The University of the State of New York
 320th High School Examination
 PLANE GEOMETRY

Monday, January 25, 1954 - 9.15 a. m. to 12.15 p. m., only

Instructions

Part I is to be done first and the maximum time allowed for it is one and one half hours. At the end of that time, this part of the examination must be detached and will be collected by the teacher. If you finish part I before the signal to stop is given, you may begin part II.

Write at top of first page of answer paper to parts II and III (a) name of school where you have studied, (b) number of weeks and recitations a week in plane geometry, (c) author of textbook used.

The minimum time requirement is four or five recitations a week for a school year.

Part II
Answer three questions from part II.
26 Prove: Two right triangles are congruent if the hypotenuse and a leg of one are equal to the hypotenuse and a leg of the other: [10]

27 Diagonal $A C$ of parallelogram $A B C D$ is extended through A to point E and through C to point F, making $C F$ equal to $A E$. Lines $E D, D F, F B$ and $B E$ are drawn. Prove that $E D F B$ is a parallelogram. [10]

28 Prove: If two chords intersect within a circle, the product of the segments of one is equal to the product of the segments of the other. [10]

29 In triangle $A B C$, sides $A B$ and $A C$ are equal. A line through B intersects $A C$ at $D . B D$ is extended through D to point E, and $C E$ is drawn. Prove that $B E$ is greater than $C E$. [10]

30 Parallel lines r and s are d distance apart and point P is any point between the two lines.
a What is the length of the radius of a circle that is tangent to both r and s ?
b What is the locus of the center of a circle that is tangent to both r and s ?
c What is the locus of the center of a circle whose radius is $\frac{d}{2}$ and which passes through P ?
d On your answer paper draw the figure at the right. [Construction of r parallel to s is not required.] Now construct a circle tangent to the two parallel lines and passing through the given point P. [4]

. P
\square

Part III

Answer two questions from part III.

31 In the accompanying figure, $B C D$ is a semicircle and $A B$ and $E D$ are equal quadrants. (A quadrant is a quarter of a circle.) $A E$ is 42 inches and the diameter of the semicircle is 28 inches. Find the area of the figure. [Use $\pi=\frac{22}{7}$] [10]

32 The longer base of an isosceles trapezoid is 40 , one leg is 20 and one of the base angles is 63°. a Find to the nearest integer:
(1) the altitude of the trapezoid[3]
(2) the shorter base of the trapezoid
b Using the results found in answer to part a, find the area of the trapezoid.
33 Quadrilateral $A B C D$ is inscribed in a circle and arcs $A B, B C, C D$ and $D A$ are in the ratio 3:3:4:2.
a Find the number of degrees in each of the four arcs. [2]
b If $A C$ is drawn, find the number of degrees in angles $C A B$ and $A C D$.
c If chord $A D$ is 10 , find the
(1) circumference of the circle. [Answer may be left in terms of π.]
(2) area of triangle $A B C$. [3]

34 For each item listed in column I the numerical value, correct to the nearest tenth, is given in column II. List the numbers $1-5$ on your answer paper and after each number write the letter indicating the numerical value of the corresponding item. [10]

Column I
(1) The side of a square whose diagonal is 10
(2) The area of a rhombus whose diagonals are 4.8 and 4
(3) The hypotenuse of a right triangle whose legs are 6 and 14
(4) The area of a regular hexagon whose side is 2
(5) The length of an arc of 80° in a circle whose circumference is $37 \frac{1}{2}$

Column II
a 7.1
b 8.3
c 9.6
d 10.4
e 13.4
$f 15.2$
g 15.3

Plane Geometry

Fill in the following lines:

Name of pupil \qquad Name of school \qquad

Part I

Answer all questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed.

1 In parallelogram $A B C D$, angle A is twice angle B. Find the number of degrees in angle B.

2 Find the sum of the interior angles of a polygon of 12 sides.
3 Is there a regular polygon such that each exterior angle is 50° ? [Answer yes or no.]

4 The hypotenuse of a right triangle is 2.5 and one leg is 1.5 . Find the other leg.

5 If a point is equidistant from the three sides of a triangle, it must be the intersection of the three (a) medians, (b) angle bisectors, (c) perpendicular bisectors of the sides. Which is correct a, b, or c ?

6 In triangle $A B C$ a line parallel to $A C$ intersects $A B$ at D and $C B$ at E. If $A B=12, D B=8$, and $A C=15$, find $D E$.

7 The areas of two similar triangles are 40 and 90 . Find the ratio of a side of the smaller polygon to the corresponding side of the larger.

8 A tangent and a secant drawn to a circle from the same point are 6 and 18 respectively. Find the external segment of the secant.

9 The segments made by the altitude on the hypotenuse of a right triangle are 3 and 7. Find the altitude on the hypotenuse. [Answer may be left in radical form.]

10 An angle of a rhombus is 60° and its shorter diagonal is 4 . Find the altitude of the rhombus. [Answer may be left in radical form.]

11 The locus of points equidistant from two concentric circles whose radii are 8 and 14 is a circle concentric with the given circles. Find its radius.

12 Two unequal circles are tangent externally to the same line at the same point. From any point in this line one tangent is drawn to the larger circle and one tangent is drawn to the smaller circle. The tangent to the larger circle is (a) longer than, (b) equal to, (c) shorter than, the tangent to the smaller circle. Which is correct a, b or c ?

13 Express the area of a regular polygon in terms of the number of sides (n), the length of one side (s) and the apothem (a).

$$
1
$$

2.
3.

\qquad
5.
6.
\qquad
8.

9 \qquad
\qquad

11

12 \qquad

13 \qquad

Plane Geometry

14 In triangle $A B C$, angle $C=90^{\circ}, A C=20$ and $B C=36$. Find angle A to the nearest degree.

Directions (15-18): Write on the line at the right of each question the expression that, when inserted in the blank, will make the statement true.

15 If line a is perpendicular to line b and line c is parallel to a, then c is \ldots to b.

15
16 An angle formed by two chords intersecting within the circle is measured by one half the ... of the intercepted arcs.

16
17 If the center of the circle that is circumscribed about a triangle is outside the triangle, the triangle is

17
18 If two parallelograms have equal bases, their areas are to each other as their....

18

Directions (19-24) : For each of the following, if the statement is always true, write the word true on the line at the right; if it is not always true, write the word false.

19 It is always possible to construct a right triangle if the given parts are the hypotenuse and one of the acute angles.

19

20 An equilateral polygon inscribed in a circle is regular.
20.

21 If the diagonals of a parallelogram are equal, the parallelogram is a square.
$22 A B$ and $A^{\prime} B^{\prime}$ are bases of isosceles triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$. If $A B: A^{\prime} B^{\prime}=A C: A^{\prime} C^{\prime}$, the triangles are similar.
\qquad

23 If the sides of a triangle are a, b and c, the perimeter of the triangle formed by joining the mid-points of the sides of the given triangle is

$$
\cdot \frac{a+b+c}{2}
$$

\qquad

24 The median drawn to the hypotenuse of a right triangle divides the triangle into two isosceles triangles. \qquad
25 The accompanying diagram shows the division of given line segment $A B$ into two parts which are in the ratio $r: s$.

Which statement, a or b, is used to prove that the construction is correct?
a If a line is drawn through two sides of a triangle parallel to the third side, it divides those sides proportionally.
b A line that divides two sides of a triangle proportionally is parallel to the third side.

