L - Radicals, Lesson 2, Graphing Root Functions (r. 2018)

RADICALS
 Graphing Root Functions

Common Core Standard
F-IF.7b Graph square root, eube root, and piece-wise-defined functions, including step functions and absolute value functions.
Next Generation Standard
AI-F.IF.7b Graph square root, and piecewise-defined
functions, including step functions and absolute value
functions and show key features.
Note: Algebra I key features include the following: in-
tercepts, zeros; intervals where the function is increas-
ing, decreasing, positive, or negative; maxima, min-
ima; and symmetries.

AI-F.IF.7b Graph square root, and piecewise-defined functions, including step functions and absolute value functions and show key features.
Note: Algebra I key features include the following: intercepts, zeros; intervals where the function is increasing, decreasing, positive, or negative; maxima, minima; and symmetries.

LEARNING OBJECTIVES

Students will be able to:

1) Graph functions involving square roots.

Overview of Lesson

Teacher Centered Introduction	Student Centered Activities
Overview of Lesson	guided practice \leftarrow Teacher: anticipates, monitors, selects, sequences, and connects student work
- activate students' prior knowledge	- developing essential skills
- vocabulary	- Regents exam questions
- learning objective(s)	- formative assessment assignment (exit slip, explain the math, or journal
- big ideas: direct instruction	
- modeling	

VOCABULARY

square root
cube root
nth root

BIG IDEAS

NOTE: All of the functions in this lesson require special consideration for the domain of the independent variable (the x-axis).

ROOT FUNCTIONS

Root functions are associated with equations involving square roots, cube roots, or nth roots. The easiest way to graph a root function is to use the three views of a function that are associated with a graphing calculator.

STEP 1. Input the root function in the y-editor of the calculator.
(Note: The use of rational exponents is recommended, i.e.

$$
\sqrt{x}=x^{\frac{1}{2}}
$$

$$
\sqrt[3]{x}=x^{\frac{1}{3}}
$$

$$
\sqrt[4]{x}=x^{\frac{1}{4}}
$$

STEP 2. Look at the graph of the function.
STEP 3. Use the table of values to transfer coordinate pairs to graph paper.
Example: Graph the root function $f(x)=\sqrt{x+1}$

STEP 1 Input the function rule in the y editor of your graphing calculator	STEP 2. Look at the graph view of the function.	STEP 3. Select coordinate pairs from the table view to create your graph.

DEVELOPING ESSENTIAL SKILLS

Use technology to graph the following the following functions:

$$
\begin{gathered}
y=\sqrt{x} \\
y=-\sqrt{x} \\
y=\sqrt{x+3}^{(1 / 2)} \\
y=x^{(1 / 2)}+3 \\
y=\sqrt[3]{x}_{x}
\end{gathered}
$$

ANSWERS

REGENTS EXAM QUESTIONS (through June 2018)

F.IF.C.7: Graphing Root Functions

394) Which graph represents $y=\sqrt{x-2}$?
395)

3)

395) On the set of axes below, graph the function represented by $y=\sqrt[3]{x-2}$ for the domain $-6 \leq x \leq 10$.

396) Draw the graph of $y=\sqrt{x}-1$ on the set of axes below.

397) Graph the function $y=-\sqrt{x+3}$ on the set of axes below.

398) Graph $f(x)=\sqrt{x+2}$ over the domain $-2 \leq x \leq 7$.

SOLUTIONS

394)

ANS: 4
$y=\sqrt{x-2}$ is a root function, so its graph must look like a root function.

You can also solve this problem by inputting the equation $y=\sqrt{x-2}$ into a graphing calcualtor and looking at the graph, as fopllows:

PTS: 2
NAT: F.IF.C. 7 TOP: Graphing Root Functions
KEY: bimodalgraph
395)

ANS:

Strategy: Input the function in a graphing calculator, then use the graph and table views to construct the graph on paper. Limit the domain of the graph to $-6 \leq x \leq 10$.

STEP 1: Use exponential notation to input the function into the graphing calculator, where $\sqrt[3]{x-2}=(x-2)^{(1 / 3)}$. Then use the table and graph views to reproduce the graph on paper.

STEP 2: Limit the domain of the function to $-6 \leq x \leq 10$. Used closed dots to show the ends of the function at coordinates $(-6,-2)$ and for $(10,2)$.

PTS: 2 NAT: F.IF.C. 7 TOP: Graphing Root Functions
396) ANS:

Strategy: Input the function in a graphing calculator, then use the graph and table views to construct the graph on paper.

STEP 1: Use exponential notation to input the function into the graphing calculator, where $\sqrt{x}-1=x^{(1 / 2)}-1$. Then use the table and graph views to reproduce the graph on paper.

Note: Do nopt plot coordinates with errors. Focus on plotting coordinates with integer values and estimate the graph between the points with integer values when drawing the graph.

STEP 2: Limit the domain of the function to $-6 \leq x \leq 10$. Used closed dots to show the ends of the function at coordinates ($-6,-2$) and for (10,2).

PTS: 2 NAT: F.IF.C. 7 TOP: Graphing Root Functions
ANS:
Strategy: Input the equation in a graphing calculator. Plot the coordinates with integer values. Complete the graph.

25 Graph the function $y=-\sqrt{x+3}$ on the set of axes below.

PTS: 2
NAT: F.IF.C. 7
398)

Strategy: Input the function $f(x)=\sqrt{x+2}$ in a graphing calculator and use the table of values and graph views to plot the graph for integer values.

PTS: 2
NAT: F.IF.C. 7 TOP: Graphing Root Functions

