POLYNOMIALS Graphing Polynomial Functions

Common Core Standard	Next Generation Standard
F-BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even- and odd functions from their graphs and algebraic expressions for them. PARCC: Identifying the effect on the graph of replacing $f(x)$ by- $f(x) + k$, $kf(x)$, and $f(x + k)$ for specific values of k (both positive- and negative) is limited to linear and quadratic functions. Experi- menting with cases and illustrating an explanation of the effects on the graph using technology is limited to linear functions, quad- ratic functions, square root functions, cube root functions, piece- wise defined functions (including step functions and absolute- value functions), and exponential functions with domains in the integers. Tasks do not involve recognizing even and odd func- tions	AI-F.BF.3a Using $f(x) + k$, $k f(x)$, and $f(x + k)$: i) identify the effect on the graph when replacing $f(x)$ by $f(x) + k$, k f(x), and $f(x + k)$ for specific values of k (both positive and negative); ii) find the value of k given the graphs; iii) write a new function using the value of k; and iv) use technology to experiment with cases and explore the effects on the graph. (Shared standard with Algebra II) Note: Tasks are limited to linear, quadratic, square root, and absolute value functions; and exponential functions of the form $f(x) = a(b)^x$ where $a > 0$ and $b > 0$ ($b \neq 1$).

LEARNING OBJECTIVES

Students will be able to:

- 1) Use a constant *k* in the equation of the parabola to move the graph of parabolas up, down, left, and/or right.
- 2) Use a constant *k* in the equation of the parabola to make the parabola open upward or downward.
- 3) Use a constant k in the equation of the parabola to make the parabola narrower or wider.

Teacher Centered Introduction	Student Centered Activities
Overview of Lesson	guided practice T eacher: anticipates, monitors, selects, sequences, and connects student work
- activate students' prior knowledge	
- vocabulary	- developing essential skills
- learning objective(s)	- Regents exam questions
- Raining objective(s)	- formative assessment assignment (exit slip, explain the math, or journal
- big ideas: direct instruction	entry)
- modeling	

VOCABULARY

constant	scalar	vertex
narrower	translation	wider

BIG IDEAS

The graph of a function is changed when either f(x) or x is multiplied by a scalar, or when a constant is added to or subtracted from either f(x) or x. A graphing calculator can be used to explore the translations of graph views of functions.

Up and Down

The addition or subtraction of a constant **<u>outside the parentheses</u>** moves the graph up or down by the value of the constant.

 $f(x) \Leftrightarrow f(x) \pm k$ moves the graph up or down k units \updownarrow .

+k moves the graph up.

-k moves the graph down.

Examples:

Left and Right

The addition or subtraction of a constant **inside the parentheses** moves the graph left or right by the value of the constant.

 $f(x) \Leftrightarrow f(x \pm k)$ moves the graph left or right k units \updownarrow .

+k moves the graph leftg k units.

-k moves the graph right k units.

Replace f(x) by f(x + k)

Plot1 Plot2 Plot3 \Y18X ² \ Y28(X+2) ²	
NY38(X-2) ² NY4= NY5=	

Width and Direction of a Parabola

Changing the value of *a* in a quadratic affects the width and direction of a parabola. The bigger the absolute value of *a*, the narrower the parabola.

 $f(x) \Leftrightarrow f(kx)$ changes the direction and width of a parabola.

+k opens the parabola upward.

-k opens the parabola downward.

If k is a fraction less than 1, the parabola will get wider.

As k approaches zero, the parabola approaches a straight horizontal line.

If k is a number greater than 1, the parabola will get narrower.

As k approaches infinity, the parabola approaches a straight vertical line.

Examples:

DEVELOPING ESSENTIAL SKILLS

- 1. Consider the graph of the equation $y = ax^2 + bx + c$, when $a \neq 0$. If *a* is multiplied by 3, what is true of the graph of the resulting parabola?
 - a. The vertex is 3 units above the vertex of the original parabola.
 - b. The new parabola is 3 units to the right of the original parabola.
 - c. The new parabola is wider than the original parabola.
 - d. The new parabola is narrower than the original parabola.
- 2. Melissa graphed the equation $y = x^2$ and Dave graphed the equation $y = -3x^2$ on the same coordinate grid. What is the relationship between the graphs that Melissa and Dave drew?
 - a. Dave's graph is wider and opens in the opposite direction from Melissa's graph.
 - b. Dave's graph is narrower and opens in the opposite direction from Melissa's graph.
 - c. Dave's graph is wider and is three units below Melissa's graph.
 - d. Dave's graph is narrower and is three units to the left of Melissa's graph.
- 3. The graph of a parabola is represented by the equation $y = ax^2$ where *a* is a positive integer. If *a* is multiplied by 2, the new parabola will become
 - a. narrower and open downward
 - b. narrower and open upward
 - c. wider and open downward
 - d. wider and open upward
- 4. How is the graph of $y = x^2 + 4x + 3$ affected when the coefficient of x^2 is changed to a smaller positive number? a. The graph becomes wider, and the *y*-intercept changes.
 - b. The graph becomes wider, and the *y*-intercept stays the same.
 - c. The graph becomes narrower, and the *y*-intercept changes.
 - d. The graph becomes narrower, and the *y*-intercept stays the same.
- 5. Which is the equation of a parabola that has the same vertex as the parabola represented by $y = x^2$, but is wider?
 - a. $y = x^2 + 2$ c. $y = 2x^2$
 - b. $y = x^2 2$ d. $y = \frac{1}{2}x^2$

6. The graph of the equation $y = x^2$ is shown below.

Which statement best describes the change in this graph when the coefficient of x^2 is multiplied by 4?

- a. The parabola becomes wider.
- b. The parabola becomes narrower.
- c. The parabola will shift up four units.
- d. The parabola will shift right four units.
- 7. The graph of $y = x^2$ is shown below.

Which graph represents $y = 2x^2$? a.

ANSWERS

- 1. ANS: D
- 2. ANS: B
- 3. ANS: B
- 4. ANS: B
- 5. ANS: D
- 6. ANS: B
- 7. ANS: D

REGENTS EXAM QUESTIONS (through June 2018)

Graphing Polynomial Functions F.BF.B.3:

372) The graph of the equation $y = ax^2$ is shown below.

If *a* is multiplied by $-\frac{1}{2}$, the graph of the new equation is

- 1) wider and opens downward
- 2) wider and opens upward
- 3) narrower and opens downward
- 4) narrower and opens upward
- 373) How does the graph of $f(x) = 3(x-2)^2 + 1$ compare to the graph of $g(x) = x^2$?
 - 1) The graph of f(x) is wider than the graph 3) The graph of f(x) is narrower than the of g(x), and its vertex is moved to the left 2 units and up 1 unit.
 - 2) The graph of f(x) is narrower than the graph of g(x), and its vertex is moved to the right 2 units and up 1 unit.
- graph of g(x), and its vertex is moved to the left 2 units and up 1 unit.
- 4) The graph of f(x) is wider than the graph of g(x), and its vertex is moved to the right 2 units and up 1 unit.
- 374) The vertex of the parabola represented by $f(x) = x^2 4x + 3$ has coordinates (2, -1). Find the coordinates of the vertex of the parabola defined by g(x) = f(x-2). Explain how you arrived at your answer. [The use of the set of axes below is optional.]

- 375) Given the graph of the line represented by the equation f(x) = -2x + b, if b is increased by 4 units, the graph of the new line would be shifted 4 units
 - 1) right 3) left
 - 2) up 4) down
- 376) When the function $f(x) = x^2$ is multiplied by the value *a*, where a > 1, the graph of the new function, $g(x) = ax^2$
 - 1) opens upward and is wider
 - 2) opens upward and is narrower
 - 3) opens downward and is wider
 - 4) opens downward and is narrower
- 377) In the diagram below, $f(x) = x^3 + 2x^2$ is graphed. Also graphed is g(x), the result of a translation of f(x).

Determine an equation of g(x). Explain your reasoning.

378) In the functions $f(x) = kx^2$ and g(x) = |kx|, k is a positive integer. If k is replaced by $\frac{1}{2}$, which statement

about these new functions is true?

- 1) The graphs of both f(x) and g(x)become wider.
- 3) The graphs of both f(x) and g(x) shift vertically.
- 2) The graph of f(x) becomes narrower and 4) The graph of f(x) shifts left and the graph the graph of g(x) shifts left.
- of g(x) becomes wider.
- 379) If the original function $f(x) = 2x^2 1$ is shifted to the left 3 units to make the function g(x), which expression would represent g(x)?
 - 1) $2(x-3)^2 1$ 3) $2x^2 + 2$ 4) $2x^2 - 4$ 2) $2(x+3)^2 - 1$
- 380) The graph of the function p(x) is represented below. On the same set of axes, sketch the function p(x+2).

SOLUTIONS

372) ANS: 1

Strategy: Use the following general rules for quadratics, then check with a graphiong calculator. As the value of a approaches 0, the parabola gets wider.

A positive value of a opens upward.

A negative value of a opens downward.

Check with graphing calculator:

Assume a = 1, then $y_1 = 1x^2$

If a is multiplied by $-\frac{1}{2}$, then $y_2 = -\frac{1}{2}x^2$.

Input both equations in a graphing calculator, as follows:

PTS: 2 NAT: F.BF.B.3 TOP: Transformations with Functions and Relations

373) ANS: 2

Strategy: Input both functions in a graphing calculator and compare them.

Let the graph of Y_1 be the graph of $f(x) = 3(x-2)^2 + 1$ Let the graph of Y_2 be the graph of $g(x) = x^2$ Input both functions in a graphing calculator. g(x) is the thick line and f(x) is the thin line.

374) ANS:

(4, -1). f(x-2) is a horizontal shift two units to the right

Strategy 1: Compose a new function, find the axis of symmetry, solve for g(x) at axis of symmetry, as follows:

$f(x) = x^2 - 4x + 3$ and $g(x) = f(x - 2)$	axis of symmetry = $\frac{-b}{-b} = \frac{-(-8)}{-(-8)} = \frac{8}{-} = 4$
Therefore: $g(x) = (x-2)^2 - 4(x-2) + 3$	2a = 2(1) = 2
$g(x) = x^2 - 4x + 4 - 4x + 8 + 3$	$g(x) = x^4 - 8x + 15$
$-(-)$ $-\frac{2}{3}$ $2-15$	$g(4) = (4)^2 - 8(4) + 15$
$g(x) = x - \delta x + 15$	g(4) = 16 - 32 + 15
	g(4) = -1

The coordinates of the vertex of g(x) are (4,-1)

Strategy #2. Input the new function in a graphing calculator and identify the vertex.

Plot1 Plot2 Plot3		3 /	X	Y1	
NY1∎(X-2) ² -4(X-2)		1	1	8	
\Ý2 = ∎		$(\land f)$	2	3	
NY3=	•••••		Ć	-1	
<Υ 4 =		-	5	0	
NY s=			2	8	
NVe=		•	•	-	
· / U =			K=4		
		•			

PTS: 2 NAT: F.BF.B.3 TOP: Transformations with Functions and Relations 375) ANS: 2

Strategy: Use the characteristics of the slope intercept form of a line, which is y = mx + b, where y is the dependent variable, m is the slope, x is the dependent variable, and b is the y-inctercept.

If b (the y-intercept) is increased by four, the slope remains the same and the new line is shifted up 4 units.

Check using a graphing calculator.

PTS: 2 NAT: F.BF.B.3

TOP: Transformations with Functions and Relations

376) ANS: 2

Strategy: Eliminate wrong answers.

Step 1. Since a > 1, a must be positive and the graph of $g(x) = ax^2$ must open upward. Eliminate any choice that opens downward.

Step 2. Determine if the graph gets wider or narrower by selecting a number larger than 1 for a, then input both functions in a graphing calculator and compare their graphs. The graph gets narrower, so eliminate any answer that indicates wider.

c)

opens downward and is narrower d)

PTS: 2 NAT: F.BF.B.3 STA: A.G.5 **TOP:** Graphing Polynomial Functions 377) ANS:

$$g(x) = x^3 + 2x^2 - 4$$

f(x) has a y-intercept of 0. g(x) has a y-intercept of -4. Every point on f(x) is a translation down 4 units to create g(x).

NAT: F.BF.B.3 **TOP:** Graphing Polynomial Functions PTS: 2

378) ANS: 1

Since k is a positive integer, the lowest possible value for k is 1. If k is replaced by $\frac{1}{2}$, the graphs of both f(x) and g(x) will become wider.

- PTS: 2 NAT: F.BF.B.3 TOP: Graphing Polynomial Functions
- 379) ANS: 2

Strategy: Input the orginal function and the four answer choices in a graphing calculator. Then, select the function rule for the graph that is shifted 3 units to the left.

PTS: 2 NAT: F.BF.B.3 TOP: Grap

TOP: Graphing Polynomial Functions

Strategy: Solve a simpler problem - pick a simple quadratic function, such as $y = x^2$ and see what happens to the graph when the function is changed to $y = (x + 2)^2$.

STEP 1. Input both in functions in a graphing calcualor.

NORMAL FLOAT AUTO REAL DEGREE MP	NORMAL FLOAT AUTO REAL DEGREE MP
Plot1 Plot2 Plot3 $Y_1 = X^2$ $Y_2 = (X+2)^2$ $Y_3 = 1$ $Y_4 = 1$ $Y_5 = 1$ $Y_6 = 1$ $Y_7 = 1$ $Y_8 = 1$	

- STEP 2. Observe that the graph moves two units to the left.STEP 3. Move every point of the original function two units to the left.

PTS: 2 NAT: F.BF.B.3 TOP: Graphing Polynomial Functions