may be referred directly to the Education Department. The contact numbers are sent to all schools before each administration period.

II. Full-Credit Responses

A full-credit response provides a complete and correct answer to all parts of the question. Sufficient work is shown to enable the rater to determine how the student arrived at the correct answer.

When the rubric for the full-credit response includes one or more examples of an acceptable method for solving the question (usually introduced by the phrase “such as”), it does not mean that there are no additional acceptable methods of arriving at the correct answer. Unless otherwise specified, mathematically correct alternative solutions should be awarded credit. The only exceptions are those questions that specify the type of solution that must be used; e.g., an algebraic solution or a graphic solution. A correct solution using a method other than the one specified is awarded half the credit of a correct solution using the specified method.

III. Appropriate Work

Full-Credit Responses: The directions in the examination booklet for all the constructed-response questions state: “Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc.” The student has the responsibility of providing the correct answer and showing how that answer was obtained. The student must “construct” the response; the teacher should not have to search through a group of seemingly random calculations scribbled on the student paper to ascertain what method the student may have used.

Responses With Errors: Rubrics that state “Appropriate work is shown, but…” are intended to be used with solutions that show an essentially complete response to the question but contain certain types of errors, whether computational, rounding, graphing, or conceptual. If the response is incomplete; i.e., an equation is written but not solved or an equation is solved but not all of the parts of the question are answered, appropriate work has not been shown. Other rubrics address incomplete responses.

IV. Multiple Errors

Computational Errors, Graphing Errors, and Rounding Errors: Each of these types of errors results in a 1-credit deduction. Any combination of two of these types of errors results in a 2-credit deduction. No more than 2 credits should be deducted for such mechanical errors in any response. The teacher must carefully review the student’s work to determine what errors were made and what type of errors they were.

Conceptual Errors: A conceptual error involves a more serious lack of knowledge or procedure. Examples of conceptual errors include using the incorrect formula for the area of a figure, choosing the incorrect trigonometric function, or multiplying the exponents instead of adding them when multiplying terms with exponents. A response with one conceptual error can receive no more than half credit.

If a response shows repeated occurrences of the same conceptual error, the student should not be penalized twice. If the same conceptual error is repeated in responses to other questions, credit should be deducted in each response.

If a response shows two (or more) different major conceptual errors, it should be considered completely incorrect and receive no credit.

If a response shows one conceptual error and one computational, graphing, or rounding error, the teacher must award credit that takes into account both errors; i.e., awarding half credit for the conceptual error and deducting 1 credit for each mechanical error (maximum of two deductions for mechanical errors).
Part II

For each question, use the specific criteria to award a maximum of 2 credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(29)
[2] 78.54, and correct work is shown.

[1] Appropriate work is shown, but one computational or rounding error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] 78.54, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

(30)
[2] A correct construction is drawn showing all appropriate arcs, and the perpendicular bisector is correctly drawn.

[1] A correct construction is drawn showing all appropriate arcs, but the perpendicular bisector is not drawn.

[0] A drawing that is not an appropriate construction is shown.

or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(31) [2] $2\sqrt{13}$, and correct work is shown.

[1] Appropriate work is shown, but one computational or simplification error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] Appropriate work is shown to find $\sqrt{52}$, but no further correct work is shown.

or

[1] Appropriate work is shown, but the answer is expressed as a decimal.

or

[1] $2\sqrt{13}$, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

(32) [2] 7, and correct work is shown.

[1] Appropriate work is shown, but one computational error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] 7, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
Neither, and a correct explanation is written for why the lines are not parallel and also why the lines are not perpendicular.

[1] One computational error is made, but an appropriate determination is made. An appropriate explanation is written.

 or

[1] One conceptual error is made, but an appropriate determination is made. An appropriate explanation is written.

 or

[1] Neither, but only a correct explanation for why the lines are not parallel or for why the lines are not perpendicular is written.

[0] Neither, but no explanation is written.

 or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

Both loci are sketched correctly, and the two correct points are labeled with an X.

[1] Both loci are sketched, but one conceptual error is made, such as drawing only one line parallel to the row of corn. Appropriate points are labeled with an X.

 or

[1] Both loci are sketched correctly, but the locations are not labeled with an X.

[0] One locus is sketched correctly, but no further correct work is shown.

 or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
Part III

For each question, use the specific criteria to award a maximum of 4 credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(35)

4. 30, 60, 10, and 20, and correct algebraic work is shown.

3. Appropriate work is shown, but one computational error is made.

or

3. Correct work is shown to find 30, 60, and 10, but no further correct work is shown.

2. Appropriate work is shown, but two or more computational errors are made.

or

2. Correct work is shown to find $m\angle D = 30$ and $BC = 10$, but no further correct work is shown.

or

2. Correct work is shown to find 30 and 60, but no further correct work is shown.

or

2. 30, 60, 10, and 20, but a method other than algebraic is used to find x and y.

1. $x + 5x - 30 + 3x - 60 = 180$ and $6y - 8 = 4y - 2$ or equivalent equations are written, but no further correct work is shown.

or

1. Correct work is shown to find either $m\angle D = 30$ or $BC = 10$, but no further correct work is shown.

or

1. 30, 60, 10, and 20, but no work is shown.

0. A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
[3] Appropriate work is shown, but one computational, graphing, or labeling error is made.

\[\text{or} \]

[3] \(\triangle A'B'C' \) is graphed and labeled correctly, but the coordinates are not stated or are stated incorrectly.

\[\text{or} \]

[3] Correct work is shown to find (10,0), (8,3), and (3,1), but the points are not labeled or are labeled incorrectly.

[2] Appropriate work is shown, but two or more computational, graphing, or labeling errors are made.

\[\text{or} \]

[2] Appropriate work is shown, but one conceptual error is made, such as translating before reflecting.

\[\text{or} \]

[2] Correct work is shown to find \(A'(6,5), B'(4,8), \) and \(C'(-1,6) \), but no further correct work is shown.

[1] Appropriate work is shown, but one conceptual error and one computational, graphing, or labeling error are made.

\[\text{or} \]

[1] \(\triangle A'B'C' \) is graphed and labeled correctly, but no further correct work is shown.

\[\text{or} \]

[1] The translation is performed on \(\triangle ABC \), and \(A'(-2,0), B'(0,3), \) and \(C'(5,1) \) are stated and labeled. No further correct work is shown.

\[\text{or} \]

[1] \(A''(10,0), B''(8,3), \) and \(C''(3,1) \), but no work is shown.

[0] (10,0), (8,3), and (3,1) are stated, but no work is shown.

\[\text{or} \]

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
[4] 12, and correct algebraic work is shown.

[3] Appropriate work is shown, but one computational error is made.

or

[3] Correct work is shown to find 3, the length of \(\overrightarrow{AD}\), but no further correct work is shown.

[2] Appropriate work is shown, but two or more computational errors are made.

or

[2] Appropriate work is shown, but one conceptional error is made.

or

[2] 12, but a method other than algebraic is used.

[1] Appropriate work is shown, but one conceptual error and one computational error are made.

or

[1] A correct proportion is written, but no further correct work is shown.

or

[1] 12, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
Part IV

For this question, use the specific criteria to award a maximum of 6 credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(38) [6] All six reasons are correct.

[5] Only five reasons are correct.

[4] Only four reasons are correct.

[3] Only three reasons are correct.

[2] Only two reasons are correct.

[1] Only one reason is correct.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
Map to Core Curriculum

<table>
<thead>
<tr>
<th>Content Band</th>
<th>Item Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric Relationships</td>
<td>4, 6, 16, 29, 32</td>
</tr>
<tr>
<td>Constructions</td>
<td>2, 30</td>
</tr>
<tr>
<td>Locus</td>
<td>7, 34</td>
</tr>
<tr>
<td>Informal and Formal Proofs</td>
<td>8, 11, 12, 13, 14, 17, 18, 19, 20, 22,</td>
</tr>
<tr>
<td></td>
<td>24, 25, 28, 35, 37, 38</td>
</tr>
<tr>
<td>Transformational Geometry</td>
<td>5, 21, 27, 36</td>
</tr>
<tr>
<td>Coordinate Geometry</td>
<td>1, 3, 9, 10, 15, 23, 26, 31, 33</td>
</tr>
</tbody>
</table>

Regents Examination in Geometry
January 2014
Chart for Converting Total Test Raw Scores to Final Examination Scores (Scale Scores)

Online Submission of Teacher Evaluations of the Test to the Department

Suggestions and feedback from teachers provide an important contribution to the test development process. The Department provides an online evaluation form for State assessments. It contains spaces for teachers to respond to several specific questions and to make suggestions. Instructions for completing the evaluation form are as follows:

2. Select the test title.
3. Complete the required demographic fields.
4. Complete each evaluation question and provide comments in the space provided.
5. Click the SUBMIT button at the bottom of the page to submit the completed form.
The diameter of a sphere is 5 inches. Determine and state the surface area of the sphere, to the nearest hundredth of a square inch.

\[
SA = 4\pi r^2
= 4\pi (2.5)^2
= 4\pi (6.25)
= 25\pi
= 78.53981634
\]

\[
SA = 78.54 \text{ in}^2
\]

Score 2: The student has a complete and correct response. Note: Labeling “in\(^2\)” was not required.
Question 29

29 The diameter of a sphere is 5 inches. Determine and state the surface area of the sphere, to the nearest hundredth of a square inch.

\[
\text{SA}_{\text{sphere}} = 4\pi r^2
\]

\[
\text{SA} = 4\pi (2.5)^2
\]

\[
\text{SA} = 4\pi (6.25)
\]

\[
\text{SA} \approx 4 (19.63496408)
\]

\[
\text{SA} \approx 78.53981634
\]

\[
\text{SA} \approx 79 \text{ inches}^2
\]

Score 1: The student made a rounding error.
29 The diameter of a sphere is 5 inches. Determine and state the surface area of the sphere, to the nearest hundredth of a square inch.

$$SA = 4\pi r^2$$

$$4\pi(5)^2$$

$$314.15\text{in}^2$$

Score 0: The student made a conceptual error by using 5 as the radius and a rounding error.
Question 30

30 Using a compass and straightedge, construct the perpendicular bisector of AB.

[Leave all construction marks.]

Score 2: The student has a correct construction. Note: The right angle symbols were not required.
30 Using a compass and straightedge, construct the perpendicular bisector of \overline{AB}.
[Leave all construction marks.]

Score 1: The student has correct construction arcs, but did not draw the perpendicular bisector.
30 Using a compass and straightedge, construct the perpendicular bisector of \overline{AB}.
[Leave all construction marks.]

Score 0: The student did not construct two pairs of intersecting arcs.
The endpoints of AB are $A(3,-4)$ and $B(7,2)$. Determine and state the length of AB in simplest radical form.

Score 2: The student has a complete and correct response. The student graphed AB, drew a right triangle, and applied the Pythagorean Theorem.
31 The endpoints of \overline{AB} are $A(3,-4)$ and $B(7,2)$. Determine and state the length of \overline{AB} in simplest radical form.

$$d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$$

$$d = \sqrt{(7-3)^2 + (2+4)^2}$$

$$d = \sqrt{16 + 36}$$

$$d = \sqrt{52}$$

$$d = 2\sqrt{13}$$

Score 1: The student showed correct work to find $\sqrt{52}$, but no further correct work is shown.
The endpoints of \overline{AB} are $A(3,-4)$ and $B(7,2)$. Determine and state the length of \overline{AB} in simplest radical form.

\[
\sqrt{(3+7)^2 + (-4+2)^2} = AB^2
\]
\[
\sqrt{100 + 4} = AB^2
\]
\[
\sqrt{104} = AB^2
\]
\[
2\sqrt{26} = AB
\]

Score 1: The student made a conceptual error in using the formula for length of a segment. The student’s answer was simplified correctly.
31 The endpoints of \overline{AB} are $A(3, -4)$ and $B(7,2)$. Determine and state the length of \overline{AB} in simplest radical form.

\[\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \]
\[\sqrt{(-3 - 7)^2 + (-4 - 2)^2} \]
\[\sqrt{(-10)^2 + (-6)^2} \]
\[\sqrt{100 + 36} \]
\[\sqrt{136} \]

$\overline{AB} = \sqrt{136}$

Score 0: The student made an error in substituting into the distance formula and did not simplify the answer.
A right prism has a square base with an area of 12 square meters. The volume of the prism is 84 cubic meters. Determine and state the height of the prism, in meters.

Score 2: The student has a complete and correct response. Note: Labeling “meters” was not required.
Question 32

32 A right prism has a square base with an area of 12 square meters. The volume of the prism is 84 cubic meters. Determine and state the height of the prism, in meters.

\[V = Bh \]
\[\frac{84}{12} = \frac{12 \cdot h}{12} \]
\[7 = h \]

height = 7 m

Score 1: The student showed correct work, but labeled the answer with incorrect units.
32 A right prism has a square base with an area of 12 square meters. The volume of the prism is 84 cubic meters. Determine and state the height of the prism, in meters.

\[12 \text{m}^2 + 84 \text{m}^3 = 96 \text{m}^5 \]

Score 0: The student work is completely incorrect.
33 State whether the lines represented by the equations \(y = \frac{1}{2}x - 1 \) and
\[y + 4 = -\frac{1}{2}(x - 2) \] are parallel, perpendicular, or neither.

Explain your answer.

\[
\begin{align*}
Y &= \frac{1}{2}x - 1 \\
Y + 4 &= -\frac{1}{2}(x - 2) \\
Y + 4 &= -\frac{1}{2}x + 1 \\
&\quad -4 = -\frac{1}{2}x - 4 \\
Y &= -\frac{1}{2}x - 3
\end{align*}
\]

They are neither because they do not have the same slope which would make them parallel, and they do not have negative reciprocal slopes which would make them perpendicular.

Score 2: The student has a complete and correct response, including a correct justification.
State whether the lines represented by the equations \(y = \frac{1}{2}x - 1 \) and
\(y + 4 = -\frac{1}{2}(x - 2) \) are parallel, perpendicular, or neither.

Explain your answer.

\[
\begin{align*}
 y &= \frac{1}{2}x - 1 \\
 m &= \frac{1}{2} \\

 y + 4 &= -\frac{1}{2}(x - 2) \\
 y + 4 &= -\frac{1}{2}x + 1 \\
 -4 &= -\frac{1}{2}x \\
 -4 &= -\frac{1}{2}x \\
 x &= 4 \\
 y &= -4.5x - 3 \\
 m &= -4.5
\end{align*}
\]

Neither because their slopes aren’t the same or negative reciprocals of each other.

Score 1: The student made a conceptual error in solving the second equation for \(y \). An appropriate determination and justification were written.
33 State whether the lines represented by the equations \(y = \frac{1}{2}x - 1 \) and
\[y + 4 = -\frac{1}{2}(x - 2)\] are parallel, perpendicular, or neither.

Explain your answer.

\[
\begin{align*}
y + 4 &= -\frac{1}{2}(x - 2) \\
y &= \frac{1}{2}x - 1 - 4 \\
y &= \frac{1}{2}x - 6
\end{align*}
\]

neither because they have different \(y \)-intercepts

Score 0: The student wrote “neither,” but the work and justification are completely incorrect.
A tree, T, is 6 meters from a row of corn, c, as represented in the diagram below. A farmer wants to place a scarecrow 2 meters from the row of corn and also 5 meters from the tree.

Sketch both loci.

Indicate, with an X, all possible locations for the scarecrow.

Score 2: The student sketched both loci correctly and labeled both locations with an X.
34 A tree, T, is 6 meters from a row of corn, c, as represented in the diagram below. A farmer wants to place a scarecrow 2 meters from the row of corn and also 5 meters from the tree.

Sketch both loci.

Indicate, with an X, all possible locations for the scarecrow.

Score 1: The student made a conceptual error and drew only one line parallel to the row of corn, but labeled appropriate points with an X.
34 A tree, T, is 6 meters from a row of corn, c, as represented in the diagram below. A farmer wants to place a scarecrow 2 meters from the row of corn and also 5 meters from the tree.

Sketch both loci.

Indicate, with an X, all possible locations for the scarecrow.

Score 1: The student made a conceptual error in drawing one locus, but labeled appropriate points X.
34 A tree, \(T \), is 6 meters from a row of corn, \(c \), as represented in the diagram below. A farmer wants to place a scarecrow 2 meters from the row of corn and also 5 meters from the tree.

Sketch both loci.

Indicate, with an \(X \), all possible locations for the scarecrow.

Score 1: The student sketched both loci correctly, but the locations are not labeled with an \(X \).
34 A tree, T, is 6 meters from a row of corn, c, as represented in the diagram below. A farmer wants to place a scarecrow 2 meters from the row of corn and also 5 meters from the tree.

Sketch both loci.

Indicate, with an \mathbf{X}, all possible locations for the scarecrow.

Score 0: The student sketched only one locus correctly and made a conceptual error in sketching the second locus. Appropriate points are not labeled with an \mathbf{X}.
In the diagram of \(\triangle BCD \) shown below, \(BA \) is drawn from vertex \(B \) to point \(A \) on \(DC \), such that \(BC \equiv BA \).

In \(\triangle DAB \), \(m \angle D = x \), \(m \angle DAB = 5x - 30 \), and \(m \angle DBA = 3x - 60 \). In \(\triangle ABC \), \(AB = 6y - 8 \) and \(BC = 4y - 2 \). [Only algebraic solutions can receive full credit.]

Find \(m \angle D \).

Find \(m \angle BAC \).

Find the length of \(BC \).

Find the length of \(DC \).

\textbf{Score 4:} The student has a complete and correct response. The student wrote and solved correct equations to find \(x = 30 \) and \(y = 3 \). The four correct answers are stated.
In the diagram of \(\triangle BCD \) shown below, \(BA \) is drawn from vertex \(B \) to point \(A \) on \(DC \), such that \(BC \parallel BA \).

In \(\triangle DAB \), \(m \angle D = x \), \(m \angle DAB = 5x - 30 \), and \(m \angle DBA = 3x - 60 \). In \(\triangle ABC \), \(AB = 6y - 8 \) and \(BC = 4y - 2 \). [Only algebraic solutions can receive full credit.]

Find \(m \angle D \).

\[
m \angle D = 30
\]

Find \(m \angle BAC \).

\[
\angle BAC = 60^\circ
\]

Find the length of \(BC \).

\[
16
\]

Find the length of \(DC \).

\[
20
\]

Score 4: The student has a complete and correct response.
35 In the diagram of $\triangle BCD$ shown below, \overline{BA} is drawn from vertex B to point A on \overline{DC}, such that $\overline{BC} \cong \overline{BA}$.

In $\triangle DAB$, $m\angle D = x$, $m\angle DAB = 5x - 30$, and $m\angle DBA = 3x - 60$. In $\triangle ABC$, $AB = 6y - 8$ and $BC = 4y - 2$. [Only algebraic solutions can receive full credit.]

Find $m\angle D$.

\[30^\circ \]

Find $m\angle BAC$.

\[60^\circ \]

Find the length of \overline{BC}.

Find the length of \overline{DC}.

Score 3: The student showed correct work to find $30, 60, \text{ and } 10$. The length of \overline{DC} is not stated.
35 In the diagram of $\triangle BCD$ shown below, \overline{BA} is drawn from vertex B to point A on \overline{DC}, such that $BC \equiv BA$.

In $\triangle DAB$, $\angle D = x$, $\angle DAB = 5x - 30$, and $\angle DBA = 3x - 60$. In $\triangle ABC$, $AB = 6y - 8$ and $BC = 4y - 2$. [Only algebraic solutions can receive full credit.]

Find $\angle D$.

\[
\begin{align*}
x + 5x - 30 + 3x - 60 & = 180 \\
9x - 90 & = 180 \\
9x & = 270 \\
x & = 30
\end{align*}
\]

\[\text{m}\angle D = 30\]

Find $\angle BAC$.

\[
\begin{align*}
3x - 30 + x & = 180 \\
6x & = 210 \\
x & = 35
\end{align*}
\]

\[\text{m}\angle BAC = 35\]

Find the length of BC.

\[
\begin{align*}
6y - 8 & = 4y - 2 \\
2y & = 6 \\
y & = 3
\end{align*}
\]

\[BC = 4(3) - 2 = 12 - 2 = 10\]

Find the length of DC.

\[
\begin{align*}
2y & = 6 \\
y & = 3
\end{align*}
\]

\[BC = 10\]

Score 2: The student showed correct work to find 30 and 10. No further correct work is shown.
In the diagram of \(\triangle BCD \) shown below, \(\overline{BA} \) is drawn from vertex \(B \) to point \(A \) on \(\overline{DC} \), such that \(BC = BA \).

In \(\triangle DAB \), \(m\angle D = x \), \(m\angle DAB = 5x - 30 \), and \(m\angle DBA = 3x - 60 \). In \(\triangle ABC \), \(AB = 6y - 8 \) and \(BC = 4y - 2 \). [Only algebraic solutions can receive full credit.]

Find \(m\angle D \).

\[
x + 5x + 30 + 3x + 60 = 180
\]
\[
9x + 90 = 180
\]
\[
9x = 90
\]
\[
x = 10
\]

Find \(m\angle BAC \).

\[
5x - 30 + x = 180
\]
\[
6x - 30 = 180
\]
\[
6x + 30 = 180
\]
\[
6x = 150
\]
\[
x = 25
\]

Find the length of \(BC \).

\[
6y - 8 = 4y - 2
\]
\[
2y = 6
\]
\[
y = 3
\]

Find the length of \(DC \).

\[
\frac{2y - 8}{2y + 8} = 2
\]

Score 1: The student showed correct work to find 10, the length of \(BC \). No further correct work is shown.
Question 35

In the diagram of \(\triangle BCD \) shown below, \(\overline{BA} \) is drawn from vertex \(B \) to point \(A \) on \(\overline{DC} \), such that \(BC = BA \).

In \(\triangle DAB \), \(m \angle D = x \), \(m \angle DAB = 5x - 30 \), and \(m \angle DBA = 3x - 60 \). In \(\triangle ABC \), \(AB = 6y - 8 \) and \(BC = 4y - 2 \). [Only algebraic solutions can receive full credit.]

Find \(m \angle D \).

\[30 \]

Find \(m \angle BAC \).

\[60 \]

Find the length of \(BC \).

\[10 \]

Find the length of \(DC \).

\[20 \]

Score 1: The student showed no work, but stated four correct answers.
Question 35

35 In the diagram of \(\triangle BCD \) shown below, \(\overline{BA} \) is drawn from vertex \(B \) to point \(A \) on \(\overline{DC} \), such that \(\overline{BC} \equiv \overline{BA} \).

![Diagram of \(\triangle BCD \)]

In \(\triangle DAB \), \(m\angle D = x \), \(m\angle DAB = 5x - 30 \), and \(m\angle DBA = 3x - 60 \). In \(\triangle ABC \), \(AB = 6y - 8 \) and \(BC = 4y - 2 \). [Only algebraic solutions can receive full credit.]

Find \(m\angle D \).

Find \(m\angle BAC \).

Find the length of \(\overline{BC} \).

Find the length of \(\overline{DC} \).

| Score 0: The student showed no correct work. |
|---|---|---|---|---|

Geometry – Jan. '14 [29]
Question 36

36 The coordinates of the vertices of \(\triangle ABC \) are \(A(-6,5) \), \(B(-4,8) \), and \(C(1,6) \). State and label the coordinates of the vertices of \(\triangle A'B'C'' \), the image of \(\triangle ABC \) after the composition of transformations \(T_{4,-5} \circ r_{y-axis} \).

[The use of the set of axes below is optional.]

Score 4: The student has a complete and correct response. The student showed correct work to find the coordinates of \(A'' \), \(B'' \), and \(C'' \).
The coordinates of the vertices of \(\triangle ABC \) are \(A(-6,5) \), \(B(-4,8) \), and \(C(1,6) \). State and label the coordinates of the vertices of \(\triangle A'B'C' \), the image of \(\triangle ABC \) after the composition of transformations \(T_{4,-5} \circ r_{y-axis} \).

[The use of the set of axes below is optional.]

Score 4: The student has a complete and correct response. The student showed correct work to find the coordinates of the images of \(A, B, \) and \(C \) after \(T_{4,-5} \circ r_{y-axis} \). The arrows indicate the mapping of \(A(-6,5) \) onto \((6,5)\) onto \((10,0)\).
36 The coordinates of the vertices of \(\triangle ABC \) are \(A(-6,5), B(-4,8), \) and \(C(1,6) \). State and label the coordinates of the vertices of \(\triangle A'B'C' \), the image of \(\triangle ABC \) after the composition of transformations \(T_4, -5 \cdot r_{y-axis} \).

[The use of the set of axes below is optional.]

\[
\begin{align*}
T_{4, -5} \cdot r_{y-axis}^{} & : \\
A(-6,5) & \rightarrow A'(6,-5) \\
B(-4,8) & \rightarrow B'(4,-8) \\
C(1,6) & \rightarrow C'(1,-10)
\end{align*}
\]

Score 3: The student made an error reflecting one point \((C) \) over the \(y \)-axis, but did the transformation correctly.
36 The coordinates of the vertices of $\triangle ABC$ are $A(-6,5)$, $B(-4,8)$, and $C(1,6)$. State and label the coordinates of the vertices of $\triangle A'B'C''$, the image of $\triangle ABC$ after the composition of transformations $T_{4,-5} \circ r_y$-

[The use of the set of axes below is optional.]

\[
\begin{align*}
A' &= (-2,0) \\
B' &= (0,2) \\
C' &= (0,1)
\end{align*}
\]

Score 2: The student made a conceptual error by doing the composition in the wrong order.
Question 36

36 The coordinates of the vertices of $\triangle ABC$ are $A(-6,5)$, $B(-4,8)$, and $C(1,6)$. State and label the coordinates of the vertices of $\triangle A'B'C'$, the image of $\triangle ABC$ after the composition of transformations $T_{4 \rightarrow -5 \rightarrow y}$-axis.

[The use of the set of axes below is optional.]

\[
\begin{align*}
A' &= (-6,5) \\
B' &= (-4,8) \\
C' &= (1,6)
\end{align*}
\]

Score 1: The student did the translation on the vertices of $\triangle ABC$ correctly.
Question 36

36 The coordinates of the vertices of $\triangle ABC$ are $A(-6,5)$, $B(-4,8)$, and $C(1,6)$. State and label the coordinates of the vertices of $\triangle A''B''C''$, the image of $\triangle ABC$ after the composition of transformations $T_{(-5)}, r_{y}$-axis.

[The use of the set of axes below is optional.]

Score 0: The student did no correct work.
37 In right triangle ABC below, CD is the altitude to hypotenuse AB. If $CD = 6$ and the ratio of AD to AB is $1:5$, determine and state the length of BD.

[Only an algebraic solution can receive full credit.]

\[
\frac{b}{x} = \frac{4x}{b} \quad \quad 4x^2 = 36 \quad \quad \sqrt{\frac{4}{x^2}} = \sqrt{9} \quad \quad x = 3
\]

Score 4: The student has a complete and correct response.
37 In right triangle ABC below, CD is the altitude to hypotenuse AB. If $CD = 6$ and the ratio of AD to AB is $1:5$, determine and state the length of BD.

[Only an algebraic solution can receive full credit.]

$\frac{x}{6} = \frac{y}{4x}$

$4x^2 = 36$

$x^2 = 9$

$x = 3$

Score 3: The student correctly solved the proportion for x, the length of AD, but did not find the length of BD.
In right triangle ABC below, CD is the altitude to hypotenuse AB. If $CD = 6$ and the ratio of AD to AB is 1:5, determine and state the length of BD.

[Only an algebraic solution can receive full credit.]

Score 2: The student made a conceptual error in multiplying $(x \cdot 4x = 5x)$, but found an appropriate length of BD.

\[\frac{\text{Seg}}{12} = \frac{4x}{5}\]

\[5x = \frac{36}{5}\]

\[x = 7.2\]

\[\overline{BD} = 4x\]

\[\overline{BD} = 4(7.2)\]

\[\overline{BD} = 28.8\]
37 In right triangle ABC below, CD is the altitude to hypotenuse AB. If $CD = 6$ and the ratio of AD to AB is 1:5, determine and state the length of BD.

[Only an algebraic solution can receive full credit.]

Score 1: The student made a conceptual error in multiplying $(x \cdot 4x = 5x)$, and did not find an appropriate length of BD.
In right triangle ABC below, CD is the altitude to hypotenuse AB. If $CD = 6$ and the ratio of AD to AB is $1:5$, determine and state the length of BD.

[Only an algebraic solution can receive full credit.]

Score 0: The student got the correct answer by a completely incorrect method.
38 In the diagram of circle \(O \) below, diameter \(RS \), chord \(AS \), tangent \(TS \), and secant \(TAR \) are drawn.

![Diagram of circle O with diameter RS, chord AS, tangent TS, and secant TAR drawn.]

Complete the following proof to show \((RS)^2 = RA \cdot RT\)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. circle (O), diameter (RS), chord (AS), tangent (TS), and secant (TAR)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (RS \perp TS)</td>
<td>2. A tangent is (\perp) to the radius of the (O) at the point of tangency</td>
</tr>
<tr>
<td>3. (\angle RST) is a right angle</td>
<td>3. (\perp) lines form right angles</td>
</tr>
<tr>
<td>4. (\angle RAS) is a right angle</td>
<td>4. A (\triangle) inscribed in a semi-circle are (\perp) angles</td>
</tr>
<tr>
<td>5. (\angle RST \equiv \angle RAS)</td>
<td>5. all (\perp) (\triangle)s are (\equiv)</td>
</tr>
<tr>
<td>6. (\angle R \equiv \angle R)</td>
<td>6. Reflexive property</td>
</tr>
<tr>
<td>7. (\triangle RST \sim \triangle RAS)</td>
<td>7. (AA \sim AA)</td>
</tr>
<tr>
<td>8. (\frac{RS}{RA} = \frac{RT}{RS})</td>
<td>8. corresponding sides of (\sim) (\triangle)s are proportional to one another</td>
</tr>
<tr>
<td>9. ((RS)^2 = RA \cdot RT)</td>
<td>9. the product of the means are = to the product of the extremes</td>
</tr>
</tbody>
</table>

Score 6: The student has a complete and correct response by writing six correct reasons.
38 In the diagram of circle O below, diameter \overline{RS}, chord \overline{AS}, tangent \overline{TS}, and secant \overline{TAR} are drawn.

Complete the following proof to show $(RS)^2 = RA \cdot RT$

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. circle O, diameter \overline{RS}, chord \overline{AS}, tangent \overline{TS}, and secant \overline{TAR}</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. $\overline{RS} \perp \overline{TS}$</td>
<td>2. diameter drawn to point of tangency is \perp to tangent line</td>
</tr>
<tr>
<td>3. $\angle RST$ is a right angle</td>
<td>3. \perp lines form right angles</td>
</tr>
<tr>
<td>4. $\angle RAS$ is a right angle</td>
<td>4. $\text{All } \angle$'s are \perp to tangent line</td>
</tr>
<tr>
<td>5. $\angle RST \equiv \angle RAS$</td>
<td>5. Reflexive property</td>
</tr>
<tr>
<td>6. $\angle R \equiv \angle R$</td>
<td>7. $\triangle RST \sim \triangle RAS$</td>
</tr>
<tr>
<td>7. $\triangle RST \sim \triangle RAS$</td>
<td>8. Corresponding sides are proportional in $\sim \triangle$'s</td>
</tr>
<tr>
<td>8. $\frac{RS}{RA} = \frac{RT}{RS}$</td>
<td>9. Multiplication</td>
</tr>
</tbody>
</table>

$9. (RS)^2 = RA \cdot RT$

Score 5: The student wrote five correct reasons (2, 4, 5, 7, 8).
Question 38

38 In the diagram of circle O below, diameter \overline{RS}, chord \overline{AS}, tangent \overline{TS}, and secant \overline{TAR} are drawn.

Complete the following proof to show $(RS)^2 = RA \cdot RT$

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. circle O, diameter \overline{RS}, chord \overline{AS}, tangent \overline{TS}, and secant \overline{TAR}</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. $\overline{RS} \perp \overline{TS}$</td>
<td>2. $\overline{T} \perp \overline{TS}$, and the diameter intersect each other</td>
</tr>
<tr>
<td>3. $\angle RST$ is a right angle</td>
<td>3. \perp lines form right angles</td>
</tr>
<tr>
<td>4. $\angle RAS$ is a right angle</td>
<td>4. \overline{RS} is half the circle \overline{RS}, and secant \overline{TAR} is half of the chord it intersects</td>
</tr>
<tr>
<td>5. $\angle RST \cong \angle RAS$</td>
<td>5. All right angles are \cong</td>
</tr>
<tr>
<td>6. $\angle R \cong \angle R$</td>
<td>6. Reflexive property</td>
</tr>
<tr>
<td>7. $\triangle RST \sim \triangle RAS$</td>
<td>7. $\triangle A \cong \triangle A$</td>
</tr>
<tr>
<td>8. $\frac{RS}{RA} = \frac{RT}{RS}$</td>
<td>8. Corresponding sides in $\sim \triangle$s are in proportion</td>
</tr>
<tr>
<td>9. $(RS)^2 = RA \cdot RT$</td>
<td>9. The product of the extremes is $=$ to the product of the means.</td>
</tr>
</tbody>
</table>

Score 4: The student wrote four correct reasons (5, 7, 8, 9).
Question 38

38 In the diagram of circle O below, diameter RS, chord AS, tangent TS, and secant TAR are drawn.

Complete the following proof to show $(RS)^2 = RA \cdot RT$

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. circle O, diameter RS, chord AS, tangent TS, and secant TAR</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. $RS \perp TS$</td>
<td>2. a diameter & tangent meet</td>
</tr>
<tr>
<td>3. $\angle RST$ is a right angle</td>
<td>3. \perp lines form right angles</td>
</tr>
<tr>
<td>4. $\angle RAS$ is a right angle</td>
<td>4. if a chord & secant meet, right lines formed</td>
</tr>
<tr>
<td>5. $\angle RST \cong \angle RAS$</td>
<td>5. all right lines are \equiv</td>
</tr>
<tr>
<td>6. $\triangle RST \sim \triangle RAS$</td>
<td>6. Reflexive property</td>
</tr>
<tr>
<td>7. $\triangle RST \sim \triangle RAS$</td>
<td>7. $\triangle RST \sim \triangle RAS$</td>
</tr>
<tr>
<td>8. $\frac{RS}{RA} = \frac{RT}{RS}$</td>
<td>8. if 2 \triangle's \sim, their corresponding sides are in proportion</td>
</tr>
<tr>
<td>9. $(RS)^2 = RA \cdot RT$</td>
<td>9. if sides are in proportion, the extremes = the mean</td>
</tr>
</tbody>
</table>

Score 3: The student wrote three correct reasons (5, 7, 8).
In the diagram of circle O below, diameter RS, chord AS, tangent TS, and secant TAR are drawn.

Complete the following proof to show $(RS)^2 = RA \cdot RT$

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. circle O, diameter RS, chord AS, tangent TS, and secant TAR</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. $RS \perp TS$</td>
<td>2. Definition of a tangent</td>
</tr>
<tr>
<td>3. $\angle RST$ is a right angle</td>
<td>3. \perp lines form right angles</td>
</tr>
<tr>
<td>4. $\angle RAS$ is a right angle</td>
<td>4. Lines scribed in a \odot are right \angles</td>
</tr>
<tr>
<td>5. $\angle RST \cong \angle RAS$</td>
<td>5. \cong circ \angles $=$ angles</td>
</tr>
<tr>
<td>6. $\angle R \cong \angle R$</td>
<td>6. Reflexive property</td>
</tr>
<tr>
<td>7. $\triangle RST \sim \triangle RAS$</td>
<td>7. AAS~</td>
</tr>
<tr>
<td>8. $\frac{RS}{RA} = \frac{RT}{RS}$</td>
<td>8. Similar \triangleS \sim Similar proportion</td>
</tr>
<tr>
<td>9. $(RS)^2 = RA \cdot RT$</td>
<td>9. Product of the means $=$ Product $5 \cdot$ of the extremes</td>
</tr>
</tbody>
</table>

Score 2: The student wrote two correct reasons (7, 9).
38 In the diagram of circle O below, diameter RS, chord AS, tangent TS, and secant TAR are drawn.

Complete the following proof to show \((RS)^2 = RA \cdot RT \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. circle O, diameter (RS), chord (AS), tangent (TS), and secant (TAR)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (RS \perp TS)</td>
<td>2. Where a diameter and tangent meet</td>
</tr>
<tr>
<td>3. (\angle RST) is a right angle</td>
<td>3. (\perp) lines form right angles</td>
</tr>
<tr>
<td>4. (\angle RAS) is a right angle</td>
<td>4. When 2 chords meet at 1 point they form 90°</td>
</tr>
<tr>
<td>5. (\angle RST \equiv \angle RAS)</td>
<td>5. All right angles (\cong)</td>
</tr>
<tr>
<td>6. (\angle R \equiv \angle R)</td>
<td>6. Reflexive property</td>
</tr>
<tr>
<td>7. (\triangle RST \sim \triangle RAS)</td>
<td>7. All angles the same</td>
</tr>
<tr>
<td>8. (\frac{RS}{RA} = \frac{RT}{RS})</td>
<td>8. What?</td>
</tr>
<tr>
<td>9. ((RS)^2 = RA \cdot RT)</td>
<td>9. (\text{CPCTC})</td>
</tr>
</tbody>
</table>

Score 1: The student wrote one correct reason (5).
Question 38

In the diagram of circle O below, diameter \overline{RS}, chord \overline{AS}, tangent \overline{TS}, and secant \overline{TAR} are drawn.

![Diagram of circle with labeled segments](image)

Complete the following proof to show $(RS)^2 = RA \cdot RT$

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. circle O, diameter \overline{RS}, chord \overline{AS}, tangent \overline{TS}, and secant \overline{TAR}</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. $\overline{RS} \perp \overline{TS}$</td>
<td>2. Two lines that form right angles are perpendicular.</td>
</tr>
<tr>
<td>3. $\angle RST$ is a right angle</td>
<td>3. \perp lines form right angles</td>
</tr>
<tr>
<td>4. $\angle RAS$ is a right angle</td>
<td>4.</td>
</tr>
<tr>
<td>5. $\angle RST \cong \angle RAS$</td>
<td>5.</td>
</tr>
<tr>
<td>6. $\angle R \cong \angle R$</td>
<td>6. Reflexive property</td>
</tr>
<tr>
<td>7. $\triangle RST \sim \triangle RAS$</td>
<td>7.</td>
</tr>
<tr>
<td>8. $\frac{RS}{RA} = \frac{RT}{RS}$</td>
<td>8.</td>
</tr>
<tr>
<td>9. $(RS)^2 = RA \cdot RT$</td>
<td>9.</td>
</tr>
</tbody>
</table>

Score 0: The student has no correct reasons.
The State Education Department / The University of the State of New York

Regents Examination in Geometry – January 2014

Chart for Converting Total Test Raw Scores to Final Examination Scores (Scale Scores)

To determine the student’s final examination score, find the student’s total test raw score in the column labeled “Raw Score” and then locate the scale score that corresponds to that raw score. The scale score is the student’s final examination score. Enter this score in the space labeled “Scale Score” on the student’s answer sheet.

Schools are not permitted to rescore any of the open-ended questions on this exam after each question has been rated once, regardless of the final exam score. Schools are required to ensure that the raw scores have been added correctly and that the resulting scale score has been determined accurately.

Because scale scores corresponding to raw scores in the conversion chart change from one administration to another, it is crucial that for each administration the conversion chart provided for that administration be used to determine the student’s final score. The chart above is usable only for this administration of the Regents Examination in Geometry.