The University of the State of New York
 293d High School Examination
 TRIGONOMETRY

Thursday, January $25,1945-9.15$ a. m. to 12.15 p. m., only

Instructions

Part I is to be done first and the maximum time allowed for it is one and one half hours. At the end of that time, this part of the examination must be detached and will be collected by the teacher. If you finish part I before the signal to stop is given, you may begin part II.

Write at top of first page of answer paper to parts II, III and IV (a) name of school where you have studied, (b) number of weeks and recitations a week in trigonometry.

The minimum time requirement is five recitations a week for half a school year, or the equivalent.
Answer five questions from parts II, III and IV, including at least one question from each part.

Part II

Answer at least one question from part II.
21 a Derive the law of sines for the acute plane triangle.
b Starting with the formula for $\cos (x+y)$, derive the formula for $\cos 2 x$ in terms of $\sin x$. [4]
$22 a$ Prove that the expression $(\tan B+\cot B) \sin B \cos B$ equals 1. [3]
b Solve the equation $\sin ^{2} y-2 \cos y+\frac{1}{4}=0$ for all values of y between 0° and 360°. Check one value. [5, 2]
$23 a$ On the same set of axes, draw the graphs of $y=\cos x$ and $y=\sin 2 x$ as x varies from 0 to π radians inclusive at intervals of $\frac{\pi}{6}$ radians. [3,5]
b Indicate on the graphs, by means of capital letters, the points whose abscissas give solutions of the equation $\cos x=\sin 2 x$. [2]

24 A valley is crossed by a bridge $A B$ whose length is d; C is a point in the valley directly below the bridge. The angles of depression of C at A and B are s and t, as shown in the drawing. In terms of s, t and d, derive a formula for the height h of the bridge above C. [10]

Trigonometry

Part III

Answer at least one question from part III.

25 In triangle $A B C, a=328, b=321$ and $c=295$. Find angle B correct to the nearest minute. [10]

26 From a point C at sea level, the angle of elevation of a mountain peak B is 30°. An aviator at $A, 4325$ feet directly above C, finds that angle $B A C$ is 43°. Find, correct to the nearest foot, the height of the mountain peak above sea level. [10]

27 A ship sails 23 miles on a course $\mathrm{N} 15^{\circ} \mathrm{E}$ and then 15 miles on a course $\mathrm{N} 78^{\circ} \mathrm{E}$. In what direction, correct to the nearest minute, is the ship from the starting point? [10]

Part IV

Answer at least one question from part IV.
28 In spherical triangle $A B C, A=20^{\circ} 30^{\prime}, B=84^{\circ} 40^{\prime}, c=90^{\circ}$. Find C. [10]
29 Find the great circle distance in statute miles between London (Lat. $51^{\circ} 31^{\prime} \mathrm{N}$, Long. $0^{\circ} 6^{\prime} \mathrm{W}$) and Berlin (Lat. $52^{\circ} 32^{\prime} \mathrm{N}$, Long. $13^{\circ} 24^{\prime} \mathrm{E}$). \quad [1 nautical mile $=1.152$ statute miles] [10]

Trigonometry

Fill in the following lines:

Name of school
Name of pupil \qquad

Part I

Answer all questions in part I. Each correct answer will receive $2 \mathbb{I} / 2$ credits. No partial credit will be allowed. Each answer must be reduced to its simplest form.

1 Express $\cos 87^{\circ}$ as a function of a positive angle less than 45°.
1.

2 Express $\cot \left(180^{\circ}+A\right)$ as a function of A.
2.

3 Find the value of $\sin 163^{\circ}$
3.

4 Find $\log \sin 61^{\circ} 23^{\prime}$
4.

5 Find acute angle A correct to the nearest minute, if $\log \cos A=$ $9.9020-10$

5
6 If A is a positive acute angle and $\sec A=\frac{17}{8}$, find $\tan A$.
6.

7 Express in degrees an angle of $\frac{\pi}{3}$ radians.
7. \qquad
8 A circular arc of 30 feet subtends an angle of four radians at the center of its circle. Find the radius of the circle.
8.
9.

9 Express in degrees an angle of 40 mils.
10 In which quadrants may the terminal side of an angle lie if its tangent is negative?

10
11 Express $\tan 2 x$ in terms of $\tan x$.
11
12 If A is an angle in the first quadrant, express $\tan A$ in terms of $\cos A$.
13 Complete the formula $\sin (A+B)=\ldots$
13
14 In right spherical triangle $A B C$, in which C is the right angle, c and b are known. Write the formula that should be used to find B.

15 Complete the following statement: In the solution of a right spherical triangle $A B C$, in which C is the right angle, an ambiguous case arises when the given parts are a and

15
16 Two sides of a parallelogram are 6 and 10 and the included angle is 25°. Find, correct to the nearest integer, the area of the parallelogram.

16
17 In triangle $A B C, a=4, b=5$ and $c=6$. Find the value of $\cos A$.
18 Find the positive acute angle which satisfies the equation $\tan ^{2} x-3=0$

19 In plane triangle $A B C$, angle A is acute. If a is less than b and a is greater than $b \sin A$, how many solutions has the triangle?

19
20 In spherical triangle $A B C$, if $a=125^{\circ}, c=80^{\circ}$ and $C=90^{\circ}$, in what quadrant is b ?

20

