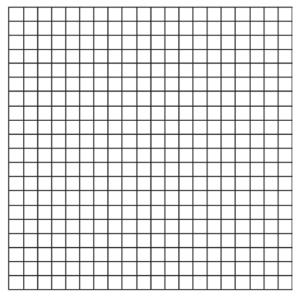
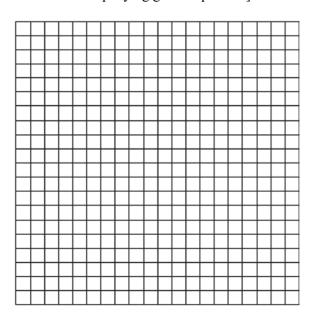

Name:

## A.REI.D.11: Quadratic Inequalities 3

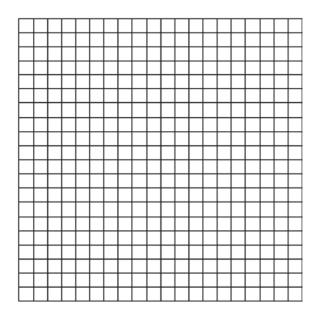
1 Which graph best represents the inequality  $y+6 \ge x^2 - x$ ?




- 2 When a baseball is hit by a batter, the height of the ball, h(t), at time  $t, t \ge 0$ , is determined by the equation  $h(t) = -16t^2 + 64t + 4$ . For which interval of time is the height of the ball greater than or equal to 52 feet?
- 3 The profit a coat manufacturer makes each day is modeled by the equation  $P(x) = -x^2 + 120x - 2000$ , where *P* is the profit and *x* is the price for each coat sold. For what values of *x* does the company make a profit? [The use of the grid is optional.]




Name: \_\_\_\_\_


4 The profit, *P*, for manufacturing a wireless device is given by the equation  $P = -10x^2 + 750x - 9,000$ , where *x* is the selling price, in dollars, for each wireless device. What range of selling prices allows the manufacturer to make a profit on this wireless device? [The use of the grid is optional.]



5 The height of a projectile is modeled by the equation  $y = -2x^2 + 38x + 10$ , where x is time, in seconds, and y is height, in feet. During what interval of time, to the *nearest tenth of a second*, is the projectile *at least* 125 feet above ground? [The use of the accompanying grid is optional.]



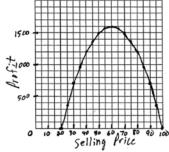
6 A small rocket is launched from a height of 72 feet. The height of the rocket in feet, *h*, is represented by the equation  $h(t) = -16t^2 + 64t + 72$ , where t = time, in seconds. Graph this equation on the accompanying grid. Use your graph to determine the number of seconds that the rocket will remain at or above 100 feet from the ground. [Only a graphic solution can receive full credit.]



## A.REI.D.11: Quadratic Inequalities 3 Answer Section

1 ANS: 1  $y \ge x^2 - x - 6$  $y \ge (x - 3)(x + 2)$ 

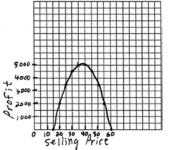
REF: 061017a2


2 ANS:

| $-16t^2 + 64t + 4 \ge 52$                | CASE 1                                                                                                     |
|------------------------------------------|------------------------------------------------------------------------------------------------------------|
| $-16t^2 + 64t - 48 \ge 0$                | t-3 < 0 AND $t-1 > 0$                                                                                      |
| $t^2 - 4t + 3 \le 0$                     | $t < 3 \qquad t > 1$                                                                                       |
| $(t-3)(t-1) \le 0$                       | CASE 2 $t-3 > 0$ $t-1 < 0$                                                                                 |
| For the product of these binomials to be | $\begin{array}{c} t-3 > 0 \\ t > 3 \end{array}  \text{AND}  \begin{array}{c} t-1 < 0 \\ t < 1 \end{array}$ |
| negative, either:                        | The answer is the first case, $1 \le t \le 3$ .                                                            |
| 1) $(t-3)$ must be negative AND          | -                                                                                                          |
| (t - 1) must be positive; or             | cannot be both greater than 3 and less                                                                     |
| 2) $(t-3)$ must be positive AND          | than 1.                                                                                                    |
| (t-1) must be negative                   |                                                                                                            |

REF: 010231b

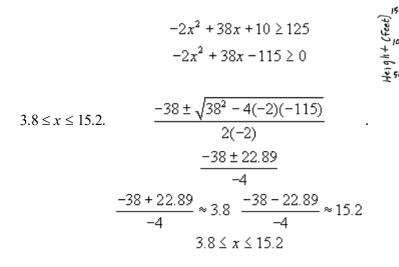
3 ANS: 20 < x < 100


| CASE 1                                             |
|----------------------------------------------------|
| x - 100 < 0 AND $x - 20 > 0$                       |
| x < 100 x > 20                                     |
| CASE 2                                             |
| x - 100 > 0 AND $x - 20 < 0$                       |
| x > 100 $x < 20$                                   |
| The answer is the first case, $20 \le x \le 100$ . |
| The second case is not possible, as $x$            |
| cannot be both greater than 100 and less           |
| than 20.                                           |
|                                                    |

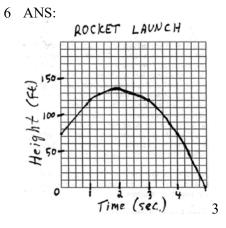


REF: 080424b

4 ANS:


| 15 < x < 60                              |                                               |
|------------------------------------------|-----------------------------------------------|
| $-10x^2 + 750x - 9000 > 0$               | CASE 1                                        |
| $x^2 - 75x + 900 < 0$                    | x - 60 < 0 AND $x - 15 > 0$                   |
| (x-60)(x-15) < 0                         | x < 60 x > 15<br>CASE 2                       |
| For the product of these binomials to be | x = 60 > 0 AND $x = 15 < 0$                   |
| negative, either:                        | x > 60 $x < 15$                               |
| 1. $(x-60)$ must be negative AND         | The answer is the first case, $15 < x < 60$ . |
| (x-15) must be positive; or              | The second case is not possible, as $x$       |
| 2. $(x-60)$ must be positive AND         | cannot be both greater than 60 and less       |
| (x-15) must be negative                  | than 15.                                      |




REF: 080531b

Time (sec)

5 ANS:



REF: 060532b



REF: 060632b