\qquad www.jmap.org

A.REI.D.11: Other Systems 3

1 The path of a rocket is represented by the equation $y=\sqrt{25-x^{2}}$. The path of a missile designed to intersect the path of the rocket is represented by the equation $x=\frac{3}{2} \sqrt{y}$. The value of x at the point of intersection is 3 . What is the corresponding value of y ?

1) -2
2) 2
3) -4
4) 4

2 The graphs of the equations $y=2^{x}$ and $y=-2 x+a$ intersect in Quadrant I for which values of a ?

1) $0<a<1$
2) $a<1$
3) $a \geq 1$
4) $a>1$

3 The flight paths of two Thunderbird jets are plotted on a Cartesian coordinate plane, and the equations of the jets' flight paths are represented by $y=2^{x}+3$ and $y=0.5^{x}$. The best approximation of the intersection of the flight paths is

1) $(-1.72,3.3)$
2) $(0,1)$
3) $(-1.50,2.82)$
4) $(-2,-1)$

4 What is the total number of points of intersection of the graphs of the equations $x y=12$ and $y=-x^{2}+3$?

1) 1
2) 2
3) 3
4) 4

5 Solve the system of equations algebraically for x and $y: \frac{y}{x}=\frac{x-3}{2}$

$$
y+2=x
$$

6 Determine algebraically the x-coordinate of all points where the graphs of $x y=10$ and $y=x+3$ intersect.

7 A landscape architect's designs for a town park call for two parabolic-shaped walkways. When the park is mapped on a Cartesian coordinate plane, the pathways intersect at two points. If the equations of the curves of the walkways are
$y=11 x^{2}+23 x+210$ and $y=-19 x^{2}-7 x+390$, determine the coordinates of the two points of intersection. [Only an algebraic solution can receive full credit.]

Regents Exam Questions A.REI.D.11: Other Systems 3 www.jmap.org

8 On the accompanying grid, sketch the graphs of $y=2^{x}$ and $3 y=7 x+3$ over the interval $-3 \leq x \leq 4$. Identify and state the coordinates of all points of intersection.

9 On the accompanying grid, solve the following system of equations graphically:

$$
\begin{aligned}
& y=-x^{2}+2 x+1 \\
& y=2^{x}
\end{aligned}
$$

Name: \qquad

10 A pair of figure skaters graphed part of their routine on a grid. The male skater's path is represented by the equation $\mathrm{m}(x)=3 \sin \frac{1}{2} x$, and the female skater's path is represented by the equation $\mathrm{f}(x)=-2 \cos x$. On the accompanying grid, sketch both paths and state how many times the paths of the skaters intersect between $x=0$ and $x=4 \pi$.

A.REI.D.11: Other Systems 3
 Answer Section

1 ANS: 4

$$
y=\sqrt{25-x^{2}}=\sqrt{25-3^{2}}=4 . \quad \begin{aligned}
x & =\frac{3}{2} \sqrt{y} \\
3 & =\frac{3}{2} \sqrt{y} \\
2 & =\sqrt{y} \\
y & =4
\end{aligned}
$$

REF: 060205b
2 ANS: 4
The function $y=-2 x+a$ passes through Quadrant I only if $a>0$. The function $y=2^{x}$ intersects the y-axis at $x=1$, and continues through Quadrant I with a positive slope. If $a=1$, the graphs of the equations intersect at $(0,1)$, which is not in Quadrant I. Therefore, $a>1$.

REF: 060519b
3 ANS: 1

REF: 080705b
4 ANS: 1

REF: 010704b

5 ANS:

$$
\begin{aligned}
\frac{x-2}{x} & =\frac{x-3}{2} \quad y=4-2=2 \quad(4,2),(1,-1) \\
x^{2}-3 x & =2 x-4 \\
x^{2}-5 x+4 & =0 \\
(x-4)(x-1) & =0 \\
x & =4,1
\end{aligned}
$$

REF: 011737a2
6 ANS:

$$
\begin{aligned}
x(x+3) & =10 \\
x^{2}+3 x-10 & =0 \\
(x+5)(x-2) & =0 \\
x & =-5,2
\end{aligned}
$$

REF: 011431a2
7 ANS:

$11 x^{2}+23 x+210$	$=-19 x^{2}-7 x+390$
$30 x^{2}+30 x-180$	$=0$
$x^{2}+x-6$	$=0$
$(x+3)(x-2)$	$=0$
x	$=-3 x=2$

REF: 080831b

8 ANS:

REF: 010628b
9 ANS:

REF: 010527b
10 ANS:

REF: 060329b

