June 14, 1985

Part I

Answer all questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Write your answers in the spaces provided on the answer sheet.

spaces provided on the answer sheet.	
1. If 1 centimeter represents 5 kilometers in a scale drawing how many kilometers are represented by 3 centimeters?	1
2. If 4 times a number is increased by 5, the result is 25 What is the number?	. 2
3. Solve for the positive value of x : $x^2 - 49 = 0$	3
4. Solve for x : $0.04x = 0.8$	4
5. Solve for x : $4(2x-5) = 3x + 15$	5
6. What is the value of $\frac{ 3-5 }{-2}$?	6
7. Solve for a: $3a + 4b = 7$ a - 4b = 1	7
8. If one side of a square is represented by $3x$, express the perimeter of the square in terms of x .	8
9. If $\tan A = 1.2800$, find the measure of angle A to the nearest degree.	9
10. The point $(3,a)$ is on the graph of the line whose equation is $2x + y = 4$. What is the value of a ?	10
11. Evaluate $a(b^2 - 5)$ when $a = 4$ and $b = -2$.	11
12. Factor: $x^2 + x - 12$	12
13. What is the average of $11x + 3$, $2x - 11$, and $5x + 8$?	13
14. A tower casts a shadow of 80 meters at the same time that a nearby tree 4 meters tall casts a shadow of 10 meters. Find the	•
height, in meters, of the tower.	14
15. Solve for x : $\sqrt[2]{3}x - 7 = 9$	15
16. Find the value of $\sqrt{70}$ to the nearest tenth.	16
17. Solve for d in terms of R and p: $R = p + 2d$	17
18. Find the slope of the line whose equation is $y = \frac{-2x}{3} + 2$. 18

19____

20.____

19. Subtract $2x^2 + 3x - 4$ from $3x^2 - 2x - 1$.

20. If 35% of a number is 70, what is the number?

30__

Directions (21-30): Write in the space provided on the answer sheet the numeral preceding the expression that best completes each statement or answers each question.

- (2) $9x^6$ 21. The product of $3x^2$ and $6x^4$ is (1) $2x^2$ (3) $18x^6$ (4) $18x^8$
- 22. If n + 2 represents an odd integer, the next larger odd integer is represented by (1) n (2) 2n + 4 (3) n + 3 (4) n + 4 22____
- 23. The multiplicative inverse of 5/3 is (1) 1 (3) - 3/5 (4) - 5/3
- 24. An illustration of the distributive property is
 (1) 3(x + y) = 3x + 3y (2) $3(x + y) = (x + y) \cdot 3$ (3) 3x + 3y = 3y + 3x (4) $3(xy) = (3x) \cdot y$
- 25. If 2x 1 > 5, a member of the solution set is (1) 0 (2) 2 (4) 3 (4) 4 25____
- 26. The length of a rectangle is represented by 3x and its width is represented by x - 3. The area of the rectangle is (1) 4x - 3 (2) $3x^2 - 3$ (4) $3x^2 - 9x$ (4) $4x^2 - 9x$ 26____
- 27. When $16x^3 8x^2 + 4x$ is divided by 4x, the quotient is (1) $4x^3 2x^2 + x$ (2) $4x^2 2x + 1$ (3) $4x^2 2x$ $(4) 4x^2 - 2x + x$
- 28. What is the sum of $\frac{x-1}{2}$ and $\frac{x-1}{4}$? (1) $\frac{3x-3}{4}$ (2) $\frac{x-1}{6}$ (3) $\frac{3x-2}{4}$ (4) $\frac{3x-3}{8}$ 28__
- 29. For which value of x is the expression $\frac{x}{x-3}$ undefined? $(1) 1 \qquad (2) 0 \qquad (3) 3 \qquad (4) -1$ 29___
- 30. If the replacement set is the set of real numbers, which graph shows the solution set of the inequality $-1 \le x \le 2$?

Part II

Answer four questions from this part.

Show all work unless otherwise directed.

31. Solve graphically and check:

$$2x - y = 4
y - x = -2$$
[8, 2]

- 32. Write an equation or a system of equations that can be used to solve each of the following problems. In each case, state what the variable or variables represent. [Solution of the equations is not required.]
 - a Find three consecutive positive integers such that the square of the smallest integer exceeds the largest integer by 10. [5]
- b Mrs. Stevens invested a certain amount of money at 7% and twice that amount at 10%. If the combined annual income from both investments is \$810, how much was invested at each rate? [5]
- 33. A freight train left a station at 12 noon going north at a rate of 50 miles per hour. At 1 p.m. a passenger train left the same station going south at the rate of 60 miles per hour. At what time were the trains 270 miles apart? [Only an algebraic solution will be accepted.] [6, 4]
 - 34. Solve algebraically and check:

$$3x - 2y = -1
2x + 3y = 8$$
[8, 2]

- 35. Bob can paint a room in 3 hours. Dick can paint the same room in 6 hours. How long would it take to paint the room if they both worked together? [Only an algebraic solution will be accepted.] [5, 5]
 - 36. Answer both a and b.
 - a A vertical pole casts a shadow 55 feet long when the angle of elevation of the Sun is 40°. Find the height of the pole to the nearest foot. [5]
 - b In right triangle ABC, C is a right angle, AB = 20, BC = 12, and AC = 16. Find the measure of angle A to the nearest degree. [5]
- 37. The replacement set for x for the open sentences below is $\{-3, -2, -1, 0,1,2,3\}$. On your answer paper, write the letters a through e, and next to each letter write the solution set of the open sentence. [Each answer must be a subset of the replacement set.] [10]

$$a \quad 4x < 2x - 2$$

$$b |x| = 1$$

$$c x^2 - 4 = 5$$

$$d 3x - 4 = 3$$

$$e \quad x(x+1) = 0$$