The University of the State of New York
 Regents High School Examination

TRIGONOMETRY

Thursday, August 21, $1958-12 \mathrm{~m}$. to 3 p.m., only

Name of pupil. \qquad Name of school

Part I

Answer all questions in this part. Each correct answer will receive $21 / 2$ credits. No partial credit will be allowed. Unless otherwise specified, answers may be left in terms of π or in radical form.

1 Express $\tan 310^{\circ}$ as a function of a positive acute angle.
2 Find the number of radians in an angle of 200°.
3 Find the smallest positive value of A which satisfies the equation $2 \sin ^{2} A-1=0$.

4 Find the positive value of $\tan \left(\arccos \frac{2}{3}\right)$.
5 Find the antilogarithm of 1.5532 .
6 Find $\log \tan 62^{\circ} 27^{\prime}$.
7 Find $\cos 53^{\circ} 24^{\prime}$.
8 In triangle $A B C, \sin A=0.2, \sin B=0.6$ and $b=21$. Find a.
9 In triangle $A B C, a=4, b=5$ and $c=6$. Find the cosine of the largest angle of the triangle.

10 In triangle $A B C, C=40^{\circ}, a=12$ and $b=8$. Find $\tan \frac{1}{2}(A-B)$ to the nearest hundredth.

11 The area of triangle $A B C$ equals 18. Side $a=8$ and $C=13^{\circ}$. Find b.
12 If $\sin A=\frac{1}{4}$ and A is an acute angle, find $\sin 2 A$.
13 Find to the nearest degree the angle of elevation of the sun when a tree 30 feet high casts a shadow 12 feet long.

13
14 If A is a positive acute angle, express $\sin A$ in terms of $\cot A$.
15 Using the data $A=42^{\circ}, a=15$ and $b=11$, determine the number of different triangles that can be constructed.

11
14.
15.
1.
2.
\qquad
\qquad
5.
6...................
7.
8.
9. \qquad
\qquad
\qquad
\qquad

Trigonometry - continued

Directions (16-20): Indicate the correct completion for cach of the following by writing the letter a, b, c or d on the line at the right.

16 The minimum value of $\frac{1}{2} \sin 2 x$ is (a) 0 (b) $-\frac{1}{2} \quad(c)-1 \quad(d)-2 \quad 16 \ldots \ldots \ldots \ldots \ldots$
$17 \operatorname{Sin}\left(-115^{\circ}\right)$ is equal to (a) $\sin 115^{\circ}$ (b) $-\cos 115^{\circ}$ (c) $-\sin 65^{\circ}$ (d) $-\cos 65^{\circ}$

17
$18 \operatorname{Cos} x$ and $\csc x$ are reciprocals (a) for all values of $x \quad(b)$ for no value of $x \quad(c)$ when x has the values 45° and $135^{\circ} \quad(d)$ when x has the values 45° and 225°

18

19 The number of radians in a central angle which subtends an arc equal to two-thirds of a diameter of the circle is
$\begin{array}{ll}\text { (a) } \frac{2}{3} & \text { (b) } \frac{2}{3} \pi\end{array}$
(c) $\frac{4}{3}$
(d) $\frac{4}{3} \pi$
19.
$20 \operatorname{Sin} 80^{\circ}-\sin 20^{\circ}$ equals
(a) $\sin 50^{\circ}$
(b) $\cos 50^{\circ}$
(c) $\sin 60^{\circ}$
(d) $\cos 60^{\circ}$
20. \qquad

Part II
Answer three questions from this part. Show all work unless otherwise directed.
21 Solve the following equation for positive values of A less than 360°. [Express approximate values of 4 to the nearest degree.]

$$
\begin{equation*}
4 \sec ^{2} A+\tan A=7 \tag{10}
\end{equation*}
$$

22 Prove cach of the following identities:
$a \frac{2 \tan x-\sin 2 x}{2 \sin ^{2} x}=\tan x \quad|5|$
$b \sin \left(120^{\circ}+A\right)+\sin \left(60^{\circ}+A\right)=\sqrt{3} \cos A$
$23 a$ Sketch the graph of $y=\sin 2 x$ as x varies from 0 to π radians. [4]
b On the set of axes used in part a, sketch the graph of $y=\frac{1}{2} \cos x$ as x varies from 0 to π radians. [4]
c From the graphs drawn in parts a and b, determine the number of values of x between 0 and π radians which satisfy the equation $\sin 2 x-\frac{1}{2} \cos x=0$.

24 Derive the law of cosines for an acute triangle.
[10]

25 If $\sin x=-\frac{4}{5}$ and $\tan x$ is positive, find, without the use of trigonometric tables, the value of
$a \cos x$
$b \sin 2 x$
c $\cos \frac{1}{2} x \quad[3]$
$d \tan \left(45^{\circ}+x\right)$

Part III
Answer two questions from this part. Show all work.
26 In triangle $A B C, A B=31.5, B C=56.7$ and $A C=41.2$. Find angle A to the nearest ten minutes. [10]

27 The diagonals of a parallelogram intersect at an angle of 65°. The shorter diagonal is 10 inches and the longer is 22 inches. Find, to the nearest inch, the sides of the parallelogram. $\quad[6,4]$

28 A ship starts from point A 29 miles directly west of seaport C and follows a course $\mathrm{S} 46^{\circ} \mathrm{W}$ for 51 miles to point B. Find to the nearest degree the bearing of C from B. $\quad[5,4,1]$

29 From the top of a cliff the angles of depression of the top and bottom of a lighthouse are 25° and 44°, respectively. The lighthouse is 50 feet high and its base is at sea level. Find the height of the cliff to the nearest foot. [10]

FOR TEACHERS ONLY

T

INSTRUCTIONS FOR RATING TRIGONOMETRY

Thursday, August 21, 1958 - 12 m . to 3 p.m., only

Use only red ink or pencil in rating Regents papers. Do not attempt to correct the pupil's work by making insertions or changes of any kind. Use check marks to indicate pupil errors.

Unless otherwise specified, mathematically correct variations in the answers will be allowed. In problems involving logarithms, answers should be left correct to four significant digits unless directions say otherwise. Units need not be given when the wording of the questions allows such omissions.

Part I

Allow $2 \frac{1}{2}$ credits for each correct answer; allow no partial credit. Do not allow credit if the answer to question 5 is not expressed to four significant digits and if the answers to questions 6 and 7 are not expressed to four decimal places. For questions $16-20$, allow credit if the pupil has written the correct answer instead of the letter a, b, c or d.
(1) $-\tan 50^{\circ}$ or $-\cot 40^{\circ}$
(2) $\frac{10 \pi}{9}$ or 3.5
(3) 45°
(4) $\frac{\sqrt{5}}{2}$ or 1.1
(5) 35.74
(6) 0.2826
(7) 0.5962
(8) 7
(9) $\frac{1}{8}$
(10) 0.55
(11) 20
(12) $\frac{\sqrt{15}}{8}$ or 0.5
(13) 68
(14) $\frac{1}{\sqrt{\cot ^{2} A+1}}$
(15) 1

