June 18, 1958

Part I

Answer all questions in this part. Each correct answer will receive $2\frac{1}{2}$ credits. No partial credit will be allowed. Unless otherwise specified, answers may be left in terms of π or in radical form.

·	
1. Find the value of cos 300°.	1
2. In a circle whose radius is 3 feet, a central angle intercepts an arc of 2 feet. Find the number of radians in the central angle.	2
3. Express in degrees an angle of $\frac{2\pi}{15}$ radians.	3
4. Find cot (arc tan 1).	4
5. If A is a positive acute angle, express sin A in terms of tan A	4. 5
6. If $\sin A = \frac{1}{\sec A}$, find the smallest positive value of A.	6
7. Express $\sin 3x - \sin x$ as a product of two functions.	7
8. If $\tan x = 2$, find $\tan 2x$.	88
9. In triangle ABC, $a = 5$, $b = 3$ and $\sin A = \frac{1}{3}$. Find $\sin B$.	9
10. In triangle ABC, $a = 5$, $b = 3$ and $c = 6$. Find $\cos B$.	10
11. In triangle ABC, $a=5,\ b=3$ and $C=100^\circ$. Find, to the nearest hundredth, the value of tan $\frac{1}{2}$ $(A-B)$.	11
12. A pilot in an airplane at an altitude of 3,000 feet observes the angle of depression of an airport to be 10°. How far, to the nearest thousand feet, is the airport from a point on the ground directly below the plane?	12
Directions (13-20): Indicate the correct completion for each of by writing on the line at the right the letter a, b, c or d .	the following
13. If two sides of a triangle are 10 and 20 and the angle between these sides is 65°, the area of the triangle to the nearest integer is (a) 42 (b) 85 (c) 91 (d) 181	13
14. Using the data $A=34^{\circ}$ 20', $a=55.4$ and $b=100.0$, it is possible to construct (a) no triangle (b) a right triangle (c) two triangles (d) an obtuse triangle	14
15. Cot $(180^{\circ} - x)$ is equal to (a) $\tan x$ (b) $-\tan x$ (c) $\cot x$	15
16. Log $\sin 2x$ is equal to (a) $2 \log \sin x$ (b) $\log 2 + \log \sin x$ (c) $\log 2 + \log \sin x + \log \cos x$ (d) $\log 2x + \log \sin x$	16
17. If both $\sin x$ and $\cos x$ decrease when x is increased, then x is in quadrant (a) one (b) two (c) three (d) four	17

- 18. An example of an equation which is also an identity is
- (a) $\cos x \csc x = 0$ (b) $\cos^2 \frac{1}{2}x \sin^2 \frac{1}{2}x = 1$ (c) $\cos^2 \frac{1}{2}x \sin^2 \frac{1}{2}x = \cos x$ (d) $\sin^2 x + \cos^2 x = 0$
- 19. The maximum value of 3 cos 2x is (a) 1 (b) 2π (d) 6 (e) 3
 - 20. If $\cos \frac{\pi}{3} = x 1$, then (a) $x = \frac{1}{2}$ (b) $x = \frac{3}{2}$
- (c) $x = \frac{\pi}{3} + 1$ (d) x has more than one value 20_

Part II

Answer three questions from this part. Show all work unless otherwise directed.

- 21. Find, to the nearest degree, all values of x greater than 0° but less than 360° that satisfy the equation $10 \cos 2x + 21 \sin x + 10 \sin^2 x = 0$. [10]
 - 22. a Prove the following equation to be an identity:

$$\frac{\cot A}{\tan A} + \frac{\tan A}{\cot A} = \frac{\cot^4 A + 1}{\cot^2 A}$$

- b Show that $\frac{\frac{1}{2} \sin^2 x}{\sin^2 \frac{1}{2}x} 1$ may be reduced to cos x. [6]
- a Sketch the graph of $y = \cos 2x$ as x varies from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$ radians. [4]
 - b On the same set of axes used in a, sketch the graph of $y = 2 \sin x$ as x varies from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$ radians. [4]
 - c From the graphs made in answer to a and b, determine the range of values of x for which the function $y = \cos 2x$ increases while the function $y = 2 \sin x$ increases also. [2]
- 24. List the numbers 1-5 on your answer paper. After each number indicate the correct completion for each of the following by writing the letter a, b, c or d: [10]
 - (1) Log 0.003472 is equal to (a) 7.5405—10 (b) 8.5405—10 (c) 7.5406—10 (d) 8.5406 –10
 - (2) Tan 316° 20' is equal to (a) -1.0477 (b) -0.9545 (c) 0.9545 (d) 1.0477
 - (3) The smallest positive angle whose cosine is -0.8718 is (a) 119° 20′
 - (b) 150° 40′ (c) 209° 20′ (d) 240° 40′ (4) Log cot 25° 13′ is equal to (a) 0.3270 (c) 9.3270—10 (d) 9.3290—10 (b) 0.3290
 - (5) Log sin $\theta = 0.8557$ (a) when $\theta = 31^{\circ} 10'$ (b) when $\theta = 58^{\circ} 50'$ (c) when $\theta = 44^{\circ} 10'$ (d) for no real value of θ

25. Derive the law of cosines. [Consider only the case in which the triangle is acute.] [10]

Part III

Answer two questions from this part. Show all work.

- 26. The sides of a triangle are 579, 914 and 1,247. Find the largest angle of the triangle to the nearest ten minutes. [10]
- 27. Two hoats start at the same time from the same place. One sails due south at 12 knots and the other S 72° W at 10 knots. Find, to the nearest degree, the bearing of the slower boat from the faster at the end of one hour. [4, 5, 1]
- 28. In triangle ABC, AB = 35, $A = 41^{\circ}$ 30' and $B = 62^{\circ}$ 30'. Find, to the nearest integer, the altitude drawn from C. [10]
- 29. The distance between two points A and B cannot be measured directly but is known to be about 20 yards. From a point C the distance to A is 82 yards and the distance from C to B is 64 yards. Angle CAB is 30° 40′.
 - a Find angle ABC to the nearest ten minutes. [6]
 - b Find, to the nearest yard, the distance from A to B. [4]