K – Polynomials, Lesson 4, Factoring the Difference of Perfect Squares (r. 2018)

POLYNOMIALS

Factoring the Difference of Perfect Squares

<table>
<thead>
<tr>
<th>Common Core Standard</th>
<th>Next Generation Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, see (x^4 - y^4) as ((x^2)^2 - (y^2)^2), thus recognizing it as a difference of squares that can be factored as ((x^2 - y^2)(x^2 + y^2)).</td>
<td>AI-A.SSE.2 Recognize and use the structure of an expression to identify ways to rewrite it. (Shared standard with Algebra II) e.g., (x^2 - x^2 - x = x(x^2 - x - 1)) (53^2 - 47^2 = (53 + 47)(53 - 47)) (16x^2 - 36 = (4x)^2 - (6)^2 = (4x + 6)(4x - 6) = 4(2x + 3)(2x - 3)) or (16x^2 - 36 = 4(4x^2 - 9) = 4(2x + 3)(2x - 3)) (-2x^2 + 8x + 10 = -2(x^2 - 4x - 5) = -2(x - 5)(x + 1)) (x^4 + 6x^2 - 7 = (x^2 + 7)(x^2 - 1) = (x^2 + 7)(x + 1)(x - 1)) Note: Algebra I expressions are limited to numerical and polynomial expressions in one variable. Use factoring techniques such as factoring out a greatest common factor, factoring the difference of two perfect squares, factoring trinomials of the form (ax^2 + bx + c) with a lead coefficient of 1, or a combination of methods to factor completely. Factoring will not involve factoring by grouping and factoring the sum and difference of cubes.</td>
</tr>
</tbody>
</table>

LEARNING OBJECTIVES

Students will be able to:

1) factor the difference of perfect squares.

Overview of Lesson

Teacher Centered Introduction

- Overview of Lesson
 - activate students’ prior knowledge
 - vocabulary
 - learning objective(s)
 - big ideas: direct instruction
 - modeling

Student Centered Activities

- guided practice
 - Teacher: anticipates, monitors, selects, sequences, and connects student work
 - developing essential skills
 - Regents exam questions
 - formative assessment assignment (exit slip, explain the math, or journal entry)

VOCABULARY

Completely factor
Perfect square binomial

Square of a number
Square root of a number
BIG IDEA

General Rule

\[(a^2 - b^2) = (a + b)(a - b)\]

Examples

\[x^2 - 4 = (x + 2)(x - 2)\]

\[x^4 - 9 = (x^2 + 3)(x^2 - 3)\]

DEVELOPING ESSENTIAL SKILLS

1. The expression \(x^2 - 16\) is equivalent to
 a. \((x + 2)(x - 8)\)
 b. \((x - 2)(x + 8)\)
 c. \((x + 4)(x - 4)\)
 d. \((x + 8)(x - 8)\)

2. Factored, the expression \(16x^2 - 25y^2\) is equivalent to
 a. \((4x - 5y)(4x + 5y)\)
 b. \((4x - 5y)(4x - 5y)\)
 c. \((8x - 5y)(8x + 5y)\)
 d. \((8x - 5y)(8x - 5y)\)

3. The expression \(9x^2 - 100\) is equivalent to
 a. \((3x - 10)(3x + 10)\)
 b. \((3x - 10)(3x + 10)\)
 c. \((3x - 100)(3x - 1)\)
 d. \((9x - 100)(x + 1)\)

4. Factor completely: \(4x^3 - 36x\)

5. Which expression is equivalent to \(9x^2 - 16\)?
 a. \((3x + 4)(3x - 4)\)
 b. \((3x - 4)(3x - 4)\)
 c. \((3x + 8)(3x - 8)\)
 d. \((3x - 8)(3x - 8)\)

6. If Ann correctly factors an expression that is the difference of two perfect squares, her factors could be
 a. \((2x + y)(2x - y)\)
 b. \((2x + 3y)(2x - 3y)\)
 c. \((x - 4)(x - 4)\)
 d. \((2y - 5)(y - 5)\)

7. Which expression is equivalent to \(121 - x^2\)?
 a. \((x - 11)(x + 11)\)
 b. \((x + 11)(x - 11)\)
 c. \((11 - x)(11 + x)\)
 d. \((11 - x)(11 - x)\)

8. When \(a^2 - 4a\) is factored completely, the result is
 a. \((a - 2)(a + 2)\)
 b. \(a(a - 2)(a + 2)\)
 c. \(a^2(a - 4)\)
 d. \(a(a - 2)^2\)

9. The expression \(x^2 - 36y^2\) is equivalent to
 a. \((x - 6y)(x + 6y)\)
 b. \((x + 18y)(x - 18y)\)
 c. \((x + 6y)(x - 6y)\)
 d. \((x + 18y)(x + 18y)\)

10. Which expression represents \(36x^2 - 100y^6\) factored completely?
 a. \(2(9x + 25y^3)(9x - 25y^3)\)
 b. \(4(3x + 5y^3)(3x - 5y^3)\)
 c. \((6x + 10y^3)(6x - 10y^3)\)
 d. \((18x + 50y^3)(18x - 50y^3)\)

11. Which expression is equivalent to \(64 - x^2\)?
 a. \((8 - x)(8 + x)\)
 b. \((8 - x)(8 - x)\)
 c. \((x - 8)(x - 8)\)
 d. \((x - 8)(x + 8)\)

12. The expression \(9a^2 - 64b^2\) is equivalent to
 a. \((9a - 8b)(a + 8b)\)
 b. \((9a - 8b)(a - 8b)\)
 c. \((3a - 8b)(3a + 8b)\)
 d. \((3a - 8b)(3a - 8b)\)

13. The expression \(100a^2 - 1\) is equivalent to
14. When \(9x^2 - 100 \) is factored, it is equivalent to \((3x - b)(3x + b)\). What is a value for \(b\)?
 a. 50
 b. 10
 c. 3
 d. 100

15. Which expression is equivalent to \(81 - 16x^2 \)?
 a. \((9 - 8x)(9 + 8x)\)
 b. \((9 - 8x)(9 + 2x)\)
 c. \((9 - 4x)(9 + 4x)\)
 d. \((9 - 4x)(9 - 4x)\)

16. One of the factors of \(4x^2 - 9\) is
 a. \((x + 3)\)
 b. \((2x + 3)\)
 c. \((4x - 3)\)
 d. \((x - 3)\)

17. Factor completely: \(3x^2 - 27\)
 a. \(3(x - 3)^2\)
 b. \(3(x^2 - 27)\)
 c. \(3(x + 3)(x - 3)\)
 d. \((3x + 3)(x - 9)\)

18. Written in simplest factored form, the binomial \(2x^2 - 50\) can be expressed as
 a. \(2(x - 5)(x + 5)\)
 b. \(2(x - 5)(x + 5)\)
 c. \((x - 5)(x + 5)\)
 d. \(2x(x - 50)\)

19. Expressed in factored form, the binomial \(4a^2 - 9b^2\) is equivalent to
 a. \((2a - 3b)(2a + 3b)\)
 b. \((2a + 3b)(2a - 3b)\)
 c. \((4a - 3b)(a + 3b)\)
 d. \((2a - 9b)(2a + b)\)

20. What is a common factor of \(x^2 - 9\) and \(x^2 - 5x + 6\)?
 a. \(x + 3\)
 b. \(x - 3\)
 c. \(x - 2\)
 d. \(x^2\)

Answers

1. ANS: C
2. ANS: A
3. ANS: B
4. ANS:
 \[4x(x + 3)(x - 3)\]
 \[4x^3 - 36x = 4x(x^2 - 9) = 4x(x + 3)(x - 3)\]

5. ANS: A
6. ANS: B
7. ANS: C
8. ANS: B
9. ANS: C
10. ANS: B
11. ANS: B
12. ANS: C
13. ANS: A
14. ANS: B
15. ANS: C
16. ANS: B
17. ANS: C
18. ANS: B
19. ANS: B
20. ANS: B
A.SSE.A.2: Difference of Perfect Squares

348) When factored completely, the expression \(p^4 - 81 \) is equivalent to

1) \((p^2 + 9)(p^2 - 9)\)
2) \((p^2 - 9)(p^2 + 9)\)
3) \((p + 3)(p - 3)\)
4) \((p + 3)(p - 3)(p + 3)(p - 3)\)

349) If the area of a rectangle is expressed as \(x^4 - 9y^2 \), then the product of the length and the width of the rectangle could be expressed as

1) \((x - 3y)(x + 3y)\)
2) \((x^2 - 3y)(x^2 + 3y)\)
3) \((x^2 - 3y)(x^2 - 3y)\)
4) \((x + y)(x - 9y)\)

350) The expression \(x^4 - 16 \) is equivalent to

1) \((x^2 + 8)(x^2 - 8)\)
2) \((x^2 - 8)(x^2 + 8)\)
3) \((x + 4)(x - 4)\)
4) \((x + 4)(x - 4)\)

351) Which expression is equivalent to \(36x^2 - 100 \)?

1) \(4(3x - 5)(3x + 5)\)
2) \(4(3x + 5)(3x - 5)\)
3) \(2(9x - 25)(9x + 25)\)
4) \(2(9x + 5)(9x - 25)\)

352) Which expression is equivalent to \(16x^2 - 36 \)?

1) \(4(2x - 3)(2x + 3)\)
2) \(4(2x + 3)(2x - 3)\)
3) \((4x - 6)(4x + 6)\)
4) \((4x + 6)(4x + 6)\)

353) Which expression is equivalent to \(16x^4 - 64 \)?

1) \((4x^2 - 8)^2\)
2) \((8x^2 - 32)^2\)
3) \((4x^2 + 8)(4x^2 - 8)\)
4) \((8x^2 + 32)(8x^2 - 32)\)

354) The expression \(49x^2 - 36 \) is equivalent to

1) \((7x - 6)^2\)
2) \((24.5x - 18)^2\)
3) \((7x - 6)(7x + 6)\)
4) \((24.5x - 18)(24.5x + 18)\)

355) Which expression is equivalent to \(y^4 - 100 \)?

1) \((y^2 - 10)^2\)
2) \((y^2 - 50)^2\)
3) \((y^2 + 10)(y^2 - 10)\)
4) \((y^2 + 50)(y^2 - 50)\)
348) ANS: 3
Strategy: Use difference of perfect squares.

STEP 1. Factor $p^4 - 81$

$$p^4 - 81 = \left(p^2 + 9\right) \left(p^2 - 9\right)$$

STEP 2. Factor $p^2 - 9$

$$\left(p^2 + 9\right) \left(p^2 - 9\right) = \left(p^2 + 9\right)(p + 3)(p - 3)$$

PTS: 2 NAT: A.SSE.A.2 TOP: Factoring Polynomials

349) ANS: 2
Strategy: Use the distributive property to work backwards from the answer choices.

<table>
<thead>
<tr>
<th>a. $(x - 3y)(x + 3y)$</th>
<th>c. $(x^2 - 3y)(x^2 + 3y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^2 + 3xy - 3xy - 9y^2$</td>
<td>$x^4 - 3x^2y - 3x^2y + 9y^2$</td>
</tr>
<tr>
<td>$x^2 - 9y^2$</td>
<td>$x^4 - 6x^2y + 9y^2$</td>
</tr>
<tr>
<td>(wrong)</td>
<td>(wrong)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b. $(x^2 - 3y)(x^2 + 3y)$</th>
<th>d. $(x^4 + y)(x - 9y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^4 + 3x^3y - 3x^2y - 9y^2$</td>
<td>$x^5 - 9x^4y + xy - 9y^2$</td>
</tr>
<tr>
<td>$x^4 - 9y^2$</td>
<td>(wrong)</td>
</tr>
<tr>
<td>(correct)</td>
<td></td>
</tr>
</tbody>
</table>

PTS: 2 NAT: A.SSE.A.2 TOP: Factoring Polynomials

350) ANS: 3
Step 1. Understand the problem as a “difference of perfect squares”, because the terms x^4 and 16 are both perfect squares and the operation is subtraction.

Step 2. Strategy: Use the pattern $a^2 - b^2 = (a + b)(a - b)$ to separate $x^4 - 16$ into two binomials.

Step 3. Execution of Strategy

- The square root of x^4 is x^2.
- The square of 16 is 4.
- $x^4 - 16 = (x^2 + 4)(x^2 - 4)$

Step 4. Does it make sense? Yes. You can show that $(x^2 + 4)(x^2 - 4) = x^4 - 16$ using the distributive property, as follows:
PTS: 2 NAT: A.SSE.A.2 TOP: Factoring the Difference of Perfect Squares

351) ANS: 2

Strategy 1.
Recognize that the expression \(36x^2 - 10c \) is a difference of perfect squares. Therefore,
\[
36x^2 - 100.
\]
\[
(6x + 10)(6x - 10).
\]
Since this is not an answer choice, continue factoring, as follows:
\[
(6x + 10)(6x - 10)
\]
\[
(2(3x + 5))(2(3x - 5)).
\]
\[
4(3x + 5)(3x - 5).
\]

Strategy 2.
Examine the answer choices, which begin with factors 4 and 2. Extract these factors first, as follows:

<table>
<thead>
<tr>
<th>Start by extracting a 4</th>
<th>Start by extracting a 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(36x^2 - 100)</td>
<td>(36x^2 - 100)</td>
</tr>
<tr>
<td>(4(9x^2 - 25))</td>
<td>(2(18x^2 - 50))</td>
</tr>
<tr>
<td>(4(3x + 5)(3x - 5))</td>
<td>((2)(2)(9x^2 - 25))</td>
</tr>
<tr>
<td></td>
<td>((2)(2)(3x + 5)(3x - 5))</td>
</tr>
<tr>
<td></td>
<td>(4(3x + 5)(3x - 5))</td>
</tr>
</tbody>
</table>

352) ANS: 2

Strategy 1: Factor
\[
16x^2 - 36
\]
\[
4(4x^2 - 9)
\]
\[
4(2x + 3)(2x - 3).
\]

Strategy 2: Recognize that \(16x^2 - 36 \) appears to be a difference of perfect squares. Recall that \(a^2 - b^2 = (a + b)(a - b) \). Eliminate any answers that do not take the form of \((a + b)(a - b) \), which leaves only one choice:
\[
4(2x + 3)(2x - 3).
\]
Check:
Note that the expression \(16x^4 - 64\) is the difference of perfect squares.
\[
a^2 - b^2 = (a + b)(a - b)
\]
\[
16x^4 - 64 = (4x^2 + 8)(4x^2 - 8)
\]

Note that 49\(x^2\) and 36 are both perfect squares. Therefore, 49\(x^2 - 36\) is the difference of perfect squares.
\[
a^2 - b^2 = (a + b)(a - b)
\]
\[
49x^2 - 36 = (7x + 6)(7x - 6)
\]

\(y^4 - 100\) is a difference of perfect squares. All polynomials in the form of \(a^2 - b^2\) can be factored into \((a + b)(a - b)\).
\[
y^4 - 100
\]
\[
\left(y^2 + 10\right)\left(y^2 - 10\right)
\]