The University of the State of New York

Regents Hige School Examination

TENTH YEAR MATHEMATICS

Wednesday, August 20, 1958-8:30 to 11:30 a.m., only

Name of pupil
Name of school.

Name and author of textbook used

Part I

Answer all questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Unless otherwise specified, answers may be left in terms of π or in radical form.

1 The line joining the midpoints of two sides of a triangle is 6 . Find the
third side of the triangle.

2 In parallelogram $A B C D$, angle A is represented by x° and angle B by $(2 x-30)^{\circ}$. Find the number of degrees in angle A.

3 Find the number of degrees in the sum of the interior angles of a polygon of eight sides.
4 In a circle a central angle is drawn equal to an inscribed angle. If the arc of the central angle is represented by x, represent the arc of the inscribed angle in terms of x.

5 Two secants from an external point to a circle intercept arcs of 100° and 30°. Find the number of degrees in the angle formed by the two secants.

6 In a circle, chords $A B$ and $C D$ intersect at E. If $A E=5, E B=6$ and $E C=4$, find $E D$.

7 A tangent and a secant are drawn from a point to a circle. If the tangent is 8 and the external segment of the secant is 6 , find the secant.

8 The coordinates of the end points of a line segment are ($-1,2$) and $(3,5)$. Find the coordinates of the midpoint.

9 The coordinates of the end points of a line segment are ($-1,2$) and $(3,5)$. Find the length of the line segment.

10 Write an equation of the locus of points whose ordinates are one more than twice their abscissas.

11 Two sides of a parallelogram are 8 and 10 and the included angle is 30°. Find the area of the parallelogram.
12 The bases of a trapezoid are 6 and 10 and the altitude is 5 . Find the area of the trapezoid.

13 The areas of two similar triangles are 16 and 36 . If a side of the smaller triangle is 6 , find the corresponding side of the larger triangle.
1.
2.
3.
10.

11

12
\qquad
\qquad
5.
\qquad
\qquad
\qquad
\qquad
\qquad

13 \qquad

1+ The area of an equilateral triangle is $+\sqrt{3}$. Find a side oi the triangle.
15 Find the number of points that are 1 inch from a given line and also 2 inches from a given point on the given line.

14

15
16 The circumierence of a circle is 25 . Find the length of an arc of 72° on this circle.
16.

17 The area of a circle is 36π. Find the length of a radius of this circle.
17...................

18 Two adjacent sides of a rectangle are 3 and 4. Find, to the nearest degref, the number of degrees in the angle formed by a diagonal and the larger side.

18
8.

Directions (19-21): Indicate the correct completion for each of the following by writing the letter a, b, c or d on the line at the right.
19 If two sides of a triangle are 3 and 6 , the third side may be (a) 8 $\begin{array}{lll}\text { (b) } 2 & \text { (c) } 3 & \text { (d) } 9\end{array}$
20 In right triangle $A B C$, the right angle is at C and $C D$ is the altitude
to the hypotenuse. Then $A C$ is the mean proportional between
20 In right triangle $A B C$, the right angle is at C and $C D$ is the altitude
to the hypotenuse. Then $A C$ is the mean proportional between $\begin{array}{llll}\text { (a) } A D \text { and } D B & \text { (b) } D B \text { and } B C & \text { (c) } A B \text { and } B C & \text { (d) } A D \text { and } A B\end{array}$
\qquad

21 Given the statements below :
(1) An angle formed by two chords intersecting inside the circle is measured by one-half the sum of the intercepted arcs.
(2) A central angle is measured by its intercepted arc.
(3) An angle inscribed in a circle is measured by one-half its intercepted arc.
A logical sequence in which these statements can be proved is (a) $1,3,2$ (b) $3,2,1$
(c) $2,3,1$
(d) $2,1,3$
21....................

Directions (22-24): For each of the following, tell whether the statement is always true, sometimes true or never true by writing the word always, sometimes or never on the line at the right.
22 If a circle can be circumscribed about a polygon, the polygon is regular. \qquad
23 From a point A outside a circle, $A B$ and $A C$ are drawn tangent to the circle at B and C respectively; $B C$ is drawn. If $B C=A B$, triangle $A B C$ is equilateral. \qquad
24 In triangles $A B C$ and $D E F$, angle $A=50^{\circ}$, angle $B=62^{\circ}$, angle $D=50^{\circ}$ and angle $E=78^{\circ}$. Triangle $A B C$ is similar to triangle $D E F$.

24
Directions (25): Leave all construction lines on the paper.

25 Construct a tangent to circle O at point A.

[2]

Part II

Answer three questions from this part.
26 Prove: Two right triangles are congruent if the hypotenuse and leg of one are equal to the corresponding parts of the other. [10]

27 In the figure at the right, $C A=C B, D B$ bisects angle $C B . A$. $A E$ bisects angle $C A B$ and $D R=E S$.
Prove: a $A E=D B$
[5]
b $R C=C S$
[5]

28 Prove: The area of a triangle is equal to one-half the product of a side and the altitude drawn to that side. [10]

29 In the figure at the right, $A B$ is a diameter of circle O, C is any point on arc $A B, B R$ is tangent to the circle at point B, a perpendicular from C to $B R$ meets $B R$ at $D, A C$ and $C B$ are drawn.
Prove:

$$
\begin{equation*}
(C B)^{2}=A B \times C D \tag{10}
\end{equation*}
$$

30 In triangle $A B C$, angle A is greater than angle $B . C A$ is extended through A to D and $C B$ is extended through B to E. The bisectors of angles $D A B$ and $E B A$ meet at O.
Prove:
$A O$ is greater than $B O$
*31 The vertices of quadrilateral $A B C D$ are $A(-4,1), B(2,-2), C(4,1)$ and $D(-2,4)$. Show by means of slopes that $A B C D$ is a parallelogram. [10]
*This question is based on one of the optional topics in the syllabus and may be used in place of any question in either Part II or Part III.

Part III

Answer two questions from this part. Show all work.

32 In the figure at the right, trapezoid $A B C D$, with bases $A B$ and $D C$, is inscribed in a circle so that $A B$ is a diameter of the circle. A tangent at C meets $A D$ extended through D at k. Chord $D F$ meets $A B$ at E. If arc $D C=100^{\circ}$ and are $A F$ is twice $\operatorname{arc} F B$, find
a the number of degrees in arcs $A D, C B, A F$ and $F B$
b the number of degrees in angles $A E D, A K C$ and $D C K$
[6]

33 In the figure at the right, diagonal $A C$ is drawn in quadrilateral $A B C D$. Angle $A B C=90^{\circ}$, angle $B A C=35^{\circ}$, angle $A C D=90^{\circ}$, angle $C A D=48^{\circ}$ and $A C=12$.
a Find, to the nearest integer, $A B, B C$ and $C D$.
b Using the results found in a, find the area of $A B C D$.

34 The equal sides of isosceles triangle $A B C$ are $A C$ and $C B . D$ is a point on $A C$ and E is a point on $C B$ such that $D E$ is parallel to $A B$.
a If $C D=x+4, C A=2 x+3, D E=x+6$ and $A B=x+12$, write an equation that could be used to solve for x.
[2]
b Solve for x and find $D E, A B$ and $D A . \quad[4,1,1,2]$
$35 a$ The vertices of triangle $A B C$ are $A(-1,1), B(10,4)$ and $C(1,7)$. Show that triangle $A B C$ is a right triangle. [5]
b The vertices of triangle $D E F$ are $D(1,2), E(7,4)$ and $F(5,8)$. Find the area of triangle $D E F$. [5]

FOR TEACHERS ONLY 10
 INSTRUCTIONS FOR RATING
 TENTH YEAR MATHEMATICS
 $$
\text { Wednesday, August 20, } 195 x^{2}-30 \text { :1 } 5: 30 \text { a.m., wny }
$$

Use only red ink or pencil in rating Regents papers. De not attempt to corret the puphs work by making insertions or changes of any kind. Cee check marks to indicate pupil errors.

Unless otherwise specified, mathematically correct variations in the answers will be allowed. Units need not be given when the wording of the questions allows such omissions.

Part I

Allow 2 credits for each correct answer; allow no partial credit. For questions 19-21, allow credit if the pupil has written the correct answer instead of the letter a, b, c or d.
(1) 12
(2) 70
(3) 1080
(4) $2 x$
(5) 35
(6) $7 \frac{1}{2}$
(7) $10 \frac{2}{3}$
(8) $\left(1,3 \frac{1}{2}\right)$
(9) 5
(10) $y=2 x+1$
(11) 40
(12) 40
(13) 9
(14) 4
(15) 4
(16) 5
(17) 6
(18) 37
(19) a
(20) d
(21) c
(22) sometimes
(23) always
(24) never

