K - Polynomials, Lesson 4, Factoring the Difference of Perfect Squares (r. 2018)

POLYNOMIALS

Factoring the Difference of Perfect Squares

Common Core Standard

A-SSE. 2 Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as
$\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.
PARCC: Tasks limited to numerical and polynomial expressions in one variable. Recognize $53^{2}-47^{2}$ as a difference of squares and see an opportunity to rewrite it in the easier-to -evaluate form $(53+47)(53-47)$. See an opportunity to rewrite $a^{2}+9 a+14$ as (a+7)(a+2).
NYSED: Does not include factoring by grouping and factoring the sum and difference of cubes.

Next Generation Standard
AI-A.SSE. 2 Recognize and use the structure of an expression to identify ways to rewrite it.
(Shared standard with Algebra II)
e.g.,
$\mathrm{x}^{3}-\mathrm{x}^{2}-\mathrm{x}=\mathrm{x}\left(\mathrm{x}^{2}-\mathrm{x}-\mathbf{1}\right)$
$53^{2}-47^{2}=(53+47)(53-47)$
$16 x^{2}-36=(4 x)^{2}-(6)^{2}=(4 x+6)(4 x-6)=4(2 x+3)(2 x-3)$ or
$16 x^{2}-36=4\left(4 x^{2}-9\right)=4(2 x+3)(2 x-3)$
$-2 x^{2}+8 x+10=-2\left(x^{2}-4 x-5\right)=-2(x-5)(x+1)$
$\mathrm{x}^{4}+6 \mathrm{x}^{2}-7=\left(\mathrm{x}^{2}+7\right)\left(\mathrm{x}^{2}-1\right)=\left(\mathrm{x}^{2}+7\right)(\mathrm{x}+1)(\mathrm{x}-1)$
Note: Algebra I expressions are limited to numerical and polynomial expressions in one variable. Use factoring techniques such as factoring out a greatest common factor, factoring the difference of two perfect squares, factoring trinomials of the form ax2+bx+c with a lead coefficient of 1 , or a combination of methods to factor completely. Factoring will not involve factoring by grouping and factoring the sum and difference of cubes.

LEARNING OBJECTIVES

Students will be able to:

1) factor the difference of perfect squares.

Overview of Lesson

Teacher Centered Introduction	Student Centered Activities
Overview of Lesson	guided practice <Teacher: anticipates, monitors, selects, sequences, and connects student work
- activate students' prior knowledge	- developing essential skills
- vocabulary	- Regents exam questions - learning objective(s) - big ideas: direct instruction entry)
- modeling assessment assignment (exit slip, explain the math, or journal	

VOCABULARY

Completely factor
Perfect square binomial

Square of a number
Square root of a number

BIG IDEA

> General Rule
> $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$

$$
\begin{gathered}
\text { Examples } \\
x^{2}-4=(x+2)(x-2) \\
x^{4}-9=\left(x^{2}+3\right)\left(x^{2}-3\right)
\end{gathered}
$$

DEVELOPING ESSENTIAL SKILLS

1. The expression $x^{2}-16$ is equivalent to
a. $(x+2)(x-8)$
b. $(x-2)(x+8)$
c. $(x+4)(x-4)$
d. $(x+8)(x-8)$
2. Factored, the expression $16 x^{2}-25 y^{2}$ is equivalent to
a. $(4 x-5 y)(4 x+5 y)$
b. $(4 x-5 y)(4 x-5 y)$
c. $(8 x-5 y)(8 x+5 y)$
d. $(8 x-5 y)(8 x-5 y)$
3. The expression $9 x^{2}-100$ is equivalent to
a. $(9 x-10)(x+10)$
b. $(3 x-10)(3 x+10)$
c. $(3 x-100)(3 x-1)$
d. $(9 x-100)(x+1)$
4. Factor completely: $4 x^{3}-36 x$
5. Which expression is equivalent to $9 x^{2}-16$?
a. $(3 x+4)(3 x-4)$
b. $(3 x-4)(3 x-4)$
c. $(3 x+8)(3 x-8)$
d. $(3 x-8)(3 x-8)$
6. If Ann correctly factors an expression that is the difference of two perfect squares, her factors could be
a. $\quad(2 x+y)(x-2 y)$
b. $(2 x+3 y)(2 x-3 y)$
c. $(x-4)(x-4)$
d. $(2 y-5)(y-5)$
7. Which expression is equivalent to $121-x^{2}$?
a. $(x-11)(x-11)$
b. $(x+11)(x-11)$
c. $(11-x)(11+x)$
d. $(11-x)(11-x)$
8. When $a^{3}-4 a$ is factored completely, the result is
a. $(a-2)(a+2)$
b. $a(a-2)(a+2)$
c. $a^{2}(a-4)$
d. $a(a-2)^{2}$
9. The expression $x^{2}-36 y^{2}$ is equivalent to
a. $(x-6 y)(x-6 y)$
b. $(x-18 y)(x-18 y)$
c. $(x+6 y)(x-6 y)$
d. $(x+18 y)(x-18 y)$
10. Which expression represents $36 x^{2}-100 y^{6}$ factored completely?
a. $2\left(9 x+25 y^{3}\right)\left(9 x-25 y^{3}\right)$
b. $4\left(3 x+5 y^{3}\right)\left(3 x-5 y^{3}\right)$
c. $\left(6 x+10 y^{3}\right)\left(6 x-10 y^{3}\right)$
d. $\left(18 x+50 y^{3}\right)\left(18 x-50 y^{3}\right)$
11. Which expression is equivalent to $64-x^{2}$?
a. $(8-x)(8-x)$
b. $(8-x)(8+x)$
c. $(x-8)(x-8)$
d. $(x-8)(x+8)$
12. The expression $9 a^{2}-64 b^{2}$ is equivalent to
a. $(9 a-8 b)(a+8 b)$
b. $(9 a-8 b)(a-8 b)$
c. $(3 a-8 b)(3 a+8 b)$
d. $(3 a-8 b)(3 a-8 b)$
13. The expression $100 n^{2}-1$ is equivalent to
a. $(10 n+1)(10 n-1)$
b. $(10 n-1)(10 n-1)$
c. $(50 n+1)(50 n-1)$
d. $(50 n-1)(50 n-1)$
14. When $9 x^{2}-100$ is factored, it is equivalent to $(3 x-b)(3 x+b)$. What is a value for b ?
a. 50
b. 10
c. 3
d. 100
15. Which expression is equivalent to $81-16 x^{2}$?
a. $(9-8 x)(9+8 x)$
b. $(9-8 x)(9+2 x)$
c. $(9-4 x)(9+4 x)$
d. $(9-4 x)(9-4 x)$
16. One of the factors of $4 x^{2}-9$ is
a. $(x+3)$
b. $(2 x+3)$
c. $(4 x-3)$
d. $(x-3)$
17. Factor completely: $3 x^{2}-27$
a. $3(x-3)^{2}$
b. $3\left(x^{2}-27\right)$
c. $3(x+3)(x-3)$
d. $(3 x+3)(x-9)$
18. Written in simplest factored form, the binomial $2 x^{2}-50$ can be expressed as
a. $2(x-5)(x-5)$
b. $2(x-5)(x+5)$
c. $(x-5)(x+5)$
d. $2 x(x-50)$
19. Expressed in factored form, the binomial $4 a^{2}-9 b^{2}$ is equivalent to
a. $(2 a-3 b)(2 a-3 b)$
b. $(2 a+3 b)(2 a-3 b)$
c. $(4 a-3 b)(a+3 b)$
d. $(2 a-9 b)(2 a+b)$
20. What is a common factor of $x^{2}-9$ and $x^{2}-5 x+6$?
a. $x+3$
b. $x-3$
c. $x-2$
d. x^{2}

Answers

1. ANS: C
2. ANS: A
3. ANS: B
4. ANS:

$$
4 x(x+3)(x-3) .4 x^{3}-36 x=4 x\left(x^{2}-9\right)=4 x(x+3)(x-3)
$$

5.ANS: A
6. ANS: B
7. ANS: C
8. ANS: B
9. ANS: C
10. ANS: B
11. ANS: B
12. ANS: C
13. ANS: A
14. ANS: B
15. ANS: C
16. ANS: B
17. ANS: C
18. ANS: B
19. ANS: B
20. ANS: B

REGENTS EXAM QUESTIONS (through June 2018)

A.SSE.A.2: Difference of Perfect Squares

348) When factored completely, the expression $p^{4}-81$ is equivalent to
349) $\left(p^{2}+9\right)\left(p^{2}-9\right)$
350) $\left(p^{2}-9\right)\left(p^{2}-9\right)$
351) $\left(p^{2}+9\right)(p+3)(p-3)$
352) $(p+3)(p-3)(p+3)(p-3)$
353) If the area of a rectangle is expressed as $x^{4}-9 y^{2}$, then the product of the length and the width of the rectangle could be expressed as
354) $(x-3 y)(x+3 y)$
355) $\left(x^{2}-3 y\right)\left(x^{2}+3 y\right)$
356) $\left(x^{2}-3 y\right)\left(x^{2}-3 y\right)$
357) $\left(x^{4}+y\right)(x-9 y)$
358) The expression $x^{4}-16$ is equivalent to
359) $\left(x^{2}+8\right)\left(x^{2}-8\right)$
360) $\left(x^{2}-8\right)\left(x^{2}-8\right)$
361) $\left(x^{2}+4\right)\left(x^{2}-4\right)$
362) $\left(x^{2}-4\right)\left(x^{2}-4\right)$
363) Which expression is equivalent to $36 x^{2}-100$?
364) $4(3 x-5)(3 x-5)$
365) $4(3 x+5)(3 x-5)$
366) $2(9 x-25)(9 x-25)$
367) $2(9 x+5)(9 x-25)$
368) Which expression is equivalent to $16 x^{2}-36$?
369) $4(2 x-3)(2 x-3)$
370) $4(2 x+3)(2 x-3)$
371) $(4 x-6)(4 x-6)$
372) $(4 x+6)(4 x+6)$
373) Which expression is equivalent to $16 x^{4}-64$?
374) $\left(4 x^{2}-8\right)^{2}$
375) $\left(8 x^{2}-32\right)^{2}$
376) $\left(4 x^{2}+8\right)\left(4 x^{2}-8\right)$
377) $\left(8 x^{2}+32\right)\left(8 x^{2}-32\right)$
378) The expression $49 x^{2}-36$ is equivalent to
379) $(7 x-6)^{2}$
380) $(24.5 x-18)^{2}$
381) $(7 x-6)(7 x+6)$
382) $(24.5 x-18)(24.5 x+18)$
383) Which expression is equivalent to $y^{4}-100$?
384) $\left(y^{2}-10\right)^{2}$
385) $\left(y^{2}-50\right)^{2}$
386) $\left(y^{2}+10\right)\left(y^{2}-10\right)$
387) $\left(y^{2}+50\right)\left(y^{2}-50\right)$

SOLUTIONS

348) ANS: 3

Strategy: Use difference of perfect squares.
STEP 1. Factor $p^{4}-81$
$p^{4}-81$
$\left(p^{2}+9\right)\left(p^{2}-9\right)$
STEP 2. Factor $p^{2}-9$
$\left(p^{2}+9\right)\left(p^{2}-9\right)$
$\left(p^{2}+9\right)(p+3)(p-3)$
PTS: 2
NAT: A.SSE.A. 2 TOP: Factoring Polynomials
349) ANS: 2

Strategy: Use the distributive property to work backwards from the answer choices.

a.	
$(x-3 y)(x+3 y)$	c.
$x^{2}+3 x y-3 x y-9 y^{2}$	$\left(x^{2}-3 y\right)\left(x^{2}-3 y\right)$
$x^{2}-9 y^{2}$	$x^{4}-3 x^{2} y-3 x^{2} y+9 y^{2}$
(wrong)	$x^{4}-6 x^{2} y+9 y^{2}$
b.	(wrong)
$\left(x^{2}-3 y\right)\left(x^{2}+3 y\right)$	$\left(x^{4}+y\right)(x-9 y)$
$x^{4}+3 x^{2} y-3 x^{2} y-9 y^{2}$	$x^{5}-9 x^{4} y+x y-9 y^{2}$
$x^{4}-9 y^{2}$	(wrong)
(correct)	

PTS: 2 NAT: A.SSE.A. 2 TOP: Factoring Polynomials
350) ANS: 3

Step 1. Understand the problem as a "difference of perfect squares", because the terms x^{4} and 16 are both perfect squares and the operation is subtraction.
Step 2. Strategy: Use the pattern $a^{2}-b^{2}=(a+b)(a-b)$ to separate $x^{4}-16$ into two binomials.
Step3. Execution of Strategy
The square root of x^{4} is x^{2}.
The square of 16 is 4 .

$$
x^{4}-16=\left(x^{2}+4\right)\left(x^{2}-4\right)
$$

Step 4. Does it make sense? Yes. You can show that $\left(x^{2}+4\right)\left(x^{2}-4\right)=x^{4}-16$ using the distributive property, as follows:

$$
\begin{aligned}
\left(x^{2}+4\right)\left(x^{2}-4\right) & =x^{4}+16 \\
x^{4}-4 x^{2}+4 x^{2}-16 & =x^{4}+16 \\
x^{4}+16 & =x^{4}+16
\end{aligned}
$$

PTS: 2
NAT: A.SSE.A. 2 TOP: Factoring the Difference of Perfect Squares
351)

ANS: 2
Strategy 1.
Recognize that the expression $36 x^{2}-100$ is a difference of perfect squares. Therefore,

$$
36 x^{2}-100
$$

$$
(6 x+10)(6 x-10)
$$

Since this is not an answer choice, continue factoring, as follows:

$$
\begin{gathered}
(6 x+10)(6 x-10) \\
(2(3 x+5))(2(3 x-5)) \\
4(3 x+5)(3 x-5)
\end{gathered}
$$

Strategy 2.
Examine the answer choices, which begin with factors 4 and 2. Extract these factors first, as follows:

Start by extracting a 4	Start by extracting a 2
$36 x^{2}-100$	$36 x^{2}-100$
$4\left(9 x^{2}-25\right)$	$2\left(18 x^{2}-50\right)$
$4(3 x+5)(3 x-5)$	(2) $(2)\left(9 x^{2}-25\right)$
	(2) $(2)(3 x+5)(3 x-5)$
$4(3 x+5)(3 x-5)$	

PTS: 2
NAT: A.SSE.A. 2
352)

ANS: 2
Strategy 1: Factor
$16 x^{2}-36$
$4\left(4 x^{2}-9\right)$
$4(2 x+3)(2 x-3)$
Strategy 2: Recognize that $16 x^{2}-36$ appears to be a difference of perfect squares.
Recall that $a^{2}-b^{2}=(a+b)(a-b)$.
Eliminate any answers that do not take the form of $(a+b)(a-b)$, which leaves only one choice: $4(2 x+3)(2 x-3)$

Check:

$$
\begin{aligned}
& 4(2 x+3)(2 x-3) \\
& 4[(2 x+3)(2 x-3)] \\
& 4\left[4 x^{2}+6 x-6 x-9\right] \\
& 4\left[4 x^{2}-9\right] \\
& 16 x^{2}-36 \\
& \therefore 4(2 x+3)(2 x-3)=16 x^{2}-36
\end{aligned}
$$

PTS: 2
NAT: A.SSE.A. 2 TOP: Factoring the Difference of Perfect Squares
KEY: quadratic
ANS: 3
Note that the expression $16 x^{4}-64$ is the difference of perfect squares.

$$
\begin{aligned}
a^{2}-b^{2} & =(a+b)(a-b) \\
16 x^{4}-64 & =\left(4 x^{2}+8\right)\left(4 x^{2}-8\right)
\end{aligned}
$$

PTS: 2
NAT: A.SSE.A. 2 TOP: Factoring the Difference of Perfect Squares
KEY: higher power
ANS: 3
Note that $49 x^{2}$ and 36 are both perfect squares. Therefore, $49 x^{2}-36$ is the difference of perfect squares.

$$
\begin{aligned}
a^{2}-b^{2} & =(a+b)(a-b) \\
49 x^{2}-36 & =(7 x+6)(7 x-6)
\end{aligned}
$$

PTS: 2
NAT: A.SSE.A. 2 TOP: Factoring the Difference of Perfect Squares
KEY: quadratic
ANS: 3
$y^{4}-100$ is a difference of perfect squares. All polynomials in the form of $a^{2}-b^{2}$ can be factored into $(a+b)(a-b))$.

$$
\begin{gathered}
y^{4}-100 \\
\left(y^{2}+10\right)\left(y^{2}-10\right)
\end{gathered}
$$

PTS: 2
NAT: A.SSE.A. 2 TOP: Factoring the Difference of Perfect Squares
KEY: higher power AI

