A.REI.B.4: Solving Quadratics 7

1 What is the solution when the equation $wx^2 + w = 0$ is solved for x, where w is a positive integer?
 1) -1
 2) 0
 3) 6
 4) $\pm i$

2 What is the solution set of the equation $x^2 + 9 = 0$?
 1) $\{3, -3\}$
 2) $\{3i, -3i\}$
 3) $\{-3, -3i\}$
 4) $\{\}$

3 The solution to the equation $4x^2 + 98 = 0$ is
 1) ± 7
 2) $\pm 7i$
 3) $\pm \frac{7\sqrt{2}}{2}$
 4) $\pm \frac{7i\sqrt{2}}{2}$

4 Express, in terms of i, the roots of the equation
 $\frac{2}{3}x^2 + 18 = 0$
A.REI.B.4: Solving Quadratics 7

Answer Section

1 ANS: 4
\[wx^2 + w = 0 \]
\[wx^2 = -w \]
\[x^2 = -1 \]
\[x = \pm i \]

REF: 061912aii

2 ANS: 2

REF: 080234siii

3 ANS: 4
\[4x^2 = -98 \]
\[x^2 = \frac{98}{4} \]
\[x^2 = \frac{49}{2} \]
\[x = \pm \sqrt{\frac{49}{2}} = \pm \frac{7i \sqrt{2}}{\sqrt{2}} = \pm \frac{7i \sqrt{2}}{2} \]

REF: 061707aii

4 ANS:
\[\pm 3i \sqrt{3} \]

REF: 069041siii