L – Radicals, Lesson 2, Graphing Root Functions (r. 2018)

RADICALS

Graphing Root Functions

Common Core Standard	Next Generation Standard
F-IF.7b Graph square root, cube root , and piece- wise-defined functions, including step functions and absolute value functions.	AI-F.IF.7b Graph square root, and piecewise-defined functions, including step functions and absolute value functions and show key features. Note: Algebra I key features include the following: in- tercepts, zeros; intervals where the function is increas- ing, decreasing, positive, or negative; maxima, min- ima; and symmetries.

LEARNING OBJECTIVES

Students will be able to:

1) Graph functions involving square roots.

Teacher Centered Introduction	Student Centered Activities			
Overview of Lesson	guided practice Teacher: anticipates, monitors, selects, sequences, and connects student work			
- activate students' prior knowledge	- developing essential skills			
- vocabulary	- Regents exam questions			
- learning objective(s)	- formative assessment assignment (exit slip, explain the math, or journal			
- big ideas: direct instruction	entry)			
- modeling				

VOCABULARY

square root

cube root

nth root

BIG IDEAS

NOTE: All of the functions in this lesson require special consideration for the domain of the independent variable (the x-axis).

ROOT FUNCTIONS

Root functions are associated with equations involving square roots, cube roots, or nth roots. The easiest way to graph a root function is to use the three views of a function that are associated with a graphing calculator.

STEP 1. Input the root function in the y-editor of the calculator.

(Note: The use of rational exponents is recommended, i.e.

$$\sqrt{x} = x^{\frac{1}{2}}$$
 $\sqrt[3]{x} = x^{\frac{1}{3}}$ $\sqrt[4]{x} = x^{\frac{1}{4}}$

STEP 2. Look at the graph of the function.

STEP 3. Use the table of values to transfer coordinate pairs to graph paper.

Example: Graph the root function $f(x) = \sqrt{x+1}$

STEP 1 Input the function rule in the y- editor of your graphing calculator	STEP 2. Look at the graph view of the function.	STEP 3. Select coordinate pairs from the table view to create your graph.		
Plot1 Plot2 Plot3 \Y18(X+1) ^(1/2) \Y2= \Y3= \Y4= \Y5= \Y6=		X Y1 ERROR -1 0 0 1 1 1.4142 2 1.7321 3 2 4 2.2361 Press + for ATDL		

DEVELOPING ESSENTIAL SKILLS

Use technology to graph the following the following functions:

 $y = \sqrt{x}$ $y = -\sqrt{x}$ $y = \sqrt{x+3}^{(1/2)}$ $y = x^{(1/2)} + 3$ $y = \sqrt[3]{x}$

ANSWERS

NORMAL FLOAT AUTO REAL RADIAN MP	NORMAL FLOAT AUTO REAL RADIAN MP	NORMAL FLOAT AUTO REAL RADIAN MP
Plot1 Plot2 Plot3 $Y_1 BX^{(1/2)}$ $Y_2 =$ $Y_3 =$ $Y_4 =$ $Y_5 =$ $Y_6 =$ $Y_7 =$ $Y_8 =$	A T -2 ERROR -1 ERROR 0 0 1 1 2 1.4142 3 1.7321 4 2 5 2.2361 6 2.4495 7 2.6458 8 2.8284 X= -2	
NORMAL FLOAT AUTO REAL RADIAN MP	NORMAL FLOAT AUTO REAL RADIAN MP	NORMAL FLOAT AUTO REAL RADIAN MP o
Plot1 Plot2 Plot3 $Y_{1} = -X^{(1/2)}$ $Y_{2} =$ $Y_{3} =$ $Y_{4} =$ $Y_{5} =$ $Y_{6} =$ $Y_{7} =$ $Y_{8} =$	A T -2 ERROR -1 ERROR 0 0 1 -1 2 -1.414 3 -1.732 4 -2 5 -2.236 6 -2.449 7 -2.646 8 -2.828	
NORMAL FLOAT AUTO REAL RADIAN MP	NORMAL FLOAT AUTO REAL RADIAN MP PRESS + FOR \$\Delta 1b1\$	NORMAL FLOAT AUTO REAL RADIAN MP
Plot1 Plot2 Plot3 $Y1B(X+3)^{(1/2)}$ Y2= Y3= Y4= Y5= Y6= Y7= Y8=	X Y1 -3 ERROR -3 0 -2 1 -1 1.4142 0 1.7321 1 2 2 2.2361 3 2.4495 4 2.6458 5 2.8284	
NORMAL FLOAT AUTO REAL RADIAN MP Plot1 Plot2 Plot3 NY1EX $(1/2)$ +3 NY2= NY3= NY4= NY5= NY6= NY7= NY8=	NORMAL FLOAT AUTO REAL RADIAN MP Image: Constraint of the state of th	NORMAL FLOAT AUTO REAL RADIAN MP
NORMAL FLOAT AUTO REAL RADIAN MP 👖	X=-5 Normal Float Auto Real Radian MP TO	NORMAL FLOAT AUTO REAL RADIAN MP
Plot1 Plot2 Plot3 $Y_1 \equiv X^{(1/3)}$ $Y_2 =$ $Y_3 =$ $Y_4 =$ $Y_5 =$ $Y_6 =$ $Y_7 =$ $Y_8 =$	YI -5 -1.71 -4 -1.587 -3 -1.442 -2 -1.26 -1 -1 0 0 1 1.2599 3 1.4422 4 1.5874 5 1.71	

REGENTS EXAM QUESTIONS (through June 2018)

F.IF.C.7: Graphing Root Functions

395) On the set of axes below, graph the function represented by $y = \sqrt[3]{x-2}$ for the domain $-6 \le x \le 10$.

396) Draw the graph of $y = \sqrt{x} - 1$ on the set of axes below.

397) Graph the function $y = -\sqrt{x+3}$ on the set of axes below.

398) Graph $f(x) = \sqrt{x+2}$ over the domain $-2 \le x \le 7$.

SOLUTIONS

You can also solve this problem by inputting the equation $y = \sqrt{x-2}$ into a graphing calcualtor and looking at the graph, as fopllows:

PTS: 2 NAT: F.IF.C.7 TOP: Graphing Root Functions KEY: bimodalgraph

395) ANS:

Strategy: Input the function in a graphing calculator, then use the graph and table views to construct the graph on paper. Limit the domain of the graph to $-6 \le x \le 10$.

STEP 1: Use exponential notation to input the function into the graphing calculator, where $\sqrt[3]{x-2} = (x-2)^{(1/3)}$. Then use the table and graph views to reproduce the graph on paper.

STEP 2: Limit the domain of the function to $-6 \le x \le 10$. Used closed dots to show the ends of the function at coordinates (-6, -2) and for (10, 2).

PTS: 2 NAT: F.IF.C.7 TOP: Graphing Root Functions

396) ANS:

Strategy: Input the function in a graphing calculator, then use the graph and table views to construct the graph on paper.

STEP 1: Use exponential notation to input the function into the graphing calculator, where $\sqrt{x} - 1 = x^{(1/2)} - 1$. Then use the table and graph views to reproduce the graph on paper.

Note: Do nopt plot coordinates with errors. Focus on plotting coordinates with integer values and estimate the graph between the points with integer values when drawing the graph.

STEP 2: Limit the domain of the function to $-6 \le x \le 10$. Used closed dots to show the ends of the function at coordinates (-6, -2) and for (10, 2).

PTS: 2 NAT: F.IF.C.7 TOP: Graphing Root Functions

397) ANS:

Strategy: Input the equation in a graphing calculator. Plot the coordinates with integer values. Complete the graph.

NORMAL FLOAT AUTO REAL RADIAN MP	NORMAL Press + 1	FLOAT AL For atb1	ITO REAL	RADIAN	MP	Ū
Plot1 Plot2 Plot3	X	Y1				
	-4	ERROR				
■NY1目-J(X+3)	-3	0				
	-2	-1				
	-1	-1.722				
	1	-2				
	2	-2.236				
NY5=	3	-2.449				
NY 6 =	4	12.646				
NY z=	5	-2.828				
	6	-3				-
	X= -4					
NORMAL FLOAT AUTO REAL RADIAN MP						
_						
± 1						
± ±						
Ē						
<u>I</u>						
I <u></u> Ŧ						
Ŧ						
Ŧ						
Ŧ.						
-						
	1					

25 Graph the function $y = -\sqrt{x+3}$ on the set of axes below.

Strategy: Input the function $f(x) = \sqrt{x+2}$ in a graphing calculator and use the table of values and graph views to plot the graph for integer values.

PTS: 2 NAT: F.IF.C.7 TOP: Graphing Root Functions