Regents Exam Questions A.APR.B.2: Remainder and Factor Theorems Name: \qquad www.jmap.org

A.APR.B.2: Remainder and Factor Theorems

1 The graph of $p(x)$ is shown below.

What is the remainder when $p(x)$ is divided by $x+4$?

1) $x-4$
2) -4
3) 0
4) 4

2 If $p(x)=2 x^{3}-3 x+5$, what is the remainder of $p(x) \div(x-5)$?

1) -230
2) 0
3) 40
4) 240

4 Which binomial is a factor of $x^{4}-4 x^{2}-4 x+8$?

1) $x-2$
2) $x+2$
3) $x-4$
4) $x+4$

5 Which binomial is not a factor of the expression $x^{3}-11 x^{2}+16 x+84$?

1) $x+2$
2) $x+4$
3) $x-6$
4) $x-7$

6 If $x-1$ is a factor of $x^{3}-k x^{2}+2 x$, what is the value of k ?

1) 0
2) 2
3) 3
4) -3

7 Given $P(x)=x^{3}-3 x^{2}-2 x+4$, which statement is true?

1) $(x-1)$ is a factor because $P(-1)=2$.
2) $(x+1)$ is a factor because $P(-1)=2$.
3) $(x+1)$ is a factor because $P(1)=0$.
4) $(x-1)$ is a factor because $P(1)=0$.

3 Which expression is a factor of $x^{4}-x^{3}-11 x^{2}+5 x+30$?

1) $x+2$
2) $x-2$
3) $x+5$
4) $x-5$

Regents Exam Questions A.APR.B.2: Remainder and Factor Theorems Name: \qquad www.jmap.org

8 Consider the function $f(x)=2 x^{3}+x^{2}-18 x-9$. Which statement is true?

1) $2 x-1$ is a factor of $f(x)$.
2) $x-3$ is a factor of $f(x)$.
3) $f(3) \neq f\left(-\frac{1}{2}\right)$
4) $f\left(\frac{1}{2}\right)=0$

9 For the polynomial $p(x)$, if $p(3)=0$, it can be concluded that

1) $x+3$ is a factor of $p(x)$
2) $x-3$ is a factor of $p(x)$
3) when $p(x)$ is divided by 3 , the remainder is zero
4) when $p(x)$ is divided by -3 , the remainder is zero

10 When $g(x)$ is divided by $x+4$, the remainder is 0 . Given $g(x)=x^{4}+3 x^{3}-6 x^{2}-6 x+8$, which conclusion about $g(x)$ is true?

1) $g(4)=0$
2) $g(-4)=0$
3) $x-4$ is a factor of $g(x)$.
4) No conclusion can be made regarding $g(x)$.

11 If $f(x)=2 x^{4}-x^{3}-16 x+8$, then $f\left(\frac{1}{2}\right)$

1) equals 0 and $2 x+1$ is a factor of $f(x)$
2) equals 0 and $2 x-1$ is a factor of $f(x)$
3) does not equal 0 and $2 x+1$ is not a factor of $f(x)$
4) does not equal 0 and $2 x-1$ is a factor of $f(x)$

12 Use an appropriate procedure to show that $x-4$ is a factor of the function $f(x)=2 x^{3}-5 x^{2}-11 x-4$. Explain your answer.

13 Show why $x-3$ is a factor of $m(x)=x^{3}-x^{2}-5 x-3$. Justify your answer.

14 Determine if $x-5$ is a factor of $2 x^{3}-4 x^{2}-7 x-10$. Explain your answer.

15 Determine if $x+4$ is a factor of $2 x^{3}+10 x^{2}+4 x-16$. Explain your answer.

16 Determine for which polynomial(s) $(x+2)$ is a factor. Explain your answer.

$$
\begin{aligned}
& P(x)=x^{4}-3 x^{3}-16 x-12 \\
& Q(x)=x^{3}-3 x^{2}-16 x-12
\end{aligned}
$$

17 Given $r(x)=x^{3}-4 x^{2}+4 x-6$, find the value of $r(2)$. What does your answer tell you about $x-2$ as a factor of $r(x)$? Explain.

18 The polynomial function $g(x)=x^{3}+a x^{2}-5 x+6$ has a factor of $(x-3)$. Determine the value of a.

19 Evaluate $j(-1)$ given $j(x)=2 x^{4}-x^{3}-35 x^{2}+16 x+48$. Explain what your answer tells you about $x+1$ as a factor.
Algebraically find the remaining zeros of $j(x)$.

A.APR.B.2: Remainder and Factor Theorems

Answer Section

1 ANS: 3

Since $x+4$ is a factor of $p(x)$, there is no remainder.
REF: 081621aii
2 ANS: 4
$p(5)=2(5)^{3}-3(5)+5=240$
REF: 011819aii
3 ANS: 1

$-2 |$| 1 | -1 | -11 | 5 | 30 |
| ---: | ---: | ---: | ---: | ---: |
| | -2 | 6 | 10 | -30 |
| 1 | -3 | -5 | 15 | 0 |

Since there is no remainder when the quartic is divided by $x+2$, this binomial is a factor.
REF: 082320aii
4 ANS: 1

2 | 1 | 0 | -4 | -4 | 8 |
| ---: | ---: | ---: | ---: | ---: |
| | 2 | 4 | 0 | -8 |
| 1 | 2 | 0 | -4 | 0 |

Since there is no remainder when the quartic is divided by $x-2$, this binomial is a factor.
REF: 061711aii
5 ANS: 2

Since there is a remainder when the cubic is divided by $x+4$, this binomial is not a factor.
REF: 081720aii
6 ANS: 3
$1^{3}-k(1)^{2}+2(1)=0$

$$
k=3
$$

REF: 061812aii
7 ANS: 4 REF: 061907aii

8 ANS: 2

$$
\begin{gathered}
2 x^{3}+x^{2}-18 x-9 \\
x^{2}(2 x+1)-9(2 x+1) \\
\left(x^{2}-9\right)(2 x+1) \\
(x+3)(x-3)(2 x+1)
\end{gathered}
$$

REF: 082206aii
9 ANS: 2 REF: 062206aii
10 ANS: 2 REF: 011720aii
11 ANS: 2

$$
2 x^{4}-x^{3}-16 x+8=0
$$

$$
x^{3}(2 x-1)-8(2 x-1)=0
$$

$$
\left(x^{3}-8\right)(2 x-1)=0
$$

$$
x=2, \frac{1}{2}
$$

REF: 012307aii
12 ANS:
$f(4)=2(4)^{3}-5(4)^{2}-11(4)-4=128-80-44-4=0$ Any method that demonstrates 4 is a zero of $f(x)$ confirms

that $x-4$ is a factor, as suggested by the Remainder Theorem.
REF: spr1507aii
13 ANS:
$m(3)=3^{3}-3^{2}-5(3)-3=27-9-15-3=0$ Since $m(3)=0$, there is no remainder when $m(x)$ is divided by $x-3$, and so $x-3$ is a factor.

REF: 012026aii

14 ANS:

$x - 5 \longdiv { 2 x ^ { 2 } + 6 x + 2 3 }$ Since there is a remainder, $x-5$ is not a factor.

$$
\underline{x^{3}-10 x^{2}}
$$

$$
6 x^{2}-7 x
$$

$$
6 x^{2}-30 x
$$

$$
23 x-10
$$

$$
\underline{23 x-115}
$$

REF: 061627aii
15 ANS:

Since -4 is a zero, $x+4$ is a factor.
REF: 012426aii
16 ANS:
$P(-2)=60 Q(-2)=0(x+2)$ is a factor of $Q(x)$ since $Q(-2)=0$.
REF: 081929aii
17 ANS:
$r(2)=-6$. Since there is a remainder when the cubic is divided by $x-2$, this binomial is not a factor.

REF: 061725aii

18 ANS:

$$
\begin{aligned}
g(3)=0 ; \quad 0 & =3^{3}+a(3)^{2}-5(3)+6 \\
0 & =27+9 a-15+6 \\
-18 & =9 a \\
a & =-2
\end{aligned}
$$

REF: 062328aii
19 ANS:

$$
\begin{aligned}
j(-1)=2(-1)^{4}-(-1)^{3} & -35(-1)^{2}+16(-1)+48=2+1-35-16+48=0 ; x+1 \text { is a factor of } j(x) ; \\
2 x^{3}-3 x^{2}-32 x+48 & =0 \\
x^{2}(2 x-3)-16(2 x-3) & =0 \\
\left(x^{2}-16\right)(2 x-3) & =0 \\
x & = \pm 4, \frac{3}{2}
\end{aligned}
$$

REF: 081834aii

