## K - Polynomials, Lesson 3, Factoring Polynomials (r. 2018)

## POLYNOMIALS

## Factoring Polynomials

## Common Core Standard

A-SSE. 2 Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as
$\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.
PARCC: Tasks limited to numerical and polynomial expressions in one variable. Recognize $53^{2}-47^{2}$ as a difference of squares and see an opportunity to rewrite it in the easier-to -evaluate form $(53+47)(53-47)$. See an opportunity to rewrite $a^{2}+9 a+14$ as (a+7)(a+2).
NYSED: Does not include factoring by grouping and factoring the sum and difference of cubes.

```
Next Generation Standard
AI-A.SSE. 2 Recognize and use the structure of an expression to identify ways to rewrite it.
(Shared standard with Algebra II)
e.g.,
\(\mathrm{x}^{3}-\mathrm{x}^{2}-\mathrm{x}=\mathrm{x}\left(\mathrm{x}^{2}-\mathrm{x}-\mathbf{1}\right)\)
\(53^{2}-47^{2}=(53+47)(53-47)\)
\(16 x^{2}-36=(4 x)^{2}-(6)^{2}=(4 x+6)(4 x-6)=4(2 x+3)(2 x-3)\) or
\(16 x^{2}-36=4\left(4 x^{2}-9\right)=4(2 x+3)(2 x-3)\)
\(-2 x^{2}+8 x+10=-2\left(x^{2}-4 x-5\right)=-2(x-5)(x+1)\)
\(\mathrm{x}^{4}+6 \mathrm{x}^{2}-7=\left(\mathrm{x}^{2}+7\right)\left(\mathrm{x}^{2}-1\right)=\left(\mathrm{x}^{2}+7\right)(\mathrm{x}+1)(\mathrm{x}-1)\)
```

Note: Algebra I expressions are limited to numerical and polynomial expressions in one variable. Use factoring techniques such as factoring out a greatest common factor, factoring the difference of two perfect squares, factoring trinomials of the form ax2+bx+c with a lead coefficient of 1 , or a combination of methods to factor completely. Factoring will not involve factoring by grouping and factoring the sum and difference of cubes.

## LEARNING OBJECTIVES

Students will be able to:

1) factor monomials
2) factor binomials, and
3) factor trinomials

## Overview of Lesson

| Teacher Centered Introduction | Student Centered Activities |
| :--- | :--- |
| Overview of Lesson | guided practice 飞Teacher: anticipates, monitors, selects, sequences, and <br> connects student work |
| - activate students' prior knowledge | - developing essential skills |
| - vocabulary | - Regents exam questions <br> - learning objective(s) <br> - big ideas: direct instruction <br> entry) |
| - modeling |  |

## VOCABULARY

binomial
factor completely greatest common factor
monomial
perfect square
term
trinomial

## BIG IDEAS

Factoring polynomials is one of four general methods taught in the Regents mathematics curriculum for finding the roots of a quadratic equation. The other three methods are the quadratic formula, completing the square and graphing.

- The roots of a quadratic equation can found using the factoring method when the discriminant's value is equal to either zero or a perfect square.


## Factoring Monomials:

$$
204 x^{2}=2\left(102 x^{2}\right)=2 \bullet 2\left(51 x^{2}\right)=2 \bullet 2 \bullet 3\left(17 x^{2}\right)=2^{2} \bullet 3 \bullet 17 \bullet x^{2}
$$

Factoring Binomials: NOTE: This is the inverse of the distributive property.
$3(x+2)=3 x+6$
$2 x^{2}+6 x=2 x(x+3)$

## Factoring Trinomials

## Standard Approach

Given a trinomial in the form $a x^{2}+b x+c=0$ whose discriminant equals zero or a perfect square, it may be factored as follows:


STEP 2. The signs of these two numbers are determined by the signs of $b$ and $c$.


STEP 3. The product of the outer numbers plus the product of the inner numbers must sum to b .

## Modeling:

$$
\begin{aligned}
x^{2}-5 x+6 & =(x-2)(x-3) \\
2 x^{2}-8 x+6 & =(2 x-2)(x-3) \\
4 x^{2}-10 x+6 & =(2 x-2)(2 x-3)
\end{aligned}
$$

|  | $g c f$ | $g c f$ | The Box Method <br> for |
| :---: | :---: | :---: | :---: |
| $g c f$ | $a x^{2}$ | $m x$ | Factoring a Trinomial <br> $a x^{2}+b x+c=0$ <br> $b x=m x+n x$ |
| $g c f$ | $n x$ | $C$ |  |


| INSTRUCTIONS | EXAMPLE |
| :---: | :---: |
| STEP 1 Start with a factorable quadratic in standard form: $a x^{2}+b x+c=0$ and a 2 -row by 2 column table. | Solve by factoring: $6 x^{2}-x-12=0$ |
| STEP 2 Copy the quadratic term into the upper left box and the constant term into the lower right box. | $6 x^{2}$  <br>  -12 |
| STEP 3 Multiply the quadratic term by the constant term and write the product to the right of the table. | $6 x^{2}$  <br>  -12$6 x^{2} \times-12=-72 x^{2}$ |
| STEP 4 Factor the product from STEP 3 until you obtain two factors that sum to the linear term (bx). | $\begin{aligned} & \hline 1 x \times-72 x \\ & -1 x \times 72 x \\ & 2 x \times-36 x \\ & -2 x \times 36 x \\ & 3 x \times-24 x \\ & -3 x \times 24 x \\ & 4 x \times-18 x \\ & -4 x \times 18 x \\ & 6 x \times-12 x \\ & -6 x \times 12 x \\ & 8 x \times-9 x \text { These two factors sum to } b x \\ & -8 x \times 9 x \end{aligned}$ |



## DEVELOPING ESSENTIAL SKILLS

1.Factored completely, the expression $2 x^{2}+10 x-12$ is equivalent to
a. $2(x-6)(x+1)$
b. $2(x+6)(x-1)$
c. $2(x+2)(x+3)$
d. $2(x-2)(x-3)$
2. Factored completely, the expression $3 x^{2}-3 x-18$ is equivalent to
a. $3\left(x^{2}-x-6\right)$
b. $3(x-3)(x+2)$
c. $(3 x-9)(x+2)$
d. $(3 x+6)(x-3)$
3. What are the factors of the expression $x^{2}+x-20$ ?
a. $(x+5)$ and $(x+4)$
b. $(x+5)$ and $(x-4)$
c. $(x-5)$ and $(x+4)$
d. $(x-5)$ and $(x-4)$
4. Factored completely, the expression $3 x^{3}-33 x^{2}+90 x$ is equivalent to
a. $3 x\left(x^{2}-33 x+90\right)$
b. $3 x\left(x^{2}-11 x+30\right)$
c. $3 x(x+5)(x+6)$
d. $3 x(x-5)(x-6)$
5. Factor completely: $5 x^{3}-20 x^{2}-60 x$
6. The greatest common factor of $3 m^{2} n+12 m n^{2}$ is?
a. $3 n$
b. $3 m$
c. $3 m n$
d. $3 m n^{2}$
7. When factored completely, the expression $3 x^{2}-9 x+6$ is equivalent to
a. $(3 x-3)(x-2)$
b. $(3 x+3)(x-2)$
c. $3(x+1)(x-2)$
d. $3(x-1)(x-2)$
8. Which is a factor of $x^{2}+5 x-24$ ?
a. $(x+4)$
b. $(x-4)$
c. $(x+3)$
d. $(x-3)$
9. Which expression is a factor of $x^{2}+2 x-15$ ?
a. $(x-3)$
b. $(x+3)$
c. $(x+15)$
d. $(x-5)$
10. Which expression is a factor of $n^{2}+3 n-54$ ?
a. $n+6$
b. $n^{2}+9$
c. $n-9$
d. $n+9$
11. What are the factors of $x^{2}-10 x-24$ ?
a. $(x-4)(x+6)$
b. $(x-4)(x-6)$
c. $(x-12)(x+2)$
d. $(x+12)(x-2)$
12. If one factor of $56 x^{4} y^{3}-42 x^{2} y^{6}$ is $14 x^{2} y^{3}$, what is the other factor?
a. $4 x^{2}-3 y^{3}$
b. $4 x^{2}-3 y^{2}$
c. $4 x^{2} y-3 x y^{3}$
d. $4 x^{2} y-3 x y^{2}$
13. If $3 x$ is one factor of $3 x^{2}-9 x$, what is the other factor?
a. $3 x$
b. $x^{2}-6 x$
c. $x-3$
d. $x+3$
14. Factor completely: $3 x^{2}+15 x-42$
15. Factored completely, the expression $2 y^{2}+12 y-54$ is equivalent to
a. $2(y+9)(y-3)$
b. $2(y-3)(y-9)$
c. $(y+6)(2 y-9)$
d. $(2 y+6)(y-9)$
16. What are the factors of $x^{2}-5 x+6$ ?
a. $(x+2)$ and $(x+3)$
b. $(x-2)$ and $(x-3)$
c. $(x+6)$ and $(x-1)$
d. $(x-6)$ and $(x+1)$
17. The greatest common factor of $4 a^{2} b$ and $6 a b^{3}$ is
a. $2 a b$
b. $2 a b^{2}$
c. $12 a b$
d. $24 a^{3} b^{4}$

## Answers

1. ANS: B
2. ANS: B
3. ANS: B
4. ANS: D
$3 x^{3}-33 x^{2}+90 x=3 x\left(x^{2}-11 x+30\right)=3 x(x-5)(x-6)$
5. ANS:
$5 x^{3}-20 x^{2}-60 x$
$5 x\left(x^{2}-4 x-12\right)$
$5 x(x+2)(x-6)$
6. ANS: C
7. ANS: D
8. ANS: D
9. ANS: A
10. ANS: D
11. ANS: C
12. ANS: A
13. ANS: C
14. ANS:
$3(x+7)(x-2) . \quad 3 x^{2}+15 x-42=3\left(x^{2}+5 x-14\right)=3(x+7)(x-2)$
15. ANS: A
16. ANS: B
17. ANS: A

## REGENTS EXAM QUESTIONS (through June 2016)

## A.SSE.A.2: Factoring Polynomials

343) Which expression is equivalent to $x^{4}-12 x^{2}+36$ ?
344) $\left(x^{2}-6\right)\left(x^{2}-6\right)$
345) $\left(x^{2}+6\right)\left(x^{2}+6\right)$
346) $\left(6-x^{2}\right)\left(6+x^{2}\right)$
347) $\left(x^{2}+6\right)\left(x^{2}-6\right)$
348) Four expressions are shown below.

$$
\begin{array}{ll}
\text { I } & 2\left(2 x^{2}-2 x-60\right) \\
\text { II } & 4\left(x^{2}-x-30\right) \\
\text { III } & 4(x+6)(x-5) \\
\text { IV } & 4 x(x-1)-120
\end{array}
$$

The expression $4 x^{2}-4 x-120$ is equivalent to

1) I and II, only
2) I, II, and IV
3) II and IV, only
4) II, III, and IV
5) When factored completely, $x^{3}-13 x^{2}-30 x$ is
6) $x(x+3)(x-10)$
7) $x(x-3)(x-10)$
8) $x(x+2)(x-15)$
9) $x(x-2)(x+15)$
10) Factor the expression $x^{4}+6 x^{2}-7$ completely.
11) The trinomial $x^{2}-14 x+49$ can be expressed as
12) $(x-7)^{2}$
13) $(x+7)^{2}$
14) $(x-7)(x+7)$
15) $(x-7)(x+2)$

## SOLUTIONS

343) ANS: 1

Strategy 1. Factor $x^{4}-12 x^{2}+36$

$$
\begin{aligned}
& x^{4}-12 x^{2}+36 \\
& \left(x^{2}----\right)\left(x^{2}----\right)
\end{aligned}
$$

The factors of 36 are:
1 and 36 ,
2 and 18,
3 and 12,
4 and 9,
6 and 6 (use these because they sum to 12)
$\left(x^{2}-6\right)\left(x^{2}-6\right)$
Strategy 2. Work backwards using the distributive property to check each answer choice.

| a | c |
| :---: | :---: |
| $\left(x^{2}-6\right)\left(x^{2}-6\right)$ | $\left(6-x^{2}\right)\left(6+x^{2}\right)$ |
| $x^{4}-6 x^{2}-6 x^{2}+36$ | $36+6 x^{2}-6 x^{2}-x^{4}$ |
| $x^{4}-12 x^{2}+36$ |  |
| $($ correct $)$ | $36-x^{4}$ |
| (wrong) |  |
| $\left(x^{2}+6\right)\left(x^{2}+6\right)$ | d |
| $x^{4}+6 x^{2}+6 x^{2}+36$ |  |
| $x^{4}+12 x^{2}+36$ |  |
| $($ wrong $)$ | $\left(x^{2}+6\right)\left(x^{2}-6\right)$ |
|  | $x^{4}-6 x^{2}+6 x^{2}-36$ |
| $x^{4}-36$ |  |
| $($ wrong $)$ |  |

PTS: 2
NAT: A.SSE.A. 2 TOP: Factoring Polynomials
ANS: 3
Strategy: Use the distributive property to expand each expression, then match the expanded expressions to the answer choices.

| I | III |
| :--- | :--- |
| $2\left(2 x^{2}-2 x-60\right)$ | $4(x+6)(x-5)$ |
| $4 x^{2}-4 x-120$ | $(4 x+24)(x-5)$ |
| $y e s$ | $4 x^{2}-20 x+24 x-120$ |
|  | $4 x^{2}+4 x-120$ |
|  | $n o$ |
| II | IV |
| $4\left(x^{2}-x-30\right)$ | $4 x(x-1)-120$ |
| $4 x^{2}-4 x-120$ | $4 x^{2}-4 x-120$ |
| $y e s$ | $y e s$ |

Answer choice $c$ is correct.

PTS: 2 NAT: A.SSE.A. 2 TOP: Factoring Polynomials
345) ANS: 3

$$
\begin{aligned}
& x^{3}-13 x^{2}-30 x \\
& x\left(x^{2}-13 x-30\right) \\
& x(x+2)(x-15)
\end{aligned}
$$

PTS: 2
NAT: A.SSE.A. 2 TOP: Factoring Polynomials
346)

ANS:
$\left(x^{2}+7\right)(x+1)(x-1)$

Strategy: Factor the trinomial, then factor the perfect square.
STEP 1. Factor the trinomial $x^{4}+6 x^{2}-7$.

$$
\begin{aligned}
& x^{4}+6 x^{2}-7 \\
& \left(x^{2}+---\right)\left(x^{2}----\right)
\end{aligned}
$$

The factors of 7 are 1 and 7 .

$$
\left(x^{2}+7\right)\left(x^{2}-1\right)
$$

STEP 2. Factor the perfect square.

$$
\begin{aligned}
& \left(x^{2}+7\right)\left(x^{2}-1\right) \\
& \left(x^{2}+7\right)(x+1)(x-1)
\end{aligned}
$$

PTS: 2
NAT: A.SSE.A. 2 TOP: Factoring Polynomials
ANS: 1
Strategy. Multiply binomials and eliminate wrong answers.
Choice 1: $\quad(x-7)^{2}$
Correct
$(x-7)(x-7)$
$x^{2}-7 x-7 x+49$
$x^{2}-14 x+49$
Choice 2: $(x+7)^{2} \quad$ Wrong: middle term has wrong sign.
$(x+7)(x+7)$
$x^{2}+7 x+7 x+49$
$x^{2}+14 x+49$
Choice 3: $(x-7)(x+7)$ Wrong: no middle term and second term has wrong sign.
$x^{2}+7 x-7 x-49$
$x^{2}-49$
Choice 4: $(x-7)(x+2)$ Wrong: middle term and third term have wrong coefficients.

$$
\begin{aligned}
& x^{2}+2 x-7 x-14 \\
& x^{2}-5 x-14
\end{aligned}
$$

PTS: 2
KEY: quadratic

