The University of the State of New York
REGENTS HIGH SCHOOL EXAMINATION

GEOMETRY

Thursday, June 23, 2011—9:15 a.m. to 12:15 p.m., only

Student Name: Mr. Sibol

School Name: HSCR

Print your name and the name of your school on the lines above. Then turn to the last page of this booklet, which is the answer sheet for Part I. Fold the last page along the perforations and, slowly and carefully, tear off the answer sheet. Then fill in the heading of your answer sheet.

This examination has four parts, with a total of 38 questions. You must answer all questions in this examination. Write your answers to the Part I multiple-choice questions on the separate answer sheet. Write your answers to the questions in Parts II, III, and IV directly in this booklet. All work should be written in pen, except graphs and drawings, which should be done in pencil. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc.

The formulas that you may need to answer some questions in this examination are found at the end of the examination. This sheet is perforated so you may remove it from this booklet.

Scrap paper is not permitted for any part of this examination, but you may use the blank spaces in this booklet as scrap paper. A perforated sheet of scrap graph paper is provided at the end of this booklet for any question for which graphing may be helpful but is not required. You may remove this sheet from this booklet. Any work done on this sheet of scrap graph paper will not be scored.

When you have completed the examination, you must sign the statement printed at the end of the answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet cannot be accepted if you fail to sign this declaration.

Notice...
A graphing calculator, a straightedge (ruler), and a compass must be available for you to use while taking this examination.

The use of any communications device is strictly prohibited when taking this examination. If you use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you.

DO NOT OPEN THIS EXAMINATION BOOKLET UNTIL THE SIGNAL IS GIVEN.
Part I

Answer all 28 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. For each question, write on the separate answer sheet the numeral preceding the word or expression that best completes the statement or answers the question.

1. Line segment AB is shown in the diagram below.

![Diagram of line segment AB with construction marks I, II, III, and IV]

Which two sets of construction marks, labeled I, II, III, and IV, are part of the construction of the perpendicular bisector of line segment AB?

(1) I and II
(2) I and III
(3) II and III
(4) II and IV

2. If $\triangle JKL \cong \triangle MNO$, which statement is always true?

(1) $\angle KJI \cong \angle NMO$
(2) $\angle KJL \cong \angle MON$
(3) $\overline{JL} \cong \overline{MO}$
(4) $\overline{JK} \cong \overline{ON}$
3 In the diagram below, $\triangle A'B'C'$ is a transformation of $\triangle ABC$, and $\triangle A''B''C''$ is a transformation of $\triangle A'B'C'$.

The composite transformation of $\triangle ABC$ to $\triangle A''B''C''$ is an example of a

(1) reflection followed by a rotation
(2) reflection followed by a translation
(3) translation followed by a rotation
(4) translation followed by a reflection
4 In the diagram below of $\triangle ACE$, medians AD, EB, and CF intersect at G. The length of FG is 12 cm.

What is the length, in centimeters, of GC?

- (1) 24
- (2) 12
- (3) 6
- (4) 4

5 In the diagram below of circle O, chord AB is parallel to chord CD.

Which statement must be true?

- (1) $AC \cong BD$
- (2) $AB \cong CD$
- (3) $AB \cong CD$
- (4) $ABD \cong CDB$
6 In the diagram below, line \(p \) intersects line \(m \) and line \(n \).

\[
\begin{align*}
7x &= 5x + 30 \\
2x &= 30 \\
x &= 15
\end{align*}
\]

If \(m \angle 1 = 7x \) and \(m \angle 2 = 5x + 30 \), lines \(m \) and \(n \) are parallel when \(x \) equals

(1) 12.5

(2) 15

(3) 87.5

(4) 105

7 In the diagram of \(\triangle KLM \) below, \(m \angle L = 70 \), \(m \angle M = 50 \), and \(\overline{MK} \) is extended through \(N \).

What is the measure of \(\angle LKN \)?

(1) 60°

(2) 120°

(3) 180°

(4) 300°
8 If two distinct planes, \(\mathcal{A} \) and \(\mathcal{B} \), are perpendicular to line \(c \), then which statement is true?

(1) Planes \(\mathcal{A} \) and \(\mathcal{B} \) are parallel to each other.
(2) Planes \(\mathcal{A} \) and \(\mathcal{B} \) are perpendicular to each other.
(3) The intersection of planes \(\mathcal{A} \) and \(\mathcal{B} \) is a line parallel to line \(c \).
(4) The intersection of planes \(\mathcal{A} \) and \(\mathcal{B} \) is a line perpendicular to line \(c \).

9 What is the length of the line segment whose endpoints are \(A(-1,9) \) and \(B(7,4) \)?

(1) \(\sqrt{64} \)
(2) \(\sqrt{89} \)
(3) \(\sqrt{205} \)
(4) \(\sqrt{233} \)

10 What is an equation of circle \(O \) shown in the graph below?

(1) \((x + 1)^2 + (y - 3)^2 = 25 \)
(2) \((x - 1)^2 + (y + 3)^2 = 25 \)
(3) \((x - 5)^2 + (y + 6)^2 = 25 \)
(4) \((x + 5)^2 + (y - 6)^2 = 25 \)
11. In the diagram below, parallelogram $ABCD$ has diagonals AC and BD that intersect at point E.

Which expression is not always true?

1. $\angle DAE \equiv \angle BCE$
2. $\angle DEC \equiv \angle BEA$
3. $AC \equiv DB$
4. $DE \equiv EB$

12. The volume, in cubic centimeters, of a sphere whose diameter is 6 centimeters is

$$V = \frac{4}{3} \pi \cdot 3^3$$

(1) 12π
(2) 36π
(3) 48π
(4) 288π

13. The equation of line k is $y = \frac{1}{3}x - 2$. The equation of line m is $-2x + 6y = 18$. Lines k and m are

1. parallel
2. perpendicular
3. the same line
4. neither parallel nor perpendicular
14 What are the center and the radius of the circle whose equation is

\[(x - 5)^2 + (y + 3)^2 = 16?\]

(1) \((-5,3)\) and 16 (3) \((-5,3)\) and 4
(2) \((5,-3)\) and 16 (4) \((5,-3)\) and 4

15 Triangle \(ABC\) has vertices \(A(0,0), B(3,2),\) and \(C(0,4)\). This triangle may be classified as

(1) equilateral
(2) isosceles
(3) right
(4) scalene

16 In rhombus \(ABCD\), the diagonals \(AC\) and \(BD\) intersect at \(E\). If \(AE = 5\) and \(BE = 12\), what is the length of \(AB\)?

(1) 7 (3) 13
(2) 10 (4) 17

\[
\sqrt{12^2 + 5^2} = \sqrt{169} = 13
\]
17 In the diagram below of circle O, PA is tangent to circle O at A, and PBC is a secant with points B and C on the circle.

If $PA = 8$ and $PB = 4$, what is the length of BC?

(1) 20 (2) 16 (3) 15 (4) 12

18 Lines m and n intersect at point A. Line k is perpendicular to both lines m and n at point A. Which statement must be true?

(1) Lines m, n, and k are in the same plane.
(2) Lines m and n are in two different planes.
(3) Lines m and n are perpendicular to each other.
(4) Line k is perpendicular to the plane containing lines m and n.

19 In $\triangle DEF$, $m\angle D = 3x + 5$, $m\angle E = 4x - 15$, and $m\angle F = 2x + 10$. Which statement is true?

(1) $DF = FE$ (2) $DE = FE$ (3) $m\angle E = m\angle F$ (4) $m\angle D = m\angle F$

$$3x + 5 + 4x - 15 + 2x + 10 = 180$$
$$9x = 180$$
$$x = 20$$
20 As shown in the diagram below, $\triangle ABC \sim \triangle DEF$, $AB = 7x$, $BC = 4$, $DE = 7$, and $EF = x$.

What is the length of AB?

(1) 28
(2) 2
(3) 14
(4) 4

21 A man wants to place a new bird bath in his yard so that it is 30 feet from a fence, f, and also 10 feet from a light pole, P. As shown in the diagram below, the light pole is 35 feet away from the fence.

How many locations are possible for the bird bath?

(1) 1
(2) 2
(3) 3
(4) 0
22. As shown on the graph below, \(\triangle R'S'T' \) is the image of \(\triangle RST \) under a single transformation.

Which transformation does this graph represent?

1. glide reflection
2. line reflection
3. rotation
4. translation

23. Which line is parallel to the line whose equation is \(4x + 3y = 7 \) and also passes through the point \((-5,2)\)?

1. \(4x + 3y = -26 \)
2. \(4x + 3y = -14 \)
3. \(3x + 4y = -7 \)
4. \(3x + 4y = 14 \)

\[
\begin{align*}
\text{Slope of line } \triangle RST & = \frac{4}{3} \\
\text{Point-slope form of line } \triangle R'S'T' & = y - 2 = \frac{4}{3}(x + 5) \\
\text{Solve for } b & = \frac{14}{3} \\
\text{Slope-intercept form } \triangle R'S'T' & = y = \frac{4}{3}x - \frac{14}{3}
\end{align*}
\]
24 If the vertex angles of two isosceles triangles are congruent, then the triangles must be
(1) acute (3) right
(2) congruent (4) similar

25 Which quadrilateral has diagonals that always bisect its angles and also bisect each other?
(1) rhombus (3) parallelogram
(2) rectangle (4) isosceles trapezoid

26 When ΔABC is dilated by a scale factor of 2, its image is ΔA′B′C′. Which statement is true?
(1) AC ≅ A′C′
(2) ∠A ≅ ∠A′
(3) perimeter of ΔABC = perimeter of ΔA′B′C′
(4) 2(area of ΔABC) = area of ΔA′B′C′
27 What is the slope of a line that is perpendicular to the line whose equation is \(3x + 5y = 4\)?

\[
M = \frac{-A}{B} = \frac{-3}{5} \\
M_\perp = \frac{5}{3}
\]

(1) \(-\frac{3}{5}\) \\
(2) \(\frac{3}{5}\) \\
(3) \(-\frac{5}{3}\) \\
(4) \(\frac{5}{3}\)

28 In the diagram below of right triangle \(ABC\), altitude \(BD\) is drawn to hypotenuse \(AC\), \(AC = 16\), and \(CD = 7\).

What is the length of \(BD\)?

\[
(1) 3\sqrt{7} \\
(2) 4\sqrt{7} \\
(3) 7\sqrt{3} \\
(4) 12
\]

\[
x^2 = 9 \cdot 7 \\
x^2 = 63 \\
x = \sqrt{63} \\
x = 3\sqrt{7}
\]
Part II

Answer all 6 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [12]

29 Given the true statement, “The medians of a triangle are concurrent,” write the negation of the statement and give the truth value for the negation.

The medians of a triangle are not concurrent.

False.
30 Using a compass and straightedge, on the diagram below of \overline{RS}, construct an equilateral triangle with \overline{RS} as one side. [Leave all construction marks.]
The Parkside Packing Company needs a rectangular shipping box. The box must have a length of 11 inches and a width of 8 inches. Find, to the nearest tenth of an inch, the minimum height of the box such that the volume is at least 800 cubic inches.

\[
V = l \cdot w \cdot h
\]

\[
800 = 11 \cdot 8 \cdot h
\]

\[
\frac{800}{88} = h
\]

\[
9.1 \approx h
\]
A pentagon is drawn on the set of axes below. If the pentagon is reflected over the y-axis, determine if this transformation is an isometry. Justify your answer. [The use of the set of axes below is optional.]

Yes. A reflection is an isometry.
In the diagram below of $\triangle ABC$, D is a point on AB, E is a point on BC, $AC \parallel DE$, $CE = 25$ inches, $AD = 18$ inches, and $DB = 12$ inches. Find, to the nearest tenth of an inch, the length of EB.

\[
\frac{x}{25} = \frac{12}{18}
\]

\[
\frac{18x}{18} = 300
\]

\[
x \approx 16.7
\]
In circle O, diameter RS has endpoints R(3a,2b - 1) and S(a - 6,4b + 5). Find the coordinates of point O, in terms of a and b. Express your answer in simplest form.

\[
\left(\frac{3a + a - 6}{2}, \frac{2b - 1 + 4b + 5}{2} \right) \\
\left(\frac{4a - 6}{2}, \frac{6b + 4}{2} \right) \\
(2a - 3, 3b + 2)
\]
35 On the set of coordinate axes below, graph the locus of points that are equidistant from the lines $y = 6$ and $y = 2$ and also graph the locus of points that are 3 units from the y-axis. State the coordinates of all points that satisfy both conditions.
In the diagram below, tangent ML and secant MNK are drawn to circle O.

The ratio $m\angle LN:m\angle NK:m\angle KL$ is 3:4:5. Find $m\angle LMK$.

$90:120:150$

$3x + 4x + 5x = 360$

$12x = 360$

$x = 30$

$\frac{150 - 90}{2}, \; \frac{60}{2} = 30$
37 Solve the following system of equations graphically.

\[2x^2 - 4x = y + 1 \]
\[x + y = 1 \]
\[y = -x + 1 \]
Part IV

Answer the question in this part. A correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. A correct numerical answer with no work shown will receive only 1 credit. The answer should be written in pen. [6]

38 In the diagram below, \(PA \) and \(PB \) are tangent to circle \(O \), \(OA \) and \(OB \) are radii, and \(OP \) intersects the circle at \(C \).

Prove: \(\angle AOP \cong \angle BOP \)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (PA) and (PB) are tangent to circle (O), (OA) and (OB) are radii, and (OP) intersects the circle at (C).</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (OA \cong OB)</td>
<td>2. All radii are congruent</td>
</tr>
<tr>
<td>3. (OP \cong OP)</td>
<td>3. Reflexive Property</td>
</tr>
<tr>
<td>4. (OA \perp PA) and (OB \perp PB)</td>
<td>4. Tangents to a circle are (\perp) to a radius at a point on the circle</td>
</tr>
<tr>
<td>5. (\angle PAO) and (\angle PBO) are right angles</td>
<td>5. Definition of (\perp)</td>
</tr>
<tr>
<td>6. (\angle PAO \cong \angle PBO)</td>
<td>6. All right angles are congruent</td>
</tr>
<tr>
<td>7. (\triangle AOP \cong \triangle BOP)</td>
<td>7. HL</td>
</tr>
<tr>
<td>8. (\angle AOP \cong \angle BOP)</td>
<td>8. CPCTC</td>
</tr>
</tbody>
</table>