A.REI.B.4: Solving Quadratics 6

1. The roots of the equation $2x^2 + 7x - 3 = 0$ are
 1) $\frac{1}{2}$ and -3
 2) $\frac{1}{2}$ and 3
 3) $\frac{-7 \pm \sqrt{73}}{4}$
 4) $\frac{7 \pm \sqrt{73}}{4}$

2. If the quadratic formula is used to find the roots of the equation $x^2 - 6x - 19 = 0$, the correct roots are
 1) $3 \pm 2\sqrt{7}$
 2) $-3 \pm 2\sqrt{7}$
 3) $3 \pm 4\sqrt{14}$
 4) $-3 \pm 4\sqrt{14}$

3. A cliff diver on a Caribbean island jumps from a height of 105 feet, with an initial upward velocity of 5 feet per second. An equation that models the height, $h(t)$, above the water, in feet, of the diver in time elapsed, t, in seconds, is $h(t) = -16t^2 + 5t + 105$. How many seconds, to the nearest hundredth, does it take the diver to fall 45 feet below his starting point?
 1) 1.45
 2) 1.84
 3) 2.10
 4) 2.72

4. Solve for x to the nearest tenth: $x^2 + x - 5 = 0$.

5. Solve the equation $6x^2 - 2x - 3 = 0$ and express the answer in simplest radical form.

6. Fred’s teacher gave the class the quadratic function $f(x) = 4x^2 + 16x + 9$.
 a) State two different methods Fred could use to solve the equation $f(x) = 0$.
 b) Using one of the methods stated in part a, solve $f(x) = 0$ for x, to the nearest tenth.

7. A rocket is shot vertically into the air. Its height, h, at any time, t, in seconds, can be modeled by the equation $h = -16t^2 + 184t$. Determine algebraically, the number of seconds it will take the rocket to reach a height of 529 feet.

8. A homeowner wants to increase the size of a rectangular deck that now measures 14 feet by 22 feet. The building code allows for a deck to have a maximum area of 800 square feet. If the length and width are increased by the same number of feet, find the maximum number of whole feet each dimension can be increased and not exceed the building code. [Only an algebraic solution can receive full credit.]
9 A homeowner wants to increase the size of a rectangular deck that now measures 15 feet by 20 feet, but building code laws state that a homeowner cannot have a deck larger than 900 square feet. If the length and the width are to be increased by the same amount, find, to the nearest tenth, the maximum number of feet that the length of the deck may be increased in size legally.

10 Matt's rectangular patio measures 9 feet by 12 feet. He wants to increase the patio’s dimensions so its area will be twice the area it is now. He plans to increase both the length and the width by the same amount, x. Find x, to the nearest hundredth of a foot.

11 A rectangular patio measuring 6 meters by 8 meters is to be increased in size to an area measuring 150 square meters. If both the width and the length are to be increased by the same amount, what is the number of meters, to the nearest tenth, that the dimensions will be increased?

12 As shown in the accompanying diagram, the hypotenuse of the right triangle is 6 meters long. One leg is 1 meter longer than the other. Find the lengths of both legs of the triangle, to the nearest hundredth of a meter.

13 Barb pulled the plug in her bathtub and it started to drain. The amount of water in the bathtub as it drains is represented by the equation $L = -5t^2 - 8t + 120$, where L represents the number of liters of water in the bathtub and t represents the amount of time, in minutes, since the plug was pulled. How many liters of water were in the bathtub when Barb pulled the plug? Show your reasoning. Determine, to the nearest tenth of a minute, the amount of time it takes for all the water in the bathtub to drain.
A.REI.B.4: Solving Quadratics 6
Answer Section

1 ANS: 3
\[
\frac{-7 \pm \sqrt{7^2 - 4(2)(-3)}}{2(2)} = \frac{-7 \pm \sqrt{73}}{4}
\]
REF: 081009a2

2 ANS: 1
\[
x^2 - 6x = 19
\]
\[
x^2 - 6x + 9 = 19 + 9
\]
\[
(x - 3)^2 = 28
\]
\[
x = 3 \pm 2\sqrt{7}
\]
REF: fall1302ai

3 ANS: 2
\[
60 = -16t^2 + 5t + 105
t = \frac{-5 \pm \sqrt{5^2 - 4(-16)(45)}}{2(-16)} \approx \frac{-5 \pm 53.89}{32} \approx 1.84
\]
REF: 061424a2

4 ANS:
\[
\frac{-1 \pm \sqrt{1^2 - 4(1)(-5)}}{2(1)} = \frac{-1 \pm \sqrt{21}}{2} \approx -2.8, 1.8
\]
REF: 061827ai

5 ANS:
\[
\frac{2 \pm \sqrt{(-2)^2 - 4(6)(-3)}}{2(6)} = \frac{2 \pm \sqrt{76}}{12} = \frac{2 \pm 2\sqrt{19}}{12} = \frac{1 \pm \sqrt{19}}{6}
\]
REF: 011332a2

6 ANS:
Two of the following: quadratic formula, complete the square, factor by grouping or graphically.
\[
x = \frac{-16 \pm \sqrt{16^2 - 4(4)(9)}}{2(4)} = \frac{-16 \pm \sqrt{112}}{8} \approx -0.7, -3.3
\]
REF: 011634ai
7. \[16t^2 - 184t + 529 = 0 \]
 \[t = \frac{184 \pm \sqrt{(-184)^2 - 4(16)(529)}}{2(16)} = \frac{184 \pm \sqrt{0}}{32} \approx 5.75 \]

 REF: 011738a2

8. \[(x + 14)(x + 22) = 800 \]
 \[x = \frac{-36 \pm \sqrt{(-36)^2 - 4(1)(-492)}}{2(1)} = \frac{-36 \pm \sqrt{3264}}{2} \approx 10.6 \text{ 10 feet increase.} \]

 \[x^2 + 36x + 308 = 800 \]
 \[x^2 + 36x - 492 = 0 \]

 REF: 011539a2

9. \[(15 + x)(20 + x) = 900 \]
 \[x^2 + 35x + 300 - 900 \]

 12.6.

 \[x = \frac{-35 \pm \sqrt{35^2 - 4(1)(-600)}}{2(1)} = \frac{-35 \pm \sqrt{3625}}{2} = \frac{-35 \pm 60.5}{2} \approx 12.6 \]

 REF: 060128b

10. 4.27. The patio’s current area is 108 (9 x 12). After increasing the dimensions, the area will be 216.

 \[(9 + x)(12 + x) = 216 \]
 \[x^2 + 21x + 108 = 216 \]
 \[x^2 + 21x - 108 = 0 \]

 \[x = \frac{-21 \pm \sqrt{21^2 - 4(1)(-108)}}{2(1)} = \frac{-21 \pm \sqrt{873}}{2} = \frac{-21 \pm 29.5}{2} \approx 4.27 \]

 REF: 010729b

11. 5.3. \[(6 + x)(8 + x) = 150 \]

 \[x = \frac{-14 \pm \sqrt{14^2 - 4(1)(-102)}}{2(1)} = \frac{-14 \pm \sqrt{604}}{2} = \frac{-14 \pm 24.6}{2} \approx 5.3 \]

 \[x^2 + 14x + 48 = 150 \]
 \[x^2 + 14x - 102 = 0 \]

 REF: 080727b
12 ANS:

\[x^2 + (x + 1)^2 = 6^2 \quad x = \frac{-2 \pm \sqrt{2^2 - 4(2)(-35)}}{2(2)} = \frac{-2 \pm \sqrt{284}}{4} \approx 3.71 \]

\[x^2 + x^2 + x + x + 1 = 36 \]

\[2x^2 + 2x - 35 = 0 \]

REF: 061030b

13 ANS:

120, 4.2. Barb pulled the plug at \(t = 0 \), so there were 120 liters in the tub.

\[-5t^2 - 8t + 120 = 0 \]

\[\frac{-(-8) \pm \sqrt{(-8)^2 - 4(-5)(120)}}{2(-5)} = \frac{8 \pm \sqrt{2464}}{-10} = \frac{8 - \sqrt{2464}}{-10} \approx 4.2 \]

REF: 080634b