\qquad www.jmap.org

Algebra II Regents Bimodal Worksheets

1 Consider $f(x)=4 x^{2}+6 x-3$, and $p(x)$ defined by the graph below.

The difference between the values of the maximum of p and minimum of f is

2 A 7-year lease for office space states that the annual rent is $\$ 85,000$ for the first year and will increase by 6% each additional year of the lease. What will the total rent expense be for the entire 7 -year lease?

3 For all values of x for which the expression is defined, $\frac{x^{3}+2 x^{2}-9 x-18}{x^{3}-x^{2}-6 x}$, in simplest form, is equivalent to

4 The weights of bags of Graseck's Chocolate Candies are normally distributed with a mean of 4.3 ounces and a standard deviation of 0.05 ounces. What is the probability that a bag of these chocolate candies weighs less than 4.27 ounces?

5 The first term of a geometric sequence is 8 and the fourth term is 216 . What is the sum of the first 12 terms of the corresponding series?

6 Consider the probability statements regarding events A and B below.

$$
\begin{aligned}
& P(A \text { or } B)=0.3 ; \\
& P(A \text { and } B)=0.2 \text {; and } \\
& P(A \mid B)=0.8
\end{aligned}
$$

What is $P(B)$?

7 What is the solution set of the following system of equations?

$$
\begin{aligned}
& y=3 x+6 \\
& y=(x+4)^{2}-10
\end{aligned}
$$

8 Which expression is equivalent to

$$
\frac{2 x^{4}+8 x^{3}-25 x^{2}-6 x+14}{x+6} ?
$$

9 The mean intelligence quotient (IQ) score is 100 , with a standard deviation of 15 , and the scores are normally distributed. Given this information, the approximate percentage of the population with an IQ greater than 130 is closest to

10 The solutions to the equation $5 x^{2}-2 x+13=9$ are

11 Given $\cos \theta=\frac{7}{25}$, where θ is an angle in standard position terminating in quadrant IV, and $\sin ^{2} \theta+\cos ^{2} \theta=1$, what is the value of $\tan \theta$?

Algebra II Regents Bimodal Worksheet \# 2 www.jmap.org

12 What are the solution(s) to the system of equations shown below?

$$
\begin{aligned}
& x^{2}+y^{2}=5 \\
& y=2 x
\end{aligned}
$$

13 The Fahrenheit temperature, $F(t)$, of a heated object at time t, in minutes, can be modeled by the function below. F_{s} is the surrounding temperature, F_{0} is the initial temperature of the object, and k is a constant.

$$
F(t)=F_{s}+\left(F_{0}-F_{s}\right) e^{-k t}
$$

Coffee at a temperature of $195^{\circ} \mathrm{F}$ is poured into a container. The room temperature is kept at a constant $68^{\circ} \mathrm{F}$ and $k=0.05$. Coffee is safe to drink when its temperature is, at most, $120^{\circ} \mathrm{F}$. To the nearest minute, how long will it take until the coffee is safe to drink?

14 If $f(x)=a^{x}$ where $a>1$, then the inverse of the function is

15 What is the inverse of $f(x)=x^{3}-2$?

16 On average, college seniors graduating in 2012 could compute their growing student loan debt using the function $D(t)=29,400(1.068)^{t}$, where t is time in years. Which expression is equivalent to $29,400(1.068)^{t}$ and could be used by students to identify an approximate daily interest rate on their loans?

17 Given $c(m)=m^{3}-2 m^{2}+4 m-8$, the solution of $c(m)=0$ is

Name: \qquad

18 What is the inverse of $f(x)=-6(x-2)$?

19 The completely factored form of $n^{4}-9 n^{2}+4 n^{3}-36 n-12 n^{2}+108$ is

20 The function $f(x)=a \cos b x+c$ is plotted on the graph shown below.

What are the values of a, b, and c ?

21 The height above ground for a person riding a Ferris wheel after t seconds is modeled by $h(t)=150 \sin \left(\frac{\pi}{45} t+67.5\right)+160$ feet. How many seconds does it take to go from the bottom of the wheel to the top of the wheel?

22 Brian deposited 1 cent into an empty non-interest bearing bank account on the first day of the month. He then additionally deposited 3 cents on the second day, 9 cents on the third day, and 27 cents on the fourth day. What would be the total amount of money in the account at the end of the 20th day if the pattern continued?
\qquad

23 The populations of two small towns at the beginning of 2018 and their annual population growth rate are shown in the table below.

Town	Population	Annual Population Growth Rate
Jonesville	1240	6% increase
Williamstown	890	11% increase

Assuming the trend continues, approximately how many years after the beginning of 2018 will it take for the populations to be equal?

24 Perry invested in property that cost him $\$ 1500$. Five years later it was worth $\$ 3000$, and 10 years from his original purchase, it was worth $\$ 6000$. Assuming the growth rate remains the same, which type of function could he create to find the value of his investment 30 years from his original purchase?

25 Stephanie found that the number of white-winged cross bills in an area can be represented by the formula $C=550(1.08)^{t}$, where t represents the number of years since 2010. Which equation correctly represents the number of white-winged cross bills in terms of the monthly rate of population growth?

26 Where i is the imaginary unit, the expression $(x+3 i)^{2}-(2 x-3 i)^{2}$ is equivalent to

27
Given $f(x)=\frac{1}{2} x+8$, which equation represents the inverse, $g(x)$?

28 If $f(x)=\log _{3} x$ and $g(x)$ is the image of $f(x)$ after a translation five units to the left, which equation represents $g(x)$?

29 There are 440 students at Thomas Paine High School enrolled in U.S. History. On the April report card, the students' grades are approximately normally distributed with a mean of 79 and a standard deviation of 7. Students who earn a grade less than or equal to 64.9 must attend summer school. The number of students who must attend summer school for U.S. History is closest to

30 The graph of $y=\log _{2} x$ is translated to the right 1 unit and down 1 unit. The coordinates of the x-intercept of the translated graph are

31 The terminal side of θ, an angle in standard position, intersects the unit circle at $P\left(-\frac{1}{3},-\frac{\sqrt{8}}{3}\right)$.
What is the value of $\sec \theta$?

32 The profit function, $p(x)$, for a company is the cost function, $c(x)$, subtracted from the revenue function, $r(x)$. The profit function for the Acme Corporation is $p(x)=-0.5 x^{2}+250 x-300$ and the revenue function is $r(x)=-0.3 x^{2}+150 x$. The cost function for the Acme Corporation is

Algebra II Regents Bimodal Worksheet \# 4 www.jmap.org

33 The graph below represents national and New York State average gas prices.

If New York State's gas prices are modeled by $G(x)$ and $C>0$, which expression best approximates the national average x months from August 2014?

34 When factoring to reveal the roots of the equation $x^{3}+2 x^{2}-9 x-18=0$, which equations can be used?
I. $x^{2}(x+2)-9(x+2)=0$
II. $x\left(x^{2}-9\right)+2\left(x^{2}-9\right)=0$
III. $(x-2)\left(x^{2}-9\right)=0$

35 The expression $\frac{9 x^{2}-2}{3 x+1}$ is equivalent to

36 If $\left(a^{3}+27\right)=(a+3)\left(a^{2}+m a+9\right)$, then m equals

37 If $p(x)=2 \ln (x)-1$ and $m(x)=\ln (x+6)$, then what is the solution for $p(x)=m(x)$?

Name: \qquad

38 The roots of the equation $3 x^{2}+2 x=-7$ are

39 Judith puts \$5000 into an investment account with interest compounded continuously. Which approximate annual rate is needed for the account to grow to $\$ 9110$ after 30 years?

40 The function $N(t)=100 e^{-0.023 t}$ models the number of grams in a sample of cesium-137 that remain after t years. On which interval is the sample's average rate of decay the fastest?

41 The depth of the water at a marker 20 feet from the shore in a bay is depicted in the graph below.

If the depth, d, is measured in feet and time, t, is measured in hours since midnight, what is an equation for the depth of the water at the marker?

42 The value(s) of x that satisfy
$\sqrt{x^{2}-4 x-5}=2 x-10$ are
\qquad

43 After Roger's surgery, his doctor administered pain medication in the following amounts in milligrams over four days.

Day (n)	1	2	3	4
Dosage (m)	2000	1680	1411.2	1185.4

How can this sequence best be modeled recursively?

44 For $x>0$, which expression is equivalent to $\frac{\sqrt[3]{x^{2}} \cdot \sqrt{x^{5}}}{\sqrt[6]{x}}$?

49 What is the solution set of the equation
$\frac{2}{x}-\frac{3 x}{x+3}=\frac{x}{x+3}$?

50 A sketch of $r(x)$ is shown below.
45 How many solutions exist for
$\frac{1}{1-x^{2}}=-|3 x-2|+5$?

46 A fast-food restaurant analyzes data to better serve its customers. After its analysis, it discovers that the events D, that a customer uses the drive-thru, and F, that a customer orders French fries, are independent. The following data are given in a report:

$$
\begin{aligned}
P(F) & =0.8 \\
P(F \cap D) & =0.456
\end{aligned}
$$

Given this information, $P(F \mid D)$ is

47 Written in simplest form, $\frac{c^{2}-d^{2}}{d^{2}+c d-2 c^{2}}$ where $c \neq d$, is equivalent to

48 What is the solution when the equation $w x^{2}+w=0$ is solved for x, where w is a positive integer?

An equation for $r(x)$ could be

51 For which values of x, rounded to the nearest hundredth, will $\left|x^{2}-9\right|-3=\log _{3} x$?

52 After examining the functions $f(x)=\ln (x+2)$ and $g(x)=e^{x-1}$ over the interval $(-2,3]$, Lexi determined that the correct number of solutions to the equation $f(x)=g(x)$ is
\qquad

53 Sodium iodide-131, used to treat certain medical conditions, has a half-life of 1.8 hours. The data table below shows the amount of sodium iodide-131, rounded to the nearest thousandth, as the dose fades over time.

Number of Half Lives	1	2	3	4	5
Amount of Sodium Iodide-131	139.000	69.500	34.750	17.375	8.688

What approximate amount of sodium iodide-131 will remain in the body after 18 hours?

54 Julia deposits \$2000 into a savings account that earns 4% interest per year. The exponential function that models this savings account is $y=2000(1.04)^{t}$, where t is the time in years. Which equation correctly represents the amount of money in her savings account in terms of the monthly growth rate?

55 When a ball bounces, the heights of consecutive bounces form a geometric sequence. The height of the first bounce is 121 centimeters and the height of the third bounce is 64 centimeters. To the nearest centimeter, what is the height of the fifth bounce?

56 The solutions to $x+3-\frac{4}{x-1}=5$ are

57 Kelly-Ann has \$20,000 to invest. She puts half of the money into an account that grows at an annual rate of 0.9% compounded monthly. At the same time, she puts the other half of the money into an account that grows continuously at an annual rate of 0.8%. Which function represents the value of Kelly-Ann's investments after t years?

58 For the system shown below, what is the value of z ?

$$
\begin{gathered}
y=-2 x+14 \\
3 x-4 z=2 \\
3 x-y=16
\end{gathered}
$$

59 Camryn puts $\$ 400$ into a savings account that earns 6% annually. The amount in her account can be modeled by $C(t)=400(1.06)^{t}$ where t is the time in years. Which expression best approximates the amount of money in her account using a weekly growth rate?

60 What is the equation of the directrix for the parabola $-8(y-3)=(x+4)^{2}$?

61 If $\$ 5000$ is put into a savings account that pays 3.5% interest compounded monthly, how much money, to the nearest ten cents, would be in that account after 6 years, assuming no money was added or withdrawn?

62 If $x-1$ is a factor of $x^{3}-k x^{2}+2 x$, what is the value of k ?
\qquad

63 A group of students was trying to determine the proportion of candies in a bag that are blue. The company claims that 24% of candies in bags are blue. A simulation was run 100 times with a sample size of 50 , based on the premise that 24% of the candies are blue. The approximately normal results of the simulation are shown in the dot plot below.

The simulation results in a mean of 0.254 and a standard deviation of 0.060 . Based on this simulation, what is a plausible interval containing the middle 95% of the data?

64 A number, minus twenty times its reciprocal, equals eight. The number is

65 What is the solution set of the equation $\frac{2}{3 x+1}=\frac{1}{x}-\frac{6 x}{3 x+1}$?

66 If $p(x)=2 x^{3}-3 x+5$, what is the remainder of $p(x) \div(x-5)$?

67 Which expression is equivalent to $(2 x-i)^{2}-(2 x-i)(2 x+3 i)$ where i is the imaginary unit and x is a real number?

68 What is the inverse of the function $y=4 x+5$?

69 The solution set for the equation $b=\sqrt{2 b^{2}-64}$ is

70 Which expression(s) are equivalent to $\frac{x^{2}-4 x}{2 x}$, where $x \neq 0$?

$$
\begin{array}{lll}
\text { I. } \frac{x}{2}-2 & \text { II. } \frac{x-4}{2} & \text { III. } \frac{x-1}{2}-\frac{3}{2}
\end{array}
$$

71 What is the solution set for x in the equation below?

$$
\sqrt{x+1}-1=x
$$

72 The hours of daylight, y, in Utica in days, x, from January 1, 2013 can be modeled by the equation $y=3.06 \sin (0.017 x-1.40)+12.23$. How many hours of daylight, to the nearest tenth, does this model predict for February 14, 2013?

73 On a given school day, the probability that Nick oversleeps is 48% and the probability he has a pop quiz is 25%. Assuming these two events are independent, what is the probability that Nick oversleeps and has a pop quiz on the same day?
\qquad www.jmap.org

74 Selected values for the functions f and g are shown in the tables below.

\mathbf{x}	$\mathbf{f (x)}$				
-3.12	-4.88				
0	-6				
1.23	-4.77				
8.52	2.53				
9.01	3.01	\quad	-2.01	$\mathbf{g}(\mathbf{x})$	
:---:	:---:	:---:			
	0	0.01			
	8.52	2.53			
13.11	3.01				
	16.52	3.29			

A solution to the equation $f(x)=g(x)$ is

75 The graph of $y=f(x)$ is shown below.

Which expression defines $f(x)$?

76 For positive values of x, which expression is equivalent to $\sqrt{16 x^{2}} \cdot x^{\frac{2}{3}}+\sqrt[3]{8 x^{5}}$

77 If $a e^{b t}=c$, where a, b, and c are positive, then t equals

78 What is the solution set of the equation $\frac{10}{x^{2}-2 x}+\frac{4}{x}=\frac{5}{x-2}$?

79 Which equation represents a parabola with a focus of $(-2,5)$ and a directrix of $y=9$?

80 The solution of $87 e^{0.3 x}=5918$, to the nearest thousandth, is

81 The scores on a mathematics college-entry exam are normally distributed with a mean of 68 and standard deviation 7.2. Students scoring higher than one standard deviation above the mean will not be enrolled in the mathematics tutoring program. How many of the 750 incoming students can be expected to be enrolled in the tutoring program?

82 A study of black bears in the Adirondacks reveals that their population can be represented by the function $P(t)=3500(1.025)^{t}$, where t is the number of years since the study began. Which function is correctly rewritten to reveal the monthly growth rate of the black bear population?

83 What is the quotient when $10 x^{3}-3 x^{2}-7 x+3$ is divided by $2 x-1$?

Algebra II Regents Bimodal Worksheet \# 9
www.jmap.org
84 Which statement(s) are true for all real numbers?

$$
\begin{array}{ll}
\text { I } & (x-y)^{2}=x^{2}+y^{2} \\
\text { II } & (x+y)^{3}=x^{3}+3 x y+y^{3}
\end{array}
$$

85 A 4th degree polynomial has zeros $-5,3, i$, and $-i$. Which graph could represent the function defined by this polynomial?

86 Data for the students enrolled in a local high school are shown in the Venn diagram below.

If a student from the high school is selected at random, what is the probability that the student is a sophomore given that the student is enrolled in Algebra II?

87 The average depreciation rate of a new boat is approximately 8% per year. If a new boat is purchased at a price of $\$ 75,000$, which model is a recursive formula representing the value of the boat n years after it was purchased?

88 The function below models the average price of gas in a small town since January 1st.
$G(t)=-0.0049 t^{4}+0.0923 t^{3}-0.56 t^{2}+1.166 t+3.23$, where $0 \leq t \leq 10$.
If $G(t)$ is the average price of gas in dollars and t represents the number of months since January 1st, the absolute maximum $G(t)$ reaches over the given domain is about

Name: \qquad

89 Evan graphed a cubic function, $f(x)=a x^{3}+b x^{2}+c x+d$, and determined the roots of $f(x)$ to be ± 1 and 2 . What is the value of b, if $a=1$?

90 The parabola described by the equation $y=\frac{1}{12}(x-2)^{2}+2$ has the directrix at $y=-1$. The focus of the parabola is

91 The half-life of iodine-131 is 8 days. The percent of the isotope left in the body d days after being introduced is $I=100\left(\frac{1}{2}\right)^{\frac{d}{8}}$. When this equation is written in terms of the number e, the base of the natural logarithm, it is equivalent to $I=100 e^{k d}$. What is the approximate value of the constant, k ?

92 If $\cos \theta=-\frac{3}{4}$ and θ is in Quadrant III, then $\sin \theta$ is equivalent to

93 The expression $6-(3 x-2 i)^{2}$ is equivalent to

94 At her job, Pat earns $\$ 25,000$ the first year and receives a raise of $\$ 1000$ each year. The explicit formula for the nth term of this sequence is $a_{n}=25,000+(n-1) 1000$. Which rule best represents the equivalent recursive formula?

95 Which equation represents the equation of the parabola with focus $(-3,3)$ and directrix $y=7$?
\qquad

96 The set of data in the table below shows the results of a survey on the number of messages that people of different ages text on their cell phones each month.

Text Messages per Month			
Age Group	$0-10$	$11-50$	Over 50
$15-18$	4	37	68
$19-22$	6	25	87
$23-60$	25	47	157

If a person from this survey is selected at random, what is the probability that the person texts over 50 messages per month given that the person is between the ages of 23 and 60 ?

97 There are 400 students in the senior class at Oak Creek High School. All of these students took the SAT. The distribution of their SAT scores is approximately normal. The number of students who scored within 2 standard deviations of the mean is approximately

98 What is the inverse of $f(x)=\frac{x}{x+2}$, where $x \neq-2$?

99 The temperature, in degrees Fahrenheit, in Times Square during a day in August can be predicted by the function $T(x)=8 \sin (0.3 x-3)+74$, where x is the number of hours after midnight. According to this model, the predicted temperature, to the nearest degree Fahrenheit, at 7 P.M. is

100 A manufacturing plant produces two different-sized containers of peanuts. One container weighs x ounces and the other weighs y pounds. If a gift set can hold one of each size container, which expression represents the number of gift sets needed to hold 124 ounces?

101 When the expression $(x+2)^{2}+4(x+2)+3$ is rewritten as the product of two binomials, the result is

102 If $A=-3+5 i, B=4-2 i$, and $C=1+6 i$, where i is the imaginary unit, then $A-B C$ equals

103 A candidate for political office commissioned a poll. His staff received responses from 900 likely voters and 55% of them said they would vote for the candidate. The staff then conducted a simulation of 1000 more polls of 900 voters, assuming that 55% of voters would vote for their candidate. The output of the simulation is shown in the diagram below.

Given this output, and assuming a 95\% confidence level, the margin of error for the poll is closest to

Algebra II Regents Bimodal Worksheet \# 11 www.jmap.org

Algebra II Regents Bimodal Worksheets

104
What is the solution set of the equation

$$
\frac{3 x+25}{x+7}-5=\frac{3}{x} ?
$$

Relative to the graph of $y=3 \sin x$, what is the shift of the graph of $y=3 \sin \left(x+\frac{\pi}{3}\right)$?

106 Monthly mortgage payments can be found using the formula below, where M is the monthly payment, P is the amount borrowed, r is the annual interest rate, and n is the total number of monthly payments.

$$
M=\frac{P\left(\frac{r}{12}\right)\left(1+\frac{r}{12}\right)^{n}}{\left(1+\frac{r}{12}\right)^{n}-1}
$$

If Adam takes out a 15-year mortgage, borrowing $\$ 240,000$ at an annual interest rate of 4.5%, his monthly payment will be

107
A rush-hour commuter train has arrived on time 64 of its first 80 days. As arrivals continue, which equation can be used to find x, the number of consecutive days that the train must arrive on schedule to raise its on-time performance rate to 90\%?

108
The solution set for the equation $\sqrt{56-x}=x$ is

Which expression is equivalent to
$(x+2)^{2}-5(x+2)+6 ?$

110 The expression $\frac{x^{3}+2 x^{2}+x+6}{x+2}$ is equivalent to

111 The expression $6 x i^{3}(-4 x i+5)$ is equivalent to

112 In a group of 40 people, 20 have brown hair, 22 have blue eyes, and 15 have both brown hair and blue eyes. How many people have neither brown hair nor blue eyes?

113 The solution set for the equation
$\sqrt{x+14}-\sqrt{2 x+5}=1$ is

114 The Ferris wheel at the landmark Navy Pier in Chicago takes 7 minutes to make one full rotation. The height, H, in feet, above the ground of one of the six-person cars can be modeled by $H(t)=70 \sin \left(\frac{2 \pi}{7}(t-1.75)\right)+80$, where t is time, in minutes. Using $H(t)$ for one full rotation, this car's minimum height, in feet, is

115 If $f(t)=50(.5)^{\frac{t}{5715}}$ represents a mass, in grams, of carbon-14 remaining after t years, which statement(s) must be true?
I. The mass of the carbon-14 is decreasing by half each year.
II. The mass of the original sample is 50 g .

116 The sequence $a_{1}=6, a_{n}=3 a_{n-1}$ can also be written as

Algebra II Regents Bimodal Worksheet \# 12 www.jmap.org

117 Consider the system of equations below?

$$
\begin{aligned}
x+2 y-z & =1 \\
-x-3 y+2 z & =0 \\
2 x-4 y+z & =10
\end{aligned}
$$

What is the solution to the given system of equations?

118 A manufacturing company has developed a cost model, $C(x)=0.15 x^{3}+0.01 x^{2}+2 x+120$, where x is the number of items sold, in thousands. The sales price can be modeled by $S(x)=30-0.01 x$. Therefore, revenue is modeled by $R(x)=x \bullet S(x)$. The company's profit, $P(x)=R(x)-C(x)$, could be modeled by

119 For $x \neq 0$, which expressions are equivalent to one divided by the sixth root of x ?

$$
\text { I. } \frac{\sqrt[6]{x}}{\sqrt[3]{x}} \text { II. } \frac{x^{\frac{1}{6}}}{x^{\frac{1}{3}}} \text { III. } x^{\frac{-1}{6}}
$$

120 Which equation has $1-i$ as a solution?

121 For all real values of x, if $f(x)=(x-3)^{2}$ and $g(x)=(x+3)^{2}$, what is $f(x)-g(x)$?

122 Mallory wants to buy a new window air conditioning unit. The cost for the unit is $\$ 329.99$. If she plans to run the unit three months out of the year for an annual operating cost of $\$ 108.78$, which function models the cost per year over the lifetime of the unit, $C(n)$, in terms of the number of years, n, that she owns the air conditioner.

Name: \qquad

123 Julie averaged 85 on the first three tests of the semester in her mathematics class. If she scores 93 on each of the remaining tests, her average will be 90 . Which equation could be used to determine how many tests, T, are left in the semester?

124 Given x and y are positive, which expressions are equivalent to $\frac{x^{3}}{y}$?
I. $\left(\frac{y}{x^{3}}\right)^{-1}$ II. $\sqrt[3]{x^{9}}\left(y^{-1}\right)$ III. $\frac{x^{64} \sqrt{y^{8}}}{x^{3} y^{3}}$

125 The function $f(x)=\frac{x-3}{x^{2}+2 x-8}$ is undefined when x equals

126 To the nearest tenth, the solution to the equation $4300 e^{0.07 x}-123=5000$ is

127 A student studying public policy created a model for the population of Detroit, where the population decreased 25% over a decade. He used the model $P=714(0.75)^{d}$, where P is the population, in thousands, d decades after 2010. Another student, Suzanne, wants to use a model that would predict the population after y years. Suzanne's model is best represented by

128 A ball is dropped from a height of 32 feet. It bounces and rebounds 80% of the height from which it was falling. What is the total downward distance, in feet, the ball traveled up to the 12th bounce?

Algebra II Regents Bimodal Worksheet \# 13 www.jmap.org

129 What is the value of $\tan \theta$ when $\sin \theta=\frac{2}{5}$ and θ is in quadrant II?

130 A population is normally distributed with a mean of 23 and a standard deviation of 1.2. The percentage of the population that falls below 21 , to the nearest hundredth, is

131 Marissa and Sydney are trying to determine if there is enough interest in their school to put on a senior musical. They randomly surveyed 100 members of the senior class and 43% of them said they would be interested in being in a senior musical. Marissa and Sydney then conducted a simulation of 500 more surveys, each of 100 seniors, assuming that 43% of the senior class would be interested in being in the musical. The output of the simulation is shown below.

The standard deviation of the simulation is closest to

132 The voltage used by most households can be modeled by a sine function. The maximum voltage is 120 volts, and there are 60 cycles every second. Which equation best represents the value of the voltage as it flows through the electric wires, where t is time in seconds?

Name: \qquad

133 The focal length, F, of a camera's lens is related to the distance of the object from the lens, J, and the distance to the image area in the camera, W, by the formula below.

$$
\frac{1}{J}+\frac{1}{W}=\frac{1}{F}
$$

When this equation is solved for J in terms of F and W, J equals

134 The value of a new car depreciates over time. Greg purchased a new car in June 2011. The value, V, of his car after t years can be modeled by the equation $\log _{0.8}\left(\frac{V}{17000}\right)=t$. What is the average decreasing rate of change per year of the value of the car from June 2012 to June 2014, to the nearest ten dollars per year?

135 A local university has a current enrollment of 12,000 students. The enrollment is increasing continuously at a rate of 2.5% each year. Which logarithm is equal to the number of years it will take for the population to increase to 15,000 students?

136 Which expression is equivalent to $\frac{x^{3}-2}{x-2}$?

137 The heights of the students at Central High School can be modeled by a normal distribution with a mean of 68.1 and a standard deviation of 3.4 inches. According to this model, approximately what percent of the students would have a height less than 60 inches or greater than 75 inches?
\qquad

138 The loudness of sound is measured in units called decibels (dB). These units are measured by first assigning an intensity I_{0} to a very soft sound that is called the threshold sound. The sound to be measured is assigned an intensity, I, and the decibel rating, d, of this sound is found using $d=10 \log \frac{I}{I_{0}}$. The threshold sound audible to the average person is $1.0 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$ (watts per square meter). Consider the following sound level classifications:

Moderate	$45-69 \mathrm{~dB}$
Loud	$70-89 \mathrm{~dB}$
Very loud	$90-109 \mathrm{~dB}$
Deafening	$>110 \mathrm{~dB}$

How would a sound with intensity $6.3 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2}$ be classified?

139 An angle, θ, is rotated counterclockwise on the unit circle, with its terminal side in the second quadrant, as shown in the diagram below.

Which value represents the radian measure of angle θ ?

140 The solution to the equation $4 x^{2}+98=0$ is

141 The element Americium has a half-life of 25 minutes. Given an initial amount, A_{0}, which expression could be used to determine the amount of Americium remaining after t minutes?

142 Which equation represents a parabola with the focus at $(0,-1)$ and the directrix of $y=1$?

143 What is the inverse of the function $y=\log _{3} x$?

144 Luminescence is the emission of light that is not caused by heat. A luminescent substance decays according to the function below.

$$
I=I_{0} e^{3\left(-\frac{t}{0.6}\right)}
$$

This function can be best approximated by

145 The expression $\frac{4 x^{3}+5 x+10}{2 x+3}$ is equivalent to

146 Which graph has the following characteristics?

- three real zeros
- as $x \rightarrow-\infty, f(x) \rightarrow-\infty$
- as $x \rightarrow \infty, f(x) \rightarrow \infty$

Algebra II Regents Bimodal Worksheet \# 15 www.jmap.org

147 A cyclist pedals a bike at a rate of 60 revolutions per minute. The height, h, of a pedal at time t, in seconds, is plotted below.

The graph can be modeled by the function $h(t)=5 \sin (k t)$, where k is equal to

The function $N(x)=90(0.86)^{x}+69$ can be used to predict the temperature of a cup of hot chocolate in degrees Fahrenheit after x minutes. What is the approximate average rate of change of the temperature of the hot chocolate, in degrees per minute, over the interval $[0,6]$?

149 A parabola has a directrix of $y=3$ and a vertex at $(2,1)$. Which ordered pair is the focus of the parabola?

The roots of the equation $x^{2}+2 x+5=0$ are

151 What is the total number of points of intersection of the graphs of the equations $y=e^{x}$ and $x y=20$?

Name: \qquad

152 Consider the function $y=h(x)$, defined by the graph below.

Which equation could be used to represent the graph shown below?

153 What is the solution to $8\left(2^{x+3}\right)=48$?

154 Susan won \$2,000 and invested it into an account with an annual interest rate of 3.2%. If her investment were compounded monthly, which expression best represents the value of her investment after t years?

155 What is the solution set of $x=\sqrt{3 x+40}$?

Algebra II Regents Bimodal Worksheet \# 16
www.jmap.org
156 Given that $\sin ^{2} \theta+\cos ^{2} \theta=1$ and $\sin \theta=-\frac{\sqrt{2}}{5}$, what is a possible value of $\cos \theta$?

157 Which expression is equivalent to $(3 k-2 i)^{2}$, where i is the imaginary unit?

158 Expressed in simplest $a+b i$ form, $(7-3 i)+(x-2 i)^{2}-\left(4 i+2 x^{2}\right)$ is

159 Written in simplest form, the fraction $\frac{x^{3}-9 x}{9-x^{2}}$, where $x \neq \pm 3$, is equivalent to

160 Which equation represents a parabola with a focus of $(0,4)$ and a directrix of $y=2$?

161 What is the solution set of the equation $\frac{x+2}{x}+\frac{x}{3}=\frac{2 x^{2}+6}{3 x}$?

162 Which diagram represents an angle, α, measuring $\frac{13 \pi}{20}$ radians drawn in standard position, and its reference angle, θ ?

163 If the focus of a parabola is $(0,6)$ and the directrix is $y=4$, what is an equation for the parabola?

Name: \qquad

165 The Rickerts decided to set up an account for their daughter to pay for her college education. The day their daughter was born, they deposited $\$ 1000$ in an account that pays 1.8% compounded annually. Beginning with her first birthday, they deposit an additional $\$ 750$ into the account on each of her birthdays. Which expression correctly represents the amount of money in the account n years after their daughter was born?

166 A parabola has its focus at $(1,2)$ and its directrix is $y=-2$. The equation of this parabola could be

167 Given $x \neq-3$, the expression $\frac{2 x^{3}+7 x^{2}-3 x-25}{x+3}$ is equivalent to

168 A recursive formula for the sequence $40,30,22.5, \ldots$ is

169 How many real solutions exist for the system of equations below?

$$
\begin{aligned}
& y=\frac{1}{4} x-8 \\
& y=\frac{1}{2} x^{2}+2 x
\end{aligned}
$$

170 If a solution of $2(2 x-1)=5 x^{2}$ is expressed in simplest $a+b i$ form, the value of b is

171 If $\sin ^{2}\left(32^{\circ}\right)+\cos ^{2}(M)=1$, then M equals

172 The solution to the equation $18 x^{2}-24 x+87=0$ is

Algebra II Regents Bimodal Worksheet \# 17

 www.jmap.orgThe graph of the function $p(x)$ is sketched below.

Which equation could represent $p(x)$?

174
What is the solution set of the equation $\frac{4}{k^{2}-8 k+12}=\frac{k}{k-2}+\frac{1}{k-6}$?

175
The heights of women in the United States are normally distributed with a mean of 64 inches and a standard deviation of 2.75 inches. The percent of women whose heights are between 64 and 69.5 inches, to the nearest whole percent, is

176 Which expression is equivalent to $(x+y i)\left(x^{2}-x y i-y^{2}\right)$, where i is the imaginary unit?

177 The zeros for $f(x)=x^{4}-4 x^{3}-9 x^{2}+36 x$ are

178 Given that i is the imaginary unit, the expression $(x-2 i)^{2}$ is equivalent to

Name: \qquad

179 The inverse of $f(x)=-6 x+\frac{1}{2}$ is

180 According to a pricing website, Indroid phones lose 58% of their cash value over 1.5 years. Which expression can be used to estimate the value of a $\$ 300$ Indroid phone in 1.5 years?

181 What is the completely factored form of $k^{4}-4 k^{2}+8 k^{3}-32 k+12 k^{2}-48 ?$

182 What is the solution to the system of equations $y=3 x-2$ and $y=g(x)$ where $g(x)$ is defined by the function below?

183 Which graph represents a cosine function with no horizontal shift, an amplitude of 2 , and a period of $\frac{2 \pi}{3}$?

Algebra II Regents Bimodal Worksheet \# 18 www.jmap.org

184 lridium-192 is an isotope of iridium and has a half-life of 73.83 days. If a laboratory experiment begins with 100 grams of Iridium-192, the number of grams, A, of Iridium-192 present after t days
would be $A=100\left(\frac{1}{2}\right)^{\frac{t}{73.83}}$. Which equation approximates the amount of Iridium-192 present after t days?

185

186

188 The expression $\frac{6 x^{3}+17 x^{2}+10 x+2}{2 x+3}$ equals

189 The lifespan of a 60-watt lightbulb produced by a company is normally distributed with a mean of 1450 hours and a standard deviation of 8.5 hours. If a 60 -watt lightbulb produced by this company is selected at random, what is the probability that its lifespan will be between 1440 and 1465 hours?

190
Which diagram shows an angle rotation of 1 radian on the unit circle?

Name: \qquad

191 The solutions to the equation $-\frac{1}{2} x^{2}=-6 x+20$ are

192 The function $f(x)=2^{-0.25 x} \bullet \sin \left(\frac{\pi}{2} x\right)$ represents a damped sound wave function. What is the average rate of change for this function on the interval $[-7,7]$, to the nearest hundredth?

193 The probability that Gary and Jane have a child with blue eyes is 0.25 , and the probability that they have a child with blond hair is 0.5 . The probability that they have a child with both blue eyes and blond hair is 0.125 . Given this information, the events blue eyes and blond hair are

I: dependent
II: independent
III: mutually exclusive

194 The expression $\frac{x^{2}+12}{x^{2}+3}$ can be rewritten as

195 A recursive formula for the sequence $64,48,36, \ldots$ is

196 Consider the following patterns:
I. $16,-12,9,-6.75, \ldots$
II. $1,4,9,16, \ldots$
III. $6,18,30,42, \ldots$
IV. $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots$

Which pattern is geometric?

197 The expression $\frac{x^{2}+6}{x^{2}+4}$ is equivalent to

Algebra II Regents Bimodal Worksheet \# 19 www.jmap.org

198 The sum of the first 20 terms of the series $-2+6-18+54-\ldots$ is

199 What is the solution, if any, of the equation $\frac{2}{x+3}-\frac{3}{4-x}=\frac{2 x-2}{x^{2}-x-12}$?

200 The amount of a substance, $A(t)$, that remains after t days can be given by the equation
$A(t)=A_{0}(0.5)^{\frac{t}{0.0803}}$, where A_{0} represents the initial amount of the substance. An equivalent form of this equation is

201 Stone Manufacturing has developed a cost model, $C(x)=0.18 x^{3}+0.02 x^{2}+4 x+180$, where x is the number of sprockets sold, in thousands. The sales price can be modeled by $S(x)=95.4-6 x$ and the company's revenue by $R(x)=x \bullet S(x)$. The company's profits, $R(x)-C(x)$, could be modeled by

202
Which value, to the nearest tenth, is the smallest solution of $f(x)=g(x)$ if $f(x)=3 \sin \left(\frac{1}{2} x\right)-1$ and $g(x)=x^{3}-2 x+1$?

203 Chet has $\$ 1200$ invested in a bank account modeled by the function $P(n)=1200(1.002)^{n}$, where $P(n)$ is the value of his account, in dollars, after n months. Chet's debt is modeled by the function $Q(n)=100 n$, where $Q(n)$ is the value of debt, in dollars, after n months. After n months, which function represents Chet's net worth, $R(n)$?

Name: \qquad

204 Which equation is represented by the graph shown below?

205 When factored completely, $m^{5}+m^{3}-6 m$ is equivalent to

206 The expression $3 i\left(a i-6 i^{2}\right)$ is equivalent to

207 The expression $\frac{x^{4}-5 x^{2}+4 x+14}{x+2}$ is equivalent to

208 Pedro and Bobby each own an ant farm. Pedro starts with 100 ants and says his farm is growing exponentially at a rate of 15% per month. Bobby starts with 350 ants and says his farm is steadily decreasing by 5 ants per month. Assuming both boys are accurate in describing the population of their ant farms, after how many months will they both have approximately the same number of ants?

209 Last year, the total revenue for Home Style, a national restaurant chain, increased 5.25% over the previous year. If this trend were to continue, which expression could the company's chief financial officer use to approximate their monthly percent increase in revenue? [Let m represent months.]
\qquad

210 Betty conducted a survey of her class to see if they like pizza. She gathered 200 responses and 65% of the voters said they did like pizza. Betty then ran a simulation of 400 more surveys, each with 200 responses, assuming that 65% of the voters would like pizza. The output of the simulation is shown below.

Considering the middle 95% of the data, what is the margin of error for the simulation?

How many equations below are identities?

- $x^{2}+y^{2}=\left(x^{2}-y^{2}\right)+(2 x y)^{2}$
- $x^{3}+y^{3}=(x-y)+\left(x^{2}-x y+y^{2}\right)$
- $x^{4}+y^{4}=(x-y)(x-y)\left(x^{2}+y^{2}\right)$

212 Audra is interested in studying the number of students entering kindergarten in the Ahlville Central School District over the next several years. Using data dating back to 2015, she determines that the number of kindergarteners is decreasing at an exponential rate. She creates a formula to model this situation $y=a(b)^{x}$, where x is the number of years since 2015 and y is the number of students entering kindergarten. If there were 105 students entering kindergarten in Ahlville in 2015, which statement about Audra's formula is true?

213 If $f(x)=\frac{1}{2} x+2$, then the inverse function is

214 The function $p(t)=110 e^{0.03922 t}$ models the population of a city, in millions, t years after 2010. As of today, consider the following two statements:
I. The current population is 110 million.
II. The population increases continuously by approximately 3.9% per year.
This model supports

215 The expression $\left(a \sqrt[3]{2 b^{2}}\right)\left(\sqrt[3]{4 a^{2} b}\right)$ is equivalent to

216 For all values of x for which the expression is defined, $\frac{x^{2}+3 x}{x^{2}+5 x+6}$ is equivalent to

217 A parabola that has a vertex at $(2,1)$ and a focus of $(2,-3)$ has an equation of

Algebra II Regents Bimodal Worksheet \# 21 www.jmap.org

218 The graph of $p(x)$ is shown below.

What is the remainder when $p(x)$ is divided by $x+4$?

219 Which expression is equivalent to $\frac{2 x^{3}+2 x-7}{2 x+4}$?

220 The equation below can be used to model the height of a tide in feet, $H(t)$, on a beach at t hours.

$$
H(t)=4.8 \sin \left(\frac{\pi}{6}(t+3)\right)+5.1
$$

Using this function, the amplitude of the tide is

221 If θ is an angle in standard position whose terminal side passes through the point $(-2,-3)$, what is the numerical value of $\tan \theta$?

222 A recursive formula for the sequence $18,9,4.5, \ldots$ is

223 A retailer advertises that items will be discounted by 10% every Monday until they are sold. In how many weeks will an item costing $\$ 50$ first be sold for under half price?

224 A polynomial equation of degree three, $p(x)$, is used to model the volume of a rectangular box. The graph of $p(x)$ has x intercepts at $-2,10$, and 14 . Which statements regarding $p(x)$ could be true?
A. The equation of $p(x)=(x-2)(x+10)(x+14)$.
B. The equation of $p(x)=-(x+2)(x-10)(x-14)$.
C. The maximum volume occurs when $x=10$.
D. The maximum volume of the box is approximately 56.

225 Which expression is equivalent to $\frac{4 x^{3}+9 x-5}{2 x-1}$, where $x \neq \frac{1}{2}$?

226 A study conducted in 2004 in New York City found that 212 out of 1334 participants had hypertension. Kim ran a simulation of 100 studies based on these data. The output of the simulation is shown in the diagram below.

At a 95\% confidence level, the proportion of New York City residents with hypertension and the margin of error are closest to
\qquad

227
The table below shows the food preferences of sports fans whose favorite sport is football or baseball.
Favorite Food to Eat While Watching Sports

	Wings	Pizza	Hot Dogs
Football	14	20	6
Baseball	6	12	42

The probability that a fan prefers pizza given that the fan prefers football is

228 Given $f^{-1}(x)=-\frac{3}{4} x+2$, which equation represents $f(x)$?

229
What is the solution for the system of equations below?

$$
\begin{gathered}
x+y+z=2 \\
x-2 y-z=-4 \\
x-9 y+z=-18
\end{gathered}
$$

230 The solution set for the equation $\sqrt{3(x+6)}=x$ is

231 Mia has a student loan that is in deferment, meaning that she does not need to make payments right now. The balance of her loan account during her deferment can be represented by the function $f(x)=35,000(1.0325)^{x}$, where x is the number of years since the deferment began. If the bank decides to calculate her balance showing a monthly growth rate, an approximately equivalent function would be

When $g(x)=\frac{2}{x+2}$ and $h(x)=\log (x+1)+3$ are graphed on the same set of axes, which coordinates best approximate their point of intersection?

233 Which equation best represents the graph below?

234 The George family would like to borrow \$45,000 to purchase a new boat. They qualified for a loan with an annual interest rate of 6.75%. The monthly loan payment can be found using the formula below.

$$
\begin{gathered}
M=\frac{P\left(\frac{r}{12}\right)\left(1+\frac{r}{12}\right)^{n}}{\left(1+\frac{r}{12}\right)^{n}-1} \\
M=\text { monthly payment } \\
P=\text { amount borrowed } \\
r=\text { annual interest rate }
\end{gathered} n=\text { number of monthly payments }
$$

What is the monthly payment if they would like to pay off the loan in five years?

Algebra II Regents Bimodal Worksheet \# 23 www.jmap.org

235 A solution of the equation $2 x^{2}+3 x+2=0$ is

236 The roots of the equation $x^{2}-4 x=-13$ are

237 If $(6-k i)^{2}=27-36 i$, the value of k is

238 If $f(x)=\left(x^{2}+3 x+2\right)\left(x^{2}-4 x+3\right)$ and $g(x)=x^{2}-9$, then how many real solutions are there to the equation $f(x)=g(x)$?

239 A rabbit population doubles every 4 weeks. There are currently five rabbits in a restricted area. If t represents the time, in weeks, and $P(t)$ is the population of rabbits with respect to time, about how many rabbits will there be in 98 days?

240 Given $f(x)=x^{4}-x^{3}-6 x^{2}$, for what values of x will $f(x)>0$?

241 What are the zeros of $s(x)=x^{4}-9 x^{2}+3 x^{3}-27 x-10 x^{2}+90 ?$

242 A circle centered at the origin has a radius of 10 units. The terminal side of an angle, θ, intercepts the circle in Quadrant II at point C. The y-coordinate of point C is 8 . What is the value of $\cos \theta$?

243 Given $f(9)=-2$, which function can be used to generate the sequence $-8,-7.25,-6.5,-5.75, \ldots$?

Name: \qquad

244 If the terminal side of angle θ, in standard position, passes through point $(-4,3)$, what is the numerical value of $\sin \theta$?

245 The growth of a \$500 investment can be modeled by the function $P(t)=500(1.03)^{t}$, where t represents time in years. In terms of the monthly rate of growth, the value of the investment can be best approximated by

246 The average monthly temperature, $T(m)$, in degrees Fahrenheit, over a 12 month period, can be modeled by $T(m)=-23 \cos \left(\frac{\pi}{6} m\right)+56$, where m is in months. What is the range of temperatures, in degrees Fahrenheit, of this function?

247 If a, b, and c are all positive real numbers, which graph could represent the sketch of the graph of $p(x)=-a(x+b)\left(x^{2}-2 c x+c^{2}\right)$?

248 Given i is the imaginary unit, $(2-y i)^{2}$ in simplest form is

249 In 2013, approximately 1.6 million students took the Critical Reading portion of the SAT exam. The mean score, the modal score, and the standard deviation were calculated to be 496, 430, and 115, respectively. Which interval reflects 95% of the Critical Reading scores?

250 If $\cos A=\frac{\sqrt{5}}{3}$ and $\tan A<0$, what is the value of $\sin A$?
\qquad www.jmap.org

251
Consider the data in the table below.

	Right Handed	Left Handed
Male	87	13
Female	89	11

What is the probability that a randomly selected person is male given the person is left handed?

252
A popular celebrity tracks the number of people, in thousands, who have followed her on social media since January 1, 2015. A summary of the data she recorded is shown in the table below:

Number of Months Since January 2015	2	11	16	20	27	35	47	50	52
Number of Social Media Followers (thousands)	3.1	7.5	29.7	49.7	200.3	680.3	5200.3	8109.3	$12,107.1$

The celebrity uses an exponential regression equation to model the data. According to the model, about how many followers did she have on June 1, 2018?

253 The graph of a quadratic function is shown below.

When the graph of $x+y=4$ is drawn on the same axes, one solution to this system is

254 What are the zeros of $P(m)=\left(m^{2}-4\right)\left(m^{2}+1\right)$?

255 The heights of the 3300 students at Oceanview High School are approximately normally distributed with a mean of 65.5 inches and a standard deviation of 2.9 inches. The number of students at Oceanview who are between 64 and 68 inches tall is closest to

256 According to the USGS, an agency within the Department of Interior of the United States, the frog population in the U.S. is decreasing at the rate of 3.79% per year. A student created a model, $P=12,150(0.962)^{t}$, to estimate the population in a pond after t years. The student then created a model that would predict the population after d decades. This model is best represented by

Algebra II Regents Bimodal Worksheet \# 25 www.jmap.org

257
In a survey of people who recently bought a laptop, 45% said they were looking for a large screen, 31% said they were looking for a fast processor, and 58% said they wanted a large screen or a fast processor. If a survey respondent is selected at random, what is the probability that the respondent wanted both a large screen and a fast processor?

258 In the diagram of a unit circle below, point A, $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$, represents the point where the terminal side of θ intersects the unit circle.

What is $\mathrm{m} \angle \theta$?

259 The solution to the equation $5 e^{x+2}=7$ is

Mr. Farison gave his class the three mathematical rules shown below to either prove or disprove.
Which rules can be proved for all real numbers?
I $\quad(m+p)^{2}=m^{2}+2 m p+p^{2}$
II $\quad(x+y)^{3}=x^{3}+3 x y+y^{3}$
III $\quad\left(a^{2}+b^{2}\right)^{2}=\left(a^{2}-b^{2}\right)^{2}+(2 a b)^{2}$

Name: \qquad

261 Given the parent function $p(x)=\cos x$, which phrase best describes the transformation used to obtain the graph of $g(x)=\cos (x+a)-b$, if a and b are positive constants?

262 Which equation represents the set of points equidistant from line ℓ and point R shown on the graph below?

263 A study of the annual population of the red-winged blackbird in Ft. Mill, South Carolina, shows the population, $B(t)$, can be represented by the function $B(t)=750(1.16)^{t}$, where the t represents the number of years since the study began. In terms of the monthly rate of growth, the population of red-winged blackbirds can be best approximated by the function

264 The solution set of $\frac{x+3}{x-5}+\frac{6}{x+2}=\frac{6+10 x}{(x-5)(x+2)}$ is

265 Which equation represents a parabola with a focus of $(4,-3)$ and directrix of $y=1$?

Algebra II Regents Bimodal Worksheet \# 26 www.jmap.org

266 The completely factored form of $2 d^{4}+6 d^{3}-18 d^{2}-54 d$ is

267 To the nearest tenth, the value of x that satisfies $2^{x}=-2 x+11$ is

268 The population of Jamesburg for the years 2010-2013, respectively, was reported as follows: 250,000 250,937 251,878 252,822
How can this sequence be recursively modeled?

269 Given the inverse function $f^{-1}(x)=\frac{2}{3} x+\frac{1}{6}$, which function represents $f(x)$?

270 A payday loan company makes loans between $\$ 100$ and $\$ 1000$ available to customers. Every 14 days, customers are charged 30% interest with compounding. In 2013, Remi took out a $\$ 300$ payday loan. Which expression can be used to calculate the amount she would owe, in dollars, after one year if she did not make payments?

271 For which approximate value(s) of x will $\log (x+5)=|x-1|-3$?

272 A function is defined as $a_{n}=a_{n-1}+\log _{n+1}(n-1)$, where $a_{1}=8$. What is the value of a_{3} ?

273 If $f(x)=12 x-4$, then the inverse function $f^{-1}(x)$ is

274 In 2010, the population of New York State was approximately $19,378,000$ with an annual growth rate of 1.5%. Assuming the growth rate is maintained for a large number of years, which equation can be used to predict the population of New York State t years after 2010?

275 The graph of a cubic polynomial function $p(x)$ is shown below.

If $p(x)$ is written as a product of linear factors, which factor would appear twice?

Algebra II Regents Bimodal Worksheets

Answer Section

1 ANS:
10.25

The maximum of p is 5 . The minimum of f is $-\frac{21}{4}\left(x=\frac{-6}{2(4)}=-\frac{3}{4}\right.$
$\left.f\left(-\frac{3}{4}\right)=4\left(-\frac{3}{4}\right)^{2}+6\left(-\frac{3}{4}\right)-3=4\left(\frac{9}{16}\right)-\frac{18}{4}-\frac{12}{4}=-\frac{21}{4}\right) . \frac{20}{4}-\left(-\frac{21}{4}\right)=\frac{41}{4}=10.25$
PTS: 2 REF: 011922aii TOP: Comparing Functions
2 ANS:
\$713,476.20
$S_{7}=\frac{85000-85000(1.06)^{7}}{1-1.06} \approx 713476.20$
PTS: 2 REF: 061905aii TOP: Series KEY: geometric
3 ANS:
$\frac{x+3}{x}$
$\frac{x^{2}(x+2)-9(x+2)}{x\left(x^{2}-x-6\right)}=\frac{\left(x^{2}-9\right)(x+2)}{x(x-3)(x+2)}=\frac{(x+3)(x-3)}{x(x-3)}=\frac{x+3}{x}$

PTS: 2 REF: 061803aii TOP: Rational Expressions
KEY: factoring
4 ANS:
0.2743

PTS: 2 REF: 061817aii TOP: Normal Distributions
KEY: probability

5 ANS:
2,125,760
$8 r^{3}=216 S_{12}=\frac{8-8(3)^{12}}{1-3}=2125760$
$r^{3}=27$
$r=3$
PTS: 2 REF: 081902aii TOP: Series KEY: geometric
6 ANS:
0.25
$P(B) \cdot P(A \mid B)=P(A$ and $B)$

$$
\begin{aligned}
P(B) \cdot 0.8 & =0.2 \\
P(B) & =0.25
\end{aligned}
$$

PTS: 2 REF: 081913aii TOP: Conditional Probability
7 ANS:

$$
\begin{aligned}
&\{(0,6),(-5,-9)\} \\
&(x+4)^{2}-10=3 x+6 \quad y=3(-5)+6=-9 \\
& x^{2}+8 x+16-10=3 x+6 \quad y=3(0)+6=6 \\
& x^{2}+5 x=0 \\
& x(x+5)=0 \\
& x=-5,0
\end{aligned}
$$

PTS: 2 REF: 061903aii TOP: Quadratic-Linear Systems
8 ANS:
$2 x^{3}-4 x^{2}-x+\frac{14}{x+6}$

$$
\begin{gathered}
2 x^{3}-4 x^{2}-x+\frac{14}{x+6} \\
x + 6 \longdiv { 2 x ^ { 4 } + 8 x ^ { 3 } - 2 5 x ^ { 2 } - 6 x + 1 4 } \\
\frac{2 x^{4}+12 x^{3}}{-4 x^{3}-25 x^{2}} \\
\frac{-4 x^{3}-24 x^{2}}{-x^{2}}-6 x \\
\underline{-x^{2}-6 x}
\end{gathered}
$$

PTS: 2
REF: 081805aii TOP: Rational Expressions
KEY: division

9 ANS:

PTS: 2 REF: 081919aii TOP: Normal Distributions
KEY: percent
10 ANS:
$\frac{1}{5} \pm \frac{\sqrt{19}}{5} i$
$x=\frac{2 \pm \sqrt{(-2)^{2}-4(5)(4)}}{2(5)}=\frac{2 \pm \sqrt{-76}}{10}=\frac{2 \pm i \sqrt{4} \sqrt{19}}{10}=\frac{1}{5} \pm \frac{i \sqrt{19}}{5}$
PTS: 2 REF: 011905aii TOP: Solving Quadratics
KEY: complex solutions | quadratic formula
11 ANS:
$-\frac{24}{7}$
If $\cos \theta=\frac{7}{25}, \sin \theta= \pm \frac{24}{25}$, and $\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{-\frac{24}{25}}{\frac{7}{25}}=-\frac{24}{7}$
PTS: 2 REF: 081811aii TOP: Determining Trigonometric Functions
12 ANS:
$(1,2)$ and $(-1,-2)$
$x^{2}+(2 x)^{2}=5 \quad y=2 x= \pm 2$

$$
\begin{aligned}
x^{2}+4 x^{2} & =5 \\
5 x^{2} & =5 \\
x & = \pm 1
\end{aligned}
$$

PTS: 2
REF: 081916aii TOP: Quadratic-Linear Systems

13 ANS:
18

$$
\begin{aligned}
120 & =68+(195-68) e^{-0.05 t} \\
52 & =127 e^{-0.05 t} \\
\ln \frac{52}{127} & =\ln e^{-0.05 t}
\end{aligned}
$$

$\ln \frac{52}{127}=-0.05 t$
$\frac{\ln \frac{52}{127}}{-0.05}=t$

$$
18 \approx t
$$

PTS: 2 REF: 081918aii TOP: Exponential Decay
14 ANS:
$f^{-1}(x)=\log _{a} x$
PTS: 2
REF: 011917aii TOP: Inverse of Functions
KEY: other
15 ANS:
$f^{-1}(x)=\sqrt[3]{x+2}$
$y=x^{3}-2$
$x=y^{3}-2$
$x+2=y^{3}$
$\sqrt[3]{x+2}=y$
PTS: 2 REF: 061815aii TOP: Inverse of Functions
KEY: other
16 ANS:
$29,400\left(1.068^{\frac{1}{365}}\right)^{365 t}$
1 year $=365$ days
PTS: 2
REF: 061823aii TOP: Modeling Exponential Functions

17 ANS:

$$
\begin{aligned}
& \pm 2 i, 2 \\
& m^{3}-2 m^{2}+4 m-8=0 \\
& m^{2}(m-2)+4(m-2)=0 \\
&\left(m^{2}+4\right)(m-2)=0
\end{aligned}
$$

PTS: 2 REF: 081821aii TOP: Solving Polynomial Equations
18 ANS:
$f^{-1}(x)=2-\frac{x}{6}$
$x=-6(y-2)$
$-\frac{x}{6}=y-2$
$-\frac{x}{6}+2=y$
PTS: 2
REF: 011821aii TOP: Inverse of Functions
KEY: linear
19 ANS:
$(n+3)(n-3)(n+6)(n-2)$
$n^{2}\left(n^{2}-9\right)+4 n\left(n^{2}-9\right)-12\left(n^{2}-9\right)$

$$
\begin{gathered}
\left(n^{2}+4 n-12\right)\left(n^{2}-9\right) \\
(n+6)(n-2)(n+3)(n-3)
\end{gathered}
$$

PTS: 2 REF: 061911aii TOP: Factoring Polynomials
KEY: factoring by grouping
20 ANS:
$a=2, b=6, c=3$
The cosine function has been translated +3 . Since the maximum is 5 and the minimum is 1 , the amplitude is 2 .
$\frac{\pi}{3}=\frac{2 \pi}{b}$.
$b=6$
PTS: 2
REF: 011913aii TOP: Modeling Trigonometric Functions
21 ANS:
45
$P=\frac{2 \pi}{\frac{\pi}{45}}=90$
PTS: 2
REF: 081822aii
TOP: Graphing Trigonometric Functions
KEY: period

22 ANS:
\$17,433,922.00
$S_{20}=\frac{.01-.01(3)^{20}}{1-3}=17,433,922$
PTS: 2 REF: 011822aii TOP: Series KEY: geometric
23 ANS:
7
$1240(1.06)^{x}=890(1.11)^{x}$

$$
x \approx 7
$$

PTS: 2 REF: 061814aii TOP: Other Systems
24 ANS:
exponential function
PTS: 2 REF: 081903aii TOP: Families of Functions
25 ANS:
$C=550(1.00643)^{12 t}$
$1.00643^{12} \approx 1.08$
PTS: 2 REF: 081808aii TOP: Modeling Exponential Functions
26 ANS:
$-3 x^{2}+18 x i$
$(x+3 i)^{2}-(2 x-3 i)^{2}=x^{2}+6 x i+9 i^{2}-\left(4 x^{2}-12 x i+9 i^{2}\right)=-3 x^{2}+18 x i$
PTS: 2 REF: 061805aii TOP: Operations with Complex Numbers
27 ANS:
$g(x)=2 x-16$
$y=\frac{1}{2} x+8 \quad x=\frac{1}{2} y+8$
$2 x=y+16$
$y=2 x-16$
PTS: 2 REF: 081806aii TOP: Inverse of Functions
KEY: linear
28 ANS:
$g(x)=\log _{3}(x+5)$
PTS: 2 REF: 011902aii TOP: Graphing Logarithmic Functions
29 ANS:
10
$440 \times 2.3 \% \approx 10$
PTS: 2
REF: 011807aii TOP: Normal Distributions
KEY: predict

30 ANS:
$(3,0)$
$\log _{2}(x-1)-1=0$
$\log _{2}(x-1)=1$

$$
\begin{aligned}
x-1 & =2^{1} \\
x & =3
\end{aligned}
$$

PTS: 2 REF: 061819aii TOP: Graphing Logarithmic Functions
31 ANS:
-3
PTS: 2 REF: 011815aii TOP: Unit Circle
32 ANS:
$c(x)=0.2 x^{2}-100 x+300$

$$
p(x)=r(x)-c(x)
$$

$-0.5 x^{2}+250 x-300=-0.3 x^{2}+150 x-c(x)$

$$
c(x)=0.2 x^{2}-100 x+300
$$

PTS: 2
REF: 061813aii TOP: Operations with Functions
33 ANS:
$G(x)-C$
PTS: 2 REF: 081817aii TOP: Transformations with Functions
34 ANS:
I and II, only
$x^{3}+2 x^{2}-9 x-18=0 \quad x^{3}-9 x+2 x^{2}-18=0 \quad x^{3}-9 x+2 x^{2}-18=0$
$x^{2}(x+2)-9(x+2)=0 x\left(x^{2}-9\right)+2\left(x^{2}-9\right)=0 x\left(x^{2}-9\right)+2\left(x^{2}-9\right)=0$

$$
(x+2)\left(x^{2}-9\right)=0
$$

PTS: 2
REF: 011903aii TOP: Solving Polynomial Equations

35 ANS:

$$
\begin{array}{r}
3 x-1-\frac{1}{3 x+1} \\
3 x + 1 \longdiv { 9 x - 1 } \\
\frac{9 x^{2}+0 x-2}{-3 x-2} \\
\frac{-3 x-1}{-1}
\end{array}
$$

PTS: 2 REF: 081910aii TOP: Rational Expressions
KEY: division
36 ANS:
-3
PTS: 2 REF: 081904aii TOP: Factoring Polynomials
KEY: higher power
37 ANS:
5.62

PTS: 2
REF: 081819aii
TOP: Other Systems
38
ANS:
$-\frac{1}{3} \pm \frac{2 i \sqrt{5}}{3}$
$x=\frac{-2 \pm \sqrt{2^{2}-4(3)(7)}}{2(3)}=\frac{-2 \pm \sqrt{-80}}{6}=\frac{-2 \pm i \sqrt{16} \sqrt{5}}{6}=-\frac{1}{3} \pm \frac{2 i \sqrt{5}}{3}$
PTS: 2 REF: 081809aii TOP: Solving Quadratics
KEY: complex solutions | quadratic formula
39
2\%

$$
9110=5000 e^{30 r}
$$

$\ln \frac{911}{500}=\ln e^{30 r}$
$\frac{\ln \frac{911}{500}}{30}=r$

$$
r \approx .02
$$

PTS: 2
REF: 011810aii TOP: Exponential Growth

40 ANS:
[1,10]
$\frac{N(10)-N(1)}{10-1} \approx-2.03, \frac{N(20)-N(10)}{20-10} \approx-1.63, \frac{N(25)-N(15)}{25-15} \approx-1.46, \frac{N(30)-N(1)}{30-1} \approx-1.64$
PTS: 2 REF: 061807aii TOP: Rate of Change
41 ANS:
$d=5 \sin \left(\frac{\pi}{6} t\right)+9$
$a=\frac{14-4}{2}=5, d=\frac{14+4}{2}=9$

PTS: 2 REF: 061810aii TOP: Modeling Trigonometric Functions
42 ANS:
\{5, 7\}

$$
x^{2}-4 x-5=4 x^{2}-40 x+100
$$

$3 x^{2}-36 x+105=0$

$$
\begin{aligned}
x^{2}-12 x+35 & =0 \\
(x-7)(x-5) & =0 \\
x & =5,7
\end{aligned}
$$

PTS: 2 REF: 081807aii TOP: Solving Radicals
KEY: extraneous solutions
43 ANS:
$m_{1}=2000$
$m_{n}=(0.84) m_{n-1}$

PTS: 2 REF: 081909aii TOP: Sequences KEY: recursive
44 ANS:
x^{3}
$\frac{x^{\frac{2}{3}} \cdot x^{\frac{5}{2}}}{x^{\frac{1}{6}}}=\frac{x^{\frac{4}{6}} \cdot x^{\frac{15}{6}}}{x^{\frac{1}{6}}}=x^{\frac{18}{6}}=x^{3}$
PTS: 2
REF: 081812aii
TOP: Operations with Radicals
KEY: with variables, index > 2

45 ANS:

PTS: 2 REF: 011924aii TOP: Other Systems
46 ANS:
0.8

PTS: 2
REF: 081824aii TOP: Conditional Probability
47 ANS:
$\frac{-c-d}{d+2 c}$
$\frac{c^{2}-d^{2}}{d^{2}+c d-2 c^{2}}=\frac{(c+d)(c-d)}{(d+2 c)(d-c)}=\frac{-(c+d)}{d+2 c}=\frac{-c-d}{d+2 c}$
PTS: 2
REF: 011818aii TOP: Rational Expressions
KEY: factoring
48
ANS:
$\pm i$
$w x^{2}+w=0$
$w\left(x^{2}+1\right)=0$

$$
\begin{aligned}
x^{2} & =-1 \\
x & = \pm i
\end{aligned}
$$

PTS: 2
REF: 061912aii TOP: Solving Quadratics
KEY: complex solutions | taking square roots

49 ANS:
$\left\{-1, \frac{3}{2}\right\}$

$$
\begin{aligned}
\frac{2}{x} & =\frac{4 x}{x+3} \\
2 x+6 & =4 x^{2} \\
4 x^{2}-2 x-6 & =0 \\
2\left(2 x^{2}-x-3\right) & =0 \\
(2 x-3)(x+1) & =0 \\
x & =\frac{3}{2},-1
\end{aligned}
$$

PTS: 2
REF: 061809aii
TOP: Solving Rationals
50 ANS:
$r(x)=(x-a)(x+b)(x+c)^{2}$
PTS: 2 REF: 061921aii TOP: Graphing Polynomial Functions
51 ANS:
2.29 and 3.63

PTS: 2
REF: 011814aii
TOP: Other Systems
52 ANS:

PTS: 2
REF: 081920aii
TOP: Other Systems
53 ANS:
0.271
$y=278(0.5)^{\frac{18}{1.8}} \approx 0.271$
PTS: 2
REF: 011920aii
TOP: Modeling Exponential Functions

54 ANS:
$y=2000(1.0032737)^{12 t}$
$1.04^{\frac{1}{12}} \approx 1.0032737$
PTS: 2 REF: 011906aii TOP: Modeling Exponential Functions
55 ANS:
34

$$
\begin{aligned}
121(b)^{2} & =64 \quad 64\left(\frac{8}{11}\right)^{2} \approx 34 \\
b & =\frac{8}{11}
\end{aligned}
$$

PTS: 2 REF: 011904aii TOP: Sequences KEY: explicit
56 ANS:
$\frac{3}{2} \pm \frac{\sqrt{17}}{2}$
$x-\frac{4}{x-1}=2 \quad x=\frac{3 \pm \sqrt{(-3)^{2}-4(1)(-2)}}{2(1)}=\frac{3 \pm \sqrt{17}}{2}$
$x(x-1)-4=2(x-1)$
$x^{2}-x-4=2 x-2$
$x^{2}-3 x-2=0$
PTS: 2 REF: 011812aii TOP: Solving Rationals
KEY: rational solutions
57 ANS:
$f(t)=10,000(1.00075)^{12 t}+10,000 e^{0.008 t}$
$1+\frac{.009}{12}=1.00075$

PTS: 2 REF: 011918aii TOP: Modeling Exponential Functions
58 ANS:
4
$3 x-(-2 x+14)=163(6)-4 z=2$

$$
\begin{array}{rlrl}
5 x & =30 & -4 z & =-16 \\
x & =6 & z & =4
\end{array}
$$

PTS: 2 REF: 011803aii TOP: Solving Linear Systems
KEY: three variables

59 ANS:
400(1.001121184) ${ }^{52 t}$
$1.06^{\frac{1}{52}}$
PTS: 2 REF: 061924aii TOP: Modeling Exponential Functions
60 ANS:
$y=5$
In vertex form, the parabola is $y=-\frac{1}{4(2)}(x+4)^{2}+3$. The vertex is $(-4,3)$ and $p=2.3+2=5$
PTS: 2 REF: 011816aii TOP: Graphing Quadratic Functions
61 ANS:
\$6166.50
$5000\left(1+\frac{.035}{12}\right)^{12 \cdot 6} \approx 6166.50$
PTS: 2 REF: 081917aii TOP: Modeling Exponential Functions
62 ANS:
3
$1^{3}-k(1)^{2}+2(1)=0$
$k=3$
PTS: 2 REF: 061812aii TOP: Remainder and Factor Theorems
63 ANS:
(0.134, 0.374)
$0.254 \pm 2(0.060) \rightarrow(0.134,0.374)$
PTS: 2 REF: 061913aii TOP: Analysis of Data
64 ANS:
10 or -2

$$
\begin{aligned}
x-\frac{20}{x} & =8 \\
x^{2}-8 x-20 & =0 \\
(x-10)(x+2) & =0 \\
x & =10,-2
\end{aligned}
$$

PTS: 2
REF: 061916aii TOP: Modeling Rationals

65 ANS:
$\left\{\frac{1}{2}\right\}$

$$
\begin{aligned}
\frac{2}{3 x+1} & =\frac{1}{x}-\frac{6 x}{3 x+1}-\frac{1}{3} \text { is extraneous. } \\
\frac{6 x+2}{3 x+1} & =\frac{1}{x} \\
6 x^{2}+2 x & =3 x+1 \\
6 x^{2}-x-1 & =0 \\
(2 x-1)(3 x+1) & =0 \\
x & =\frac{1}{2},-\frac{1}{3}
\end{aligned}
$$

PTS: 2 REF: 011915aii TOP: Solving Rationals
66 ANS:
240
$p(5)=2(5)^{3}-3(5)+5=240$
PTS: 2 REF: 011819aii TOP: Remainder and Factor Theorems
67 ANS:
$-4-8 x i$
$(2 x-i)^{2}-(2 x-i)(2 x+3 i)$
$(2 x-i)[(2 x-i)-(2 x+3 i)]$ $(2 x-i)(-4 i)$

$$
-8 x i+4 i^{2}
$$

$$
-8 x i-4
$$

PTS: 2
REF: 011911aii
TOP: Operations with Complex Numbers
68 ANS:
$y=\frac{1}{4} x-\frac{5}{4}$
$x=4 y+5$
$x-5=4 y$
$\frac{1}{4} x-\frac{5}{4}=y$
PTS: 2
REF: 061909aii TOP: Inverse of Functions
KEY: linear

69 ANS:
\{8\}

$$
b^{2}=2 b^{2}-64-8 \text { is extraneous. }
$$

$-b^{2}=-64$
$b= \pm 8$
PTS: 2 REF: 061919aii TOP: Solving Radicals
KEY: extraneous solutions
70 ANS:
I, II, and III
$\frac{x^{2}-4 x}{2 x}=\frac{x(x-4)}{2 x}=\frac{x-4}{2}=\frac{x}{2}-2 \frac{x-1}{2}-\frac{3}{2}=\frac{x-1-3}{2}=\frac{x-4}{2}$

PTS: 2
REF: 011921aii TOP: Rational Expressions
KEY: factoring
71 ANS:
$\{-1,0\}$
$\sqrt{x+1}=x+1$
$x+1=x^{2}+2 x+1$
$0=x^{2}+x$
$0=x(x+1)$
$x=-1,0$
PTS: 2
REF: 011802aii TOP: Solving Radicals
KEY: extraneous solutions
72 ANS:
10.4

PTS: 2 REF: 011804aii TOP: Determining Trigonometric Functions
KEY: radians
73 ANS:
12\%
$0.48 \cdot 0.25=0.12$
PTS: 1 REF: 061811aii TOP: Probability of Compound Events
KEY: probability
74 ANS:
8.52

PTS: 2
REF: 061914aii TOP: Other Systems

75 ANS:
$5\left(2^{\frac{x}{2}}\right)$
PTS: 2 REF: 061906aii TOP: Families of Functions
76 ANS:
$6 \sqrt[3]{x^{5}}$
$4 x \cdot x^{\frac{2}{3}}+2 x^{\frac{5}{3}}=4 x^{\frac{5}{3}}+2 x^{\frac{5}{3}}=6 x^{\frac{5}{3}}=6 \sqrt[3]{x^{5}}$
PTS: 2 REF: 061820aii TOP: Operations with Radicals
KEY: with variables, index >2
77 ANS:
$\frac{\ln \left(\frac{c}{a}\right)}{b}$
$e^{b t}=\frac{c}{a}$
$\ln e^{b t}=\ln \frac{c}{a}$
$b t \ln e=\ln \frac{c}{a}$
$t=\frac{\ln \frac{c}{a}}{b}$

PTS: 2 REF: 011813aii TOP: Exponential Equations
KEY: without common base
78 ANS:
\{ \}
$x(x-2)\left(\frac{10}{x^{2}-2 x}+\frac{4}{x}=\frac{5}{x-2}\right) 2$ is extraneous.

$$
\begin{gathered}
10+4(x-2)=5 x \\
10+4 x-8=5 x \\
2=x
\end{gathered}
$$

PTS: 2
REF: 081915aii TOP: Solving Rationals
KEY: rational solutions

79 ANS:
$(x+2)^{2}=-8(y-7)$
$\frac{5+9}{2}=7$, vertex: $(-2,7) ; p=7-9=-2, y=\frac{1}{4(-2)}(x+2)^{2}+7$

$$
\begin{aligned}
& y-7=\frac{1}{-8}(x+2)^{2} \\
& -8(y-7)=(x+2)^{2}
\end{aligned}
$$

PTS: 2
REF: 061821aii
TOP: Graphing Quadratic Functions
80 ANS:
14.066
$\ln e^{0.3 x}=\ln \frac{5918}{87}$
$x=\frac{\ln \frac{5918}{87}}{0.3}$
PTS: 2 REF: 081801aii TOP: Exponential Equations
KEY: without common base
81 ANS:
631
$84.1 \% \times 750 \approx 631$
PTS: 2 REF: 011923aii TOP: Normal Distributions
KEY: predict
82 ANS:
$P(t)=3500(1.00206)^{12 t}$
$1.025^{\frac{1}{12}} \approx 1.00206$
PTS: 2
REF: 081924aii TOP: Modeling Exponential Functions

83 ANS:
$5 x^{2}+x-3$
$2 x - 1 \longdiv { 5 x ^ { 2 } + x - 3 } \begin{array} { r } { 1 0 x ^ { 3 } - 3 x ^ { 2 } - 7 x + 3 } \end{array}$

$$
\begin{aligned}
& \frac{10 x^{3}-5 x^{2}}{2 x^{2}-7 x} \\
& \frac{2 x^{2}-x}{-6 x+3} \\
& -6 x+3
\end{aligned}
$$

PTS: 2 REF: 011809aii TOP: Rational Expressions
KEY: division
84 ANS:
neither I nor II
$(x-y)^{2}=x^{2}-2 x y+y^{2}(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$
PTS: 2
REF: 061902aii TOP: Polynomial Identities
85 ANS:

PTS: 2
REF: 061816aii
TOP: Graphing Polynomial Functions
KEY: bimodalgraph
86 ANS:
$\frac{85}{295}$
$\frac{85}{210+85}$
PTS: 2 REF: 081818aii TOP: Venn Diagrams
87 ANS:
$a_{0}=75,000$
$a_{n}=0.92\left(a_{n-1}\right)$
PTS: 2
REF: 081810aii TOP: Sequences

88 ANS:
\$4.01

PTS: 2 REF: 011817aii TOP: Graphing Polynomial Functions
89 ANS:
-2
$f(x)=(x+1)(x-1)(x-2)=\left(x^{2}-1\right)(x-2)=x^{3}-2 x^{2}-x+2$
PTS: 2 REF: 081921aii TOP: Solving Polynomial Equations
90 ANS:
$(2,5)$
The vertex is $(2,2)$ and $p=3.3+2=5$
PTS: 2 REF: 081823aii TOP: Graphing Quadratic Functions
91 ANS:
-0.087
$100\left(\frac{1}{2}\right)^{\frac{d}{8}}=100 e^{k d}$
$\left(\frac{1}{2}\right)^{\frac{1}{8}}=e^{k}$

$$
k \approx-0.087
$$

PTS: 2 REF: 061818aii TOP: Exponential Decay
92 ANS:
$-\frac{\sqrt{7}}{4}$
$-\sqrt{1-\left(-\frac{3}{4}\right)^{2}}=-\sqrt{\frac{16}{16}-\frac{9}{16}}=-\sqrt{\frac{7}{16}}=-\frac{\sqrt{7}}{4}$
PTS: 2
REF: 081905aii TOP: Determining Trigonometric Functions

93 ANS:
$-9 x^{2}+12 x i+10$
$6-(3 x-2 i)(3 x-2 i)=6-\left(9 x^{2}-12 x i+4 i^{2}\right)=6-9 x^{2}+12 x i+4=-9 x^{2}+12 x i+10$
PTS: 2 REF: 061915aii TOP: Operations with Complex Numbers
94 ANS:
$a_{1}=25,000, a_{n}=a_{n-1}+1000$
PTS: 2 REF: 011824aii TOP: Sequences
95 ANS:
$y=-\frac{1}{8}(x+3)^{2}+5$
The vertex is $(-3,5)$ and $p=2 . y=\frac{-1}{4(2)}(x+3)^{2}+5$
PTS: 2
REF: 011914aii TOP: Graphing Quadratic Functions
96 ANS:
$\frac{157}{229}$
$\frac{157}{25+47+157}$
PTS: 2
REF: 081607aii TOP: Conditional Probability
97 ANS:
380
$400 \cdot .954 \approx 380$
PTS: 2 REF: 061918aii TOP: Normal Distributions
KEY: predict
98 ANS:
$f^{-1}(x)=\frac{-2 x}{x-1}$
$x=\frac{y}{y+2}$
$x y+2 x=y$
$x y-y=-2 x$
$y(x-1)=-2 x$

$$
y=\frac{-2 x}{x-1}
$$

PTS: 2
REF: 081924aii TOP: Inverse of Functions
KEY: other

99 ANS:
77
$T(19)=8 \sin (0.3(19)-3)+74 \approx 77$
PTS: 2 REF: 061922aii TOP: Determining Trigonometric Functions
KEY: radians
100
ANS:
$\frac{124}{x+16 y}$
PTS: 2 REF: 061824aii TOP: Modeling Rationals
ANS:
$(x+5)(x+3)$
$u=x+2 \quad u^{2}+4 u+3$

$$
(u+3)(u+1)
$$

$$
(x+2+3)(x+2+1)
$$

$$
(x+5)(x+3)
$$

PTS: 2 REF: 081901aii TOP: Factoring Polynomials
KEY: higher power
102 ANS:
$-19-17 i$
$-3+5 i-\left(4+24 i-2 i-12 i^{2}\right)=-3+5 i-(16+22 i)=-19-17 i$
PTS: 2 REF: 081815aii TOP: Operations with Complex Numbers
103 ANS:
0.03
$M E=\left(z \sqrt{\frac{p(1-p)}{n}}\right)=\left(1.96 \sqrt{\frac{(0.55)(0.45)}{900}}\right) \approx 0.03$ or $\frac{1}{\sqrt{900}} \approx 0.03$
PTS: 2
REF: 081612aii TOP: Analysis of Data

Algebra II Regents Bimodal Worksheets
 Answer Section

104 ANS:
$\left\{-\frac{7}{2},-3\right\}$
$x(x+7)\left[\frac{3 x+25}{x+7}-5=\frac{3}{x}\right]$
$x(3 x+25)-5 x(x+7)=3(x+7)$
$3 x^{2}+25 x-5 x^{2}-35 x=3 x+21$
$2 x^{2}+13 x+21=0$
$(2 x+7)(x+3)=0$
$x=-\frac{7}{2},-3$

PTS: 2 REF: fall1501aii TOP: Solving Rationals
KEY: rational solutions
105 ANS:
$\frac{\pi}{3}$ left
PTS: 2 REF: 011701aii TOP: Graphing Trigonometric Functions
106 ANS:
\$1835.98
$M=\frac{240000\left(\frac{4.5 \%}{12}\right)\left(1+\frac{4.5 \%}{12}\right)^{15 \times 12}}{\left(1+\frac{4.5 \%}{12}\right)^{15 \times 12}-1} \approx 1835.98$
PTS: 2 REF: 062209aii TOP: Evaluating Exponential Expressions
107 ANS:
$\frac{64+x}{80+x}=\frac{90}{100}$

PTS: 2 REF: 082222aii TOP: Modeling Rationals

108 ANS:
\{7\}
$\sqrt{56-x}=x \quad-8$ is extraneous.

$$
\begin{aligned}
56-x & =x^{2} \\
0 & =x^{2}+x-56 \\
0 & =(x+8)(x-7) \\
x & =7
\end{aligned}
$$

PTS: 2 REF: 061605aii TOP: Solving Radicals
KEY: extraneous solutions
109 ANS:
$x(x-1)$
$u=x+2 \quad u^{2}-5 u+6$

$$
\begin{gathered}
(u-3)(u-2) \\
(x+2-3)(x+2-2) \\
(x-1) x
\end{gathered}
$$

PTS: 2 REF: 012301aii TOP: Factoring Polynomials
KEY: higher power
110 ANS:
$x^{2}+1+\frac{4}{x+2}$
$x + 2 \longdiv { x ^ { 3 } + 2 x ^ { 2 } + x + 6 }$

$$
x^{3}+2 x^{2}
$$

$$
0 x^{2}+x
$$

$$
\underline{0 x^{2}+0 x}
$$

$$
x+6
$$

$$
x+2
$$

4

PTS: 2 REF: 081611aii TOP: Rational Expressions
KEY: division
111 ANS:
$-24 x^{2}-30 x i$
$6 x i^{3}(-4 x i+5)=-24 x^{2} i^{4}+30 x i^{3}=-24 x^{2}(1)+30 x(-1)=-24 x^{2}-30 x i$
PTS: 2 REF: 061704aii TOP: Operations with Complex Numbers

112 ANS:
13

$40-(20+22-15)=13$
PTS: 2 REF: 062204aii TOP: Venn Diagrams
113 ANS:
\{2\}

$$
\begin{array}{rlr}
\sqrt{x+14} & =\sqrt{2 x+5}+1 & \sqrt{22+14}-\sqrt{2(22)+5}=1 \\
x+14 & =2 x+5+2 \sqrt{2 x+5}+1 & 6-7 \neq 1 \\
-x+8 & =2 \sqrt{2 x+5} &
\end{array}
$$

$x^{2}-16 x+64=8 x+20$
$x^{2}-24 x+44=0$
$(x-22)(x-2)=0$
$x=2,22$

PTS: 2 REF: 081704aii TOP: Solving Radicals
KEY: advanced
114 ANS:
10

$H(t)$ is at a minimum at $70(-1)+80=10$
PTS: 2
REF: 061613aii TOP: Graphing Trigonometric Functions
KEY: maximum/minimum
115 ANS:
II, only
The mass of the carbon-14 is decreasing by half every 5715 years.
PTS: 2
REF: 062211aii TOP: Modeling Exponential Functions

116 ANS:
$a_{n}=2 \cdot 3^{n}$
PTS: 2 REF: 081618aii TOP: Sequences KEY: recursive
117 ANS:
$(3,-1,0)$
$2 x+4 y-2 z=2-x-3 y+2 z=0 \quad x+y=2 \quad 3+2 y-z=1 \quad 2 y-z=-2$
$\begin{array}{rlrl}-x-3 y+2 z=0 \\ x+y=2 & \frac{4 x-8 y+2 z=20}{5 x-5 y=20} \quad \frac{x-y=4}{2 x=6} \quad \begin{aligned} 6-4 y+z & =10 \\ 2 y-z & =-2\end{aligned} \frac{2(-1)-z=-2}{z}=0\end{array}$
$x-y=4 \quad x=3 \quad \frac{-4 y+z=4}{-2 y=2}$
$y=-1$
PTS: 2 REF: 062208aii TOP: Solving Linear Systems
KEY: three variables
118 ANS:
$-0.15 x^{3}-0.02 x^{2}+28 x-120$
$x(30-0.01 x)-\left(0.15 x^{3}+0.01 x^{2}+2 x+120\right)=30 x-0.01 x^{2}-0.15 x^{3}-0.01 x^{2}-2 x-120$

$$
=-0.15 x^{3}-0.02 x^{2}+28 x-120
$$

PTS: 2 REF: 061709aii TOP: Operations with Functions
119 ANS:
I, II, and III
PTS: 2
REF: 061716aii TOP: Radicals and Rational Exponents
KEY: variables
120 ANS:
$x^{2}-2 x+2=0$
If $1-i$ is one solution, the other is $1+i . \quad(x-(1-i))(x-(1+i))=0$

$$
\begin{array}{r}
x^{2}-x-i x-x+i x+\left(1-i^{2}\right)=0 \\
x^{2}-2 x+2=0
\end{array}
$$

PTS: 2 REF: 081601aii TOP: Complex Conjugate Root Theorem
121 ANS:
$-12 x$
$x^{2}-6 x+9-\left(x^{2}+6 x+9\right)=-12 x$
PTS: 2
REF: 062210aii TOP: Operations with Functions

122 ANS:
$C(n)=\frac{329.99+108.78 n}{n}$
PTS: 2 REF: 061722aii TOP: Modeling Rationals
123 ANS:
$\frac{255+93 T}{T+3}=90$
PTS: 2 REF: 061602aii TOP: Modeling Rationals
124 ANS:
I, II, and III
I. $\left(\frac{y}{x^{3}}\right)^{-1}=\frac{x^{3}}{y}$; II. $\sqrt[3]{x^{9}}\left(y^{-1}\right)=\frac{x^{\frac{9}{3}}}{y}=\frac{x^{3}}{y}$; III. $\frac{x^{64} \sqrt{y^{8}}}{x^{3} y^{3}}=\frac{x^{3} y^{\frac{8}{4}}}{y^{3}}=\frac{x^{3}}{y}$

PTS: 2 REF: 062320aii TOP: Radicals and Rational Exponents
125 ANS:
2 or -4

$$
x^{2}+2 x-8=0
$$

$(x+4)(x-2)=0$

$$
x=-4,2
$$

PTS: 2 REF: 081701aii TOP: Undefined Rationals
126 ANS:
2.5
$4300 e^{0.07 x}=5123$

$$
\begin{aligned}
\ln e^{0.07 x} & =\ln \frac{5123}{4300} \\
0.07 x & =\ln \frac{5123}{4300}
\end{aligned}
$$

$$
x=\frac{\ln \frac{5123}{4300}}{0.07}
$$

$$
x \approx 2.5
$$

PTS: 2 REF: 012302aii TOP: Exponential Equations
KEY: without common base
127 ANS:
$P=714(0.9716)^{y}$
$0.75^{\frac{1}{10}} \approx .9716$
PTS: 2 REF: 061713aii TOP: Modeling Exponential Functions

128 ANS:
149
$d=32(.8)^{b-1} S_{n}=\frac{32-32(.8)^{12}}{1-.8} \approx 149$
PTS: 2 REF: 081721aii TOP: Series KEY: geometric
129 ANS:
$\frac{-2}{\sqrt{21}}$
$\frac{-2}{\sqrt{5^{2}-2^{2}}}=\frac{-2}{\sqrt{21}}$
PTS: 2 REF: 082312aii TOP: Determining Trigonometric Functions
130 ANS:
4.78

PTS: 2 REF: 082313aii TOP: Normal Distributions
KEY: percent
131 ANS:
0.05
$.43 \pm 2(0.05)$ contains about 95% of the data.
PTS: 2
REF: 062317aii TOP: Analysis of Data
132 ANS:
$V=120 \sin (120 \pi t)$
period $=\frac{2 \pi}{B}$
$\frac{1}{60}=\frac{2 \pi}{B}$
$B=120 \pi$
PTS: 2 REF: 061624aii TOP: Modeling Trigonometric Functions
133 ANS:
$\frac{F W}{W-F}$
$\frac{1}{J}=\frac{1}{F}-\frac{1}{W}$
$\frac{1}{J}=\frac{W-F}{F W}$
$J=\frac{F W}{W-F}$
PTS: 2
REF: 081617aii TOP: Solving Rationals
KEY: rational solutions

134 ANS:
2450
$\log _{0.8}\left(\frac{V}{17000}\right)=t \quad \frac{17,000(0.8)^{3}-17,000(0.8)^{1}}{3-1} \approx-2450$

$$
\begin{aligned}
0.8^{t} & =\frac{V}{17000} \\
V & =17000(0.8)^{t}
\end{aligned}
$$

PTS: 2 REF: 081709aii TOP: Rate of Change
ANS:
$\frac{\ln 1.25}{0.025}$
$\frac{15000}{12000}=\frac{12000 e^{.025 t}}{12000}$

$$
1.25=e^{.025 t}
$$

$\ln 1.25=\ln e^{.025 t}$
$\ln 1.25=.025 t$
$\frac{\ln 1.25}{.025}=t$
PTS: 2 REF: 082209aii TOP: Exponential Growth
136 ANS:
$x^{2}+2 x+4+\frac{6}{x-2}$
$x - 2 \longdiv { x ^ { 3 } - 0 x ^ { 2 } + 0 x - 2 }$
$\underline{x}^{3}-2 x^{2}$
$2 x^{2}+0 x$

$$
\underline{2 x^{2}-4 x}
$$

$$
4 x-2
$$

$\underline{4 x-8}$
6
PTS: 2
REF: 082217aii
TOP: Rational Expressions
KEY: division

137 ANS:
2.98\%

PTS: 2 REF: 062316aii TOP: Normal Distributions
KEY: percent
138 ANS:
very loud
$d=10 \log \frac{6.3 \times 10^{-3}}{1.0 \times 10^{-12}} \approx 98$
PTS: 2 REF: 011715aii TOP: Evaluating Logarithmic Expressions
139 ANS:
2
PTS: 2
REF: 062219aii TOP: Unit Circle
140
ANS:
$\pm \frac{7 i \sqrt{2}}{2}$
$4 x^{2}=-98$
$x^{2}=-\frac{98}{4}$
$x^{2}=-\frac{49}{2}$
$x= \pm \sqrt{-\frac{49}{2}}= \pm \frac{7 i}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}= \pm \frac{7 i \sqrt{2}}{2}$
PTS: 2 REF: 061707aii TOP: Solving Quadratics
KEY: complex solutions | taking square roots
141 ANS:
$A_{0}\left(\frac{1}{2}\right)^{\frac{t}{25}}$
PTS: 2
REF: 082309aii TOP: Modeling Exponential Functions

142 ANS:
$x^{2}=-4 y$
The vertex of the parabola is $(0,0)$. The distance, p, between the vertex and the focus or the vertex and the directrix is 1. $y=\frac{-1}{4 p}(x-h)^{2}+k$

$$
\begin{aligned}
& y=\frac{-1}{4(1)}(x-0)^{2}+0 \\
& y=-\frac{1}{4} x^{2}
\end{aligned}
$$

PTS: 2 REF: 081706aii TOP: Graphing Quadratic Functions
ANS:
$y=3^{x}$
PTS: 2
REF: 011708aii TOP: Inverse of Functions
KEY: other
144
ANS:
$I=I_{0}(0.0067)^{t}$
$e^{\left(-\frac{3}{0.6}\right)} \approx 0.006738$
PTS: 2 REF: 062315aii TOP: Modeling Exponential Functions
145 ANS:
$2 x^{2}-3 x+7-\frac{11}{2 x+3}$
$2 x + 3 \longdiv { 4 x ^ { 3 } + 0 x ^ { 2 } + 5 x + 1 0 }$

$$
\begin{aligned}
& \frac{4 x^{3}+6 x^{2}}{-6 x^{2}+5 x} \\
& \frac{-6 x^{2}-9 x}{14 x+10} \\
& \frac{14 x+21}{-11}
\end{aligned}
$$

PTS: 2 REF: 061614aii TOP: Rational Expressions
KEY: division

146 ANS:

The graph shows three real zeros, and has end behavior matching the given end behavior.
PTS: 2
REF: 061604aii TOP: Graphing Polynomial Functions
KEY: bimodalgraph
147 ANS:
2π
$1=\frac{2 \pi}{k}$
$k=2 \pi$
PTS: 2 REF: 012313aii TOP: Modeling Trigonometric Functions
148 ANS:
-8.93
$\frac{N(6)-N(0)}{6-0} \approx-8.93$
PTS: 2 REF: 012012aii TOP: Rate of Change
149 ANS:
$(2,-1)$
The vertical distance from the directrix to the vertex, p, is 2 . The vertical distance from the vertex to the focus must also be 2 .

PTS: 2 REF: 062213aii TOP: Graphing Quadratic Functions
150 ANS:

$$
\begin{aligned}
-1+2 i \text { and } & -1-2 i \\
x^{2}+2 x+1 & =-5+1 \\
(x+1)^{2} & =-4 \\
x+1 & = \pm 2 i \\
x & =-1 \pm 2 i
\end{aligned}
$$

PTS: 2
REF: 081703aii TOP: Solving Quadratics
KEY: complex solutions | completing the square

151 ANS:

PTS: 2
REF: 082210aii TOP: Other Systems
152
ANS:
$y=-h(x)$
PTS: 2 REF: 062205aii TOP: Transformations with Functions
153 ANS:
$x=\frac{\ln 6}{\ln 2}-3$
$8\left(2^{x+3}\right)=48$
$2^{x+3}=6$
$(x+3) \ln 2=\ln 6$
$x+3=\frac{\ln 6}{\ln 2}$

$$
x=\frac{\ln 6}{\ln 2}-3
$$

PTS: 2 REF: 061702aii TOP: Exponential Equations
KEY: without common base
154 ANS:
2000(1.003) ${ }^{12 t}$
$2000\left(1+\frac{.032}{12}\right)^{12 t} \approx 2000(1.003)^{12 t}$
PTS: 2
REF: 012004ai
TOP: Modeling Exponential Functions

155 ANS:
\{8\}

$$
x^{2}=3 x+40 . x=-5 \text { is an extraneous solution. }
$$

$x^{2}-3 x-40=0$
$(x-8)(x+5)=0$

$$
x=8,-5
$$

PTS: 2 REF: 012010aii TOP: Solving Radicals
KEY: extraneous solutions
ANS:
$\frac{\sqrt{23}}{5}$
$\cos \theta= \pm \sqrt{1-\left(\frac{-\sqrt{2}}{5}\right)^{2}}= \pm \sqrt{\frac{25}{25}-\frac{2}{25}}= \pm \frac{\sqrt{23}}{5}$
PTS: 2 REF: 061712aii TOP: Determining Trigonometric Functions
157 ANS:
$9 k^{2}-12 k i-4$
$(3 k-2 i)^{2}=9 k^{2}-12 k i+4 i^{2}=9 k^{2}-12 k i-4$
PTS: 2 REF: 081702aii TOP: Operations with Complex Numbers
ANS:
$\left(3-x^{2}\right)-(4 x+7) i$
$7-3 i+x^{2}-4 x i+4 i^{2}-4 i-2 x^{2}=7-7 i-x^{2}-4 x i-4=3-x^{2}-4 x i-7 i=\left(3-x^{2}\right)-(4 x+7) i$
PTS: 2
REF: 012022aii TOP: Operations with Complex Numbers
159
ANS:
$-x$
$\frac{x\left(x^{2}-9\right)}{-\left(x^{2}-9\right)}=-x$
PTS: 2
REF: 012023aii TOP: Rational Expressions
KEY: factoring

ANS:
$y=\frac{x^{2}}{4}+3$

A parabola with a focus of $(0,4)$ and a directrix of $y=2$ is sketched as follows:
 By inspection, it is determined that the vertex of the parabola is $(0,3)$. It is also evident that the distance, p, between the vertex and the focus is 1 . It is possible to use the formula $(x-h)^{2}=4 p(y-k)$ to derive the equation of the parabola as follows: $(x-0)^{2}=4(1)(y-3)$

$$
\begin{aligned}
x^{2} & =4 y-12 \\
x^{2}+12 & =4 y \\
\frac{x^{2}}{4}+3 & =y
\end{aligned}
$$

or A point (x, y) on the parabola must be the same distance from the focus as it is from the directrix. For any such point (x, y), the distance to the focus is $\sqrt{(x-0)^{2}+(y-4)^{2}}$ and the distance to the directrix is $y-2$. Setting this equal leads to: $x^{2}+y^{2}-8 y+16=y^{2}-4 y+4$

$$
\begin{aligned}
& x^{2}+16=4 y+4 \\
& \frac{x^{2}}{4}+3=y
\end{aligned}
$$

PTS: 2
REF: spr1502aii
TOP: Graphing Quadratic Functions
161 ANS:
\{3\}

$$
\begin{aligned}
\frac{x+2}{x}+\frac{x}{3} & =\frac{2 x^{2}+6}{3 x} 0 \text { is extraneous. } \\
\frac{x^{2}+3 x+6}{3 x} & =\frac{2 x^{2}+6}{3 x} \\
x^{2}+3 x+6 & =2 x^{2}+6 \\
x^{2}-3 x & =0 \\
x(x-3) & =0 \\
x & =0,3
\end{aligned}
$$

PTS: 2
REF: 012309aii TOP: Solving Rationals

162 ANS:

PTS: 2
REF: 081707aii TOP: Reference Angles
KEY: bimodalgraph
ANS:
$x^{2}=4(y-5)$
Since the distance from the focus to the directrix is $2, p=1$ and the vertex of the parabola is $(0,5)$.

$$
\begin{aligned}
y & =\frac{1}{4 p}(x-h)^{2}+k \\
y & =\frac{1}{4(1)}(x-0)^{2}+5 \\
y & =\frac{1}{4} x^{2}+5 \\
y-5 & =\frac{1}{4} x^{2} \\
4(y-5) & =x^{2}
\end{aligned}
$$

PTS: 2 REF: 062323aii TOP: Graphing Quadratic Functions
164 ANS:

$$
\begin{aligned}
f^{-1}(x) & =\frac{2 x+1}{x-1} \\
x & =\frac{y+1}{y-2} \\
x y-2 x & =y+1 \\
x y-y & =2 x+1 \\
y(x-1) & =2 x+1 \\
y & =\frac{2 x+1}{x-1}
\end{aligned}
$$

PTS: 2
REF: 081714aii TOP: Inverse of Functions
KEY: other

165 ANS:
$a_{0}=1000$
$a_{n}=a_{n-1}(1.018)+750$
PTS: 2 REF: 081724aii TOP: Sequences
166 ANS:
$y=\frac{1}{8}(x-1)^{2}$
The vertex is $(1,0)$ and $p=2$. $y=\frac{1}{4(2)}(x-1)^{2}+0$
PTS: 2 REF: 061717aii TOP: Graphing Quadratic Functions
167 ANS:
$2 x^{2}+x-6-\frac{7}{x+3}$
$x + 3 \longdiv { 2 x ^ { 3 } + 7 x ^ { 2 } - 3 x - 2 5 }$
$2 x^{3}+6 x^{2}$

$$
x^{2}-3 x
$$

$$
\underline{x^{2}+3 x}
$$

$$
-6 x-25
$$

$$
\underline{-6 x-18}
$$

$$
-7
$$

PTS: 2 REF: 062203aii TOP: Rational Expressions
KEY: division
168 ANS:
$g_{1}=40$
$g_{n}=\frac{3}{4} g_{n-1}$
(1) and (3) are not recursive

PTS: 2 REF: 012013aii TOP: Sequences KEY: recursive
169
ANS:
0
$\frac{1}{2} x^{2}+2 x=\frac{1}{4} x-8 \quad b^{2}-4 a c$
$2 x^{2}+8 x=x-32 \quad 7^{2}-4(2)(32)<0$
$2 x^{2}+7 x+32=0$
PTS: 2
REF: 012310aii TOP: Quadratic-Linear Systems

170 ANS:
$\frac{\sqrt{6}}{5}$
$5 x^{2}-4 x+2=0 \frac{4 \pm \sqrt{(-4)^{2}-4(5)(2)}}{2(5)}=\frac{4 \pm \sqrt{-24}}{10}=\frac{4 \pm 2 i \sqrt{6}}{10}=\frac{2 \pm i \sqrt{6}}{5}$
PTS: 2 REF: 012020aii TOP: Solving Quadratics
KEY: complex solutions | quadratic formula
171 ANS:
32°
PTS: 2 REF: 011704aii TOP: Simplifying Trigonometric Expressions
172 ANS:
$\frac{2}{3} \pm \frac{1}{6} i \sqrt{158}$
$x=\frac{8 \pm \sqrt{(-8)^{2}-4(6)(29)}}{2(6)}=\frac{8 \pm \sqrt{-632}}{12}=\frac{8 \pm i \sqrt{4} \sqrt{158}}{12}=\frac{2}{3} \pm \frac{1}{6} i \sqrt{158}$
PTS: 2 REF: 011711aii TOP: Solving Quadratics
KEY: complex solutions | quadratic formula
173 ANS:
$p(x)=\left(x^{2}-9\right)(x-2)$
PTS: 2 REF: 061701aii TOP: Graphing Polynomial Functions
174 ANS:
$\{-1\}$
$\frac{4}{k^{2}-8 k+12}=\frac{k(k-6)+(k-2)}{k^{2}-8 k+12} k=6$ is extraneous

$$
\begin{aligned}
& 4=k^{2}-6 k+k-2 \\
& 0=k^{2}-5 k-6 \\
& 0=(k-6)(k+1) \\
& k=6,-1
\end{aligned}
$$

PTS: 2
REF: 082218aii TOP: Solving Rationals

175 ANS:
 $\bar{x}+2 \sigma$ represents approximately 48% of the data.

PTS: 2
REF: 061609aii TOP: Normal Distributions
KEY: percent
176 ANS:
$x^{3}-y^{3} i$
$x^{3}-x^{2} y i-x y^{2}+x^{2} y i-x y^{2} i^{2}-y^{3} i=x^{3}-x y^{2}-x y^{2}(-1)-y^{3} i=x^{3}-y^{3} i$
PTS: 2 REF: 062223aii TOP: Operations with Complex Numbers
177 ANS:
$\{0, \pm 3,4\}$
4.
$x^{4}-4 x^{3}-9 x^{2}+36 x=0$

$$
\begin{aligned}
x^{3}(x-4)-9 x(x-4) & =0 \\
\left(x^{3}-9 x\right)(x-4) & =0 \\
x\left(x^{2}-9\right)(x-4) & =0 \\
x(x+3)(x-3)(x-4) & =0 \\
x & =0, \pm 3,4
\end{aligned}
$$

PTS: 2 REF: 061606aii TOP: Solving Polynomial Equations
ANS:
$x^{2}-4 x i-4$
$(x-2 i)(x-2 i)=x^{2}-4 x i+4 i^{2}=x^{2}-4 x i-4$
PTS: 2
REF: 082202aii TOP: Operations with Complex Numbers

179 ANS:
$f^{-1}(x)=-\frac{1}{6} x+\frac{1}{12}$
$y=-6 x+\frac{1}{2}$
$x=-6 y+\frac{1}{2}$
$x-\frac{1}{2}=-6 y$
$-\frac{1}{6}\left(x-\frac{1}{2}\right)=y$
PTS: 2
REF: 062217aii
TOP: Inverse of Functions
KEY: linear
180 ANS:
$300 e^{-0.87}$
$\frac{A}{P}=e^{r t}$
$0.42=e^{r t}$
$\ln 0.42=\ln e^{r t}$ $-0.87 \approx r t$

PTS: 2 REF: 011723aii TOP: Modeling Exponential Functions
181 ANS:
$(k+2)(k-2)(k+6)(k+2)$
$k^{4}-4 k^{2}+8 k^{3}-32 k+12 k^{2}-48$
$k^{2}\left(k^{2}-4\right)+8 k\left(k^{2}-4\right)+12\left(k^{2}-4\right)$
$\left(k^{2}-4\right)\left(k^{2}+8 k+12\right)$
$(k+2)(k-2)(k+6)(k+2)$
PTS: 2
REF: fall1505aii TOP: Factoring Polynomials
KEY: factoring by grouping

182 ANS:
$\{(1,1),(6,16)\}$
$y=g(x)=(x-2)^{2} \quad(x-2)^{2}=3 x-2 \quad y=3(6)-2=16$

$$
\begin{aligned}
x^{2}-4 x+4 & =3 x-2 \quad y=3(1)-2=1 \\
x^{2}-7 x+6 & =0 \\
(x-6)(x-1) & =0 \\
x & =6,1
\end{aligned}
$$

PTS: 2 REF: 011705aii TOP: Quadratic-Linear Systems
183 ANS:

(3) repeats 3 times over 2π.

PTS: 2 REF: 011722aii TOP: Graphing Trigonometric Functions
KEY: recognize | bimodalgraph
184 ANS:
$A=100(0.990656)^{t}$
$\left(\frac{1}{2}\right)^{\frac{1}{73.83}} \approx 0.990656$
PTS: 2 REF: 081710aii TOP: Modeling Exponential Functions
185 ANS:
$a c(b d)^{x}$
PTS: 2 REF: 011710aii TOP: Operations with Functions
186 ANS:
0.0668

PTS: 2
REF: 081711aii
TOP: Normal Distributions
KEY: percent

187 ANS:
$x^{2}-6 x+10=0$
The product of the roots equals $(3+i)(3-i)=9-i^{2}=10=\frac{c}{a}$. OR

$$
\begin{aligned}
(x-(3+i))(x-(3-i)) & =0 \\
(x-3-i)(x-3+i) & =0 \\
((x-3)-i)((x-3)+i) & =0 \\
(x-3)^{2}-i^{2} & =0 \\
x^{2}-6 x+9+1 & =0 \\
x^{2}-6 x+10 & =0
\end{aligned}
$$

PTS: 2 REF: 082208aii TOP: Complex Conjugate Root Theorem
188 ANS:

$$
\begin{gathered}
3 x^{2}+4 x-1+\frac{5}{2 x+3} \\
2 x+3 \sqrt{6 x^{3}+17 x^{2}+4 x x-1} \\
\frac{6 x^{3}+9 x^{2}}{8 x^{2}+10 x} \\
\frac{8 x^{2}+12 x}{-2 x+2} \\
\frac{-2 x-3}{5}
\end{gathered}
$$

PTS: 2 REF: fall1503aii TOP: Rational Expressions
KEY: division
ANS:
0.8415
$7 \pi /$ Scraichpad ∇ Den Ins:
normCar(1440,1465,1450,8:5) 0.84149

PTS: 2
REF: 081604aii TOP: Normal Distributions
KEY: probability

190 ANS:

PTS: 2 REF: 081616aii TOP: Unit Circle KEY: bimodalgraph
191 ANS:
$6 \pm 2 i$
$-2\left(-\frac{1}{2} x^{2}=-6 x+20\right)$

$$
x^{2}-12 x=-40
$$

$$
x^{2}-12 x+36=-40+36
$$

$$
\begin{gathered}
(x-6)^{2}=-4 \\
x-6= \pm 2 i \\
x=6 \pm 2 i
\end{gathered}
$$

PTS: 2 REF: fall1504aii TOP: Solving Quadratics
KEY: complex solutions | completing the square
ANS:
-0.26
$\frac{f(7)-f(-7)}{7--7}=\frac{=2^{-0.25(7)} \cdot \sin \left(\frac{\pi}{2}(7)\right)-2^{-0.25(-7)} \cdot \sin \left(\frac{\pi}{2}(-7)\right)}{14} \approx-0.26$
PTS: 2 REF: 061721aii TOP: Rate of Change
ANS:
II, only
The events are independent because $P(A$ and $B)=P(A) \cdot P(B)$.

$$
0.125=0.5 \cdot 0.25
$$

If $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)=0.25+0.5-.125=0.625$, then the events are not mutually exclusive because $P(A$ or $B)=P(A)+P(B)$

$$
0.625 \neq 0.5+0.25
$$

PTS: 2
REF: 061714aii TOP: Theoretical Probability

194 ANS:
$1+\frac{9}{x^{2}+3}$
$\frac{x^{2}+12}{x^{2}+3}=\frac{x^{2}+3}{x^{2}+3}+\frac{9}{x^{2}+3}=1+\frac{9}{x^{2}+3}$
PTS: 2 REF: 062218aii TOP: Addition and Subtraction of Rationals 195 ANS:
$a_{1}=64$
$a_{n}=0.75 a_{n-1}$
1) is a correct formula, but not recursive
PTS: 2 REF: 082216aii TOP: Sequences KEY: recursive
196 ANS:
I
$\frac{-12}{16}=\frac{9}{-12}=\frac{-6.75}{9}$
PTS: 2 REF: 012017aii TOP: Sequences KEY: difference or ratio
197 ANS:
$1+\frac{2}{x^{2}+4}$
$\frac{x^{2}+6}{x^{2}+4}=\frac{x^{2}+4}{x^{2}+4}+\frac{2}{x^{2}+4}=1+\frac{2}{x^{2}+4}$
PTS: 2 REF: 082321aii TOP: Addition and Subtraction of Rationals
ANS:
1,743,392,200
$S_{20}=\frac{-2-(-2)(-3)^{20}}{1-(-3)}=1,743,392,200$
PTS: 2
REF: 012306aii
TOP: Series
KEY: geometric
199
ANS:
-1
$\frac{2(x-4)}{(x+3)(x-4)}+\frac{3(x+3)}{(x-4)(x+3)}=\frac{2 x-2}{x^{2}-x-12}$

$$
\begin{aligned}
2 x-8+3 x+9 & =2 x-2 \\
3 x & =-3 \\
x & =-1
\end{aligned}
$$

PTS: 2
REF: 011717aii TOP: Solving Rationals
KEY: rational solutions

200 ANS:
$A(t)=A_{0}(0.000178)^{t}$
$0.5^{\frac{1}{0.0803}} \approx 0.000178$
PTS: 2 REF: 082224aii TOP: Modeling Exponential Functions
201 ANS:
$-0.18 x^{3}-6.02 x^{2}+91.4 x-180$
$95.4 x-6 x^{2}-\left(0.18 x^{3}+0.02 x^{2}+4 x+180\right)$
PTS: 2 REF: 082322aii TOP: Operations with Functions
202 ANS:

PTS: 2 REF: 012021aii TOP: Other Systems
203 ANS:
$R(n)=1200(1.002)^{n}-100 n$
PTS: 2 REF: 012002aii TOP: Operations with Functions
204
ANS:
$y=\frac{1}{2} \cos 2 x$
PTS: 2
REF: 061708aii TOP: Modeling Trigonometric Functions
205
ANS.
$m\left(m^{2}+3\right)\left(m^{2}-2\right)$
$m^{5}+m^{3}-6 m=m\left(m^{4}+m^{2}-6\right)=m\left(m^{2}+3\right)\left(m^{2}-2\right)$
PTS: 2 REF: 011703aii TOP: Factoring Polynomials
KEY: higher power
206 ANS:
$-3 a+18 i$
$3 i\left(a i-6 i^{2}\right)=3 a i^{2}-18 i^{3}=-3 a+18 i$
PTS: 2 REF: 062307aii TOP: Operations with Complex Numbers

207 ANS:
$x^{3}-2 x^{2}-x+6+\frac{2}{x+2}$
$x + 2 \longdiv { x ^ { 4 } + 0 x ^ { 3 } - 5 x ^ { 2 } - x + 6 + 1 4 }$

$$
x^{4}+2 x^{3}
$$

$$
-2 x^{3}-5 x^{2}
$$

$$
-2 x^{3}-4 x^{2}
$$

$$
-x^{2}+4 x
$$

$$
-x^{2}-2 x
$$

$6 x+14$
$\underline{6 x+12}$
2
PTS: 2
REF: 012305aii TOP: Rational Expressions
KEY: division
ANS:
8

PTS: 2 REF: 011716aii TOP: Other Systems
209 ANS:
$(1.00427)^{m}$
$1.0525^{\frac{1}{12}} \approx 1.00427$
PTS: 2 REF: 061621aii TOP: Modeling Exponential Functions
210 ANS:
0.07
$2 \times 0.035=0.07$ or $M E=\left(z \sqrt{\frac{p(1-p)}{n}}\right)=\left(1.96 \sqrt{\frac{(0.65)(0.35)}{200}}\right) \approx 0.07$
PTS: 2
REF: 012319aii TOP: Analysis of Data

211 ANS:
0
$\left(x^{2}-y^{2}\right)+(2 x y)^{2}=x^{2}+4 x^{2} y^{2}-y^{2}$
$(x-y)+\left(x^{2}-x y+y^{2}\right)=x^{2}+x-y-x y+y^{2}$
$(x-y)(x-y)\left(x^{2}+y^{2}\right)=\left(x^{2}-2 x y+y^{2}\right)\left(x^{2}+y^{2}\right)=x^{4}-2 x^{3} y+x^{2} y^{2}+x^{2} y^{2}-2 x y^{3}+y^{4}$
PTS: 2 REF: 062322aii TOP: Polynomial Identities
212 ANS:
Both a and b are positive.
$a=105,0<b<1$
PTS: 2 REF: 082314aii TOP: Modeling Exponential Functions
213 ANS:
$f^{-1}(x)=2 x-4$
$x=\frac{1}{2} y+2$
$2 x=y+4$
$y=2 x-4$
PTS: 2 REF: 012315aii TOP: Inverse of Functions
KEY: linear
214 ANS:
II, only
The 2010 population is 110 million.
PTS: 2 REF: 061718aii TOP: Modeling Exponential Functions
215 ANS:
$2 a b \sqrt[3]{a^{2}}$
$\left(a \sqrt[3]{2 b^{2}}\right)\left(\sqrt[3]{4 a^{2} b}\right)=a \sqrt[3]{8 a^{2} b^{3}}=2 a b \sqrt[3]{a^{2}}$
PTS: 2 REF: 082213aii TOP: Operations with Radicals
KEY: with variables, index >2
216
ANS:
$\frac{x}{x+2}$
$\frac{x^{2}+3 x}{x^{2}+5 x+6}=\frac{x(x+3)}{(x+2)(x+3)}$
PTS: 2
REF: 082215aii
TOP: Rational Expressions
KEY: factoring

217 ANS:
$y=-\frac{1}{16}(x-2)^{2}+1$
The distance from the vertex to the focus, p, is 4 . Since the focus is below the vertex, p is negative.
$y=-\frac{1}{4(4)}(x-2)^{2}+1$
PTS: 2 REF: 082212aii TOP: Graphing Quadratic Functions
218 ANS:
0
Since $x+4$ is a factor of $p(x)$, there is no remainder.
PTS: 2 REF: 081621aii TOP: Remainder and Factor Theorems
219 ANS:
$x^{2}-2 x+5-\frac{27}{2 x+4}$
$2 x + 4 \longdiv { 2 x ^ { 3 } + 0 x ^ { 2 } + 2 x - 7 }$

$$
\begin{array}{r}
\frac{2 x^{3}+4 x^{2}}{-4 x^{2}+2 x} \\
-4 x^{2}-8 x
\end{array}
$$

$$
10 x-7
$$

$$
\underline{10 x+20}
$$

$$
-27
$$

PTS: 2 REF: 062313aii TOP: Rational Expressions
KEY: division
220 ANS:
4.8

PTS: 2
REF: 082203aii TOP: Graphing Trigonometric Functions
KEY: amplitude
221 ANS:
$\frac{3}{2}$
$\sqrt{(-2)^{2}+(-3)^{2}}=\sqrt{13} ; \tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{-3}{\sqrt{13}}}{\frac{-2}{\sqrt{13}}}=\frac{3}{2}$
PTS: 2
REF: 062304aii TOP: Determining Trigonometric Functions
KEY: extension to reals

222 ANS:
$g_{1}=18$
$g_{n}=\frac{1}{2} g_{n-1}$
(2) is not recursive

PTS: 2 REF: 081608aii TOP: Sequences KEY: recursive
223 ANS:
7
$50(.9)^{t}=25$

$$
t \approx 6.57
$$

PTS: 2 REF: 082317aii TOP: Modeling Exponential Functions
224 ANS:
B and D
The maximum volume of $p(x)=-(x+2)(x-10)(x-14)$ is about 56 , at $x=12.1$
PTS: 2 REF: 081712aii TOP: Graphing Polynomial Functions
225 ANS:
$2 x^{2}+x+5$
$2 x - 1 \longdiv { 4 x ^ { 3 } + 0 x ^ { 2 } + 9 x - 5 }$

$$
\begin{aligned}
& \frac{4 x^{3}-2 x^{2}}{2 x^{2}+9 x} \\
& \frac{2 x^{2}-x}{10 x-5} \\
& \underline{10 x-5}
\end{aligned}
$$

PTS: 2 REF: 081713aii TOP: Rational Expressions
KEY: division
226
ANS:
proportion $\approx .16$; margin of error $\approx .02$
$\frac{212}{1334} \approx 16 \mathrm{ME}=\left(z \sqrt{\frac{p(1-p)}{n}}\right)=\left(1.96 \sqrt{\frac{(0.16)(0.84)}{1334}}\right) \approx 0.02$ or $\frac{1}{\sqrt{1334}} \approx .027$
PTS: 2
REF: 081716aii TOP: Analysis of Data

227 ANS:
$\frac{1}{2}$
$\frac{20}{14+20+6}=\frac{1}{2}$
PTS: 2 REF: 082303aii TOP: Conditional Probability
228 ANS:
$f(x)=-\frac{4}{3} x+\frac{8}{3}$
$x=-\frac{3}{4} y+2$
$-4 x=3 y-8$
$-4 x+8=3 y$
$-\frac{4}{3} x+\frac{8}{3}=y$
PTS: 2
REF: 061616aii TOP: Inverse of Functions
KEY: linear
229 ANS:
(0,2,0)

PTS: 2
REF: 062311aii TOP: Solving Linear Systems
KEY: three variables
230 ANS:
\{6\}
$\sqrt{3 x+18}=x \quad-3$ is extraneous.

$$
3 x+18=x^{2}
$$

$$
x^{2}-3 x-18=0
$$

$(x-6)(x+3)=0$

$$
x=6,-3
$$

PTS: 2
REF: 082315aii
TOP: Solving Radicals
KEY: extraneous solutions

$$
\begin{aligned}
& x+y+z=2 \quad x-2 y-z=-4 \quad 2 x-y=-2 \quad x+2+z=2 \quad x+z=0 \quad 0+2+z=2 \\
& \underline{x-2 y-z=-4} \quad \underline{x-9 y+z=-18} \quad \underline{2 x-11 y=-22} \quad x-2(2)-z=-4 \quad \underline{x-z=0} \quad z=0 \\
& 2 x-y=-2 \quad 2 x-11 y=-22 \\
& 10 y=20 \\
& 2 x=0 \\
& y=2 \\
& x=0
\end{aligned}
$$

231 ANS:
$f(x)=35,000(1.0027)^{12 x}$
$1.0325^{\frac{1}{12}} \approx 1.0027$
PTS: 2 REF: 012323aii TOP: Modeling Exponential Functions
232 ANS:
$(-0.9,1.9)$

PTS: 2
REF: 011712aii
TOP: Other Systems
233 ANS:
$h(x)=\log (x+a)+c$
PTS: 2 REF: 062308aii TOP: Graphing Logarithmic Functions
234 ANS:
\$885.76
$M=\frac{45000\left(\frac{6.75 \%}{12}\right)\left(1+\frac{6.75 \%}{12}\right)^{5 \times 12}}{\left(1+\frac{6.75 \%}{12}\right)^{5 \times 12}-1} \approx 885.76$
PTS: 2 REF: 082316aii TOP: Evaluating Exponential Expressions
235 ANS:
$-\frac{3}{4}+\frac{1}{4} i \sqrt{7}$
$x=\frac{-3 \pm \sqrt{3^{2}-4(2)(2)}}{2(2)}=\frac{-3 \pm \sqrt{-7}}{4}=-\frac{3}{4} \pm \frac{i \sqrt{7}}{4}$
PTS: 2
REF: 061612aii TOP: Solving Quadratics
KEY: complex solutions | quadratic formula

236 ANS:
$2 \pm 3 i$
$x^{2}-4 x+4=-13+4$

$$
\begin{aligned}
(x-2)^{2} & =-9 \\
x-2 & = \pm 3 i \\
x & =2 \pm 3 i
\end{aligned}
$$

PTS: 2 REF: 062312aii TOP: Solving Quadratics
KEY: complex solutions | completing the square
237 ANS:
3

$$
(6-k i)^{2}=27-36 i
$$

$36-12 k i+k^{2} i^{2}=27-36 i$
$9-k^{2}-12 k i=-36 i$
Set real part equal to real part: $9-k^{2}=0 \quad$ Set imaginary part equal to imaginary part: $\quad-12 k i=-36 i$

$$
k= \pm 3
$$

$$
\begin{gathered}
\frac{-12 k i}{-12 i}=\frac{-36 i}{-12 i} \\
k=3
\end{gathered}
$$

PTS: 2 REF: 012308aii TOP: Operations with Complex Numbers
ANS:
2

PTS: 2
REF: 082319aii TOP: Other Systems
239
ANS:
56
$P(28)=5(2)^{\frac{98}{28}} \approx 56$
PTS: 2
REF: 011702aii TOP: Modeling Exponential Functions

240 ANS:
$x<-2$ or $x>3$

PTS: 2 REF: 012316aii TOP: Graphing Polynomial Functions
241 ANS:
$\{-5,-3,2,3\}$

PTS: 2
REF: 062303aii TOP: Solving Polynomial Equations
242
ANS:
$-\frac{3}{5}$
$\cos \theta=-\frac{6}{10}=-\frac{3}{5}$

PTS: 2
REF: 061617aii
TOP: Determining Trigonometric Functions
KEY: extension to reals
243 ANS:
$f(n)=-8.75+0.75 n$
PTS: 2
REF: 061720aii
TOP: Sequences
KEY: explicit

244 ANS:
$\frac{3}{5}$
A reference triangle can be sketched using the coordinates $(-4,3)$ in the second quadrant to find the value of $\sin \theta$.

PTS: 2 REF: spr1503aii TOP: Determining Trigonometric Functions
KEY: extension to reals
245 ANS:
$P(t)=500(1.00247)^{12 t}$
$\left(1.03^{\frac{1}{12}}\right)^{12 t} \approx 1.00247^{12 t}$
PTS: 2 REF: 062224aii TOP: Modeling Exponential Functions
246 ANS:
[33,79]
$-23(1)+56=33 ;-23(-1)+56=79$
PTS: 2 REF: 062305aii TOP: Domain and Range
KEY: real domain, trigonometric
247 ANS:

The zeros of the polynomial are at $-b$, and c. The sketch of a polynomial of degree 3 with a negative leading coefficient should have end behavior showing as x goes to negative infinity, $f(x)$ goes to positive infinity. The multiplicities of the roots are correctly represented in the graph.

PTS: 2
REF: spr1501aii TOP: Graphing Polynomial Functions
KEY: bimodalgraph
248
ANS:
$-y^{2}-4 y i+4$
$(2-y i)(2-y i)=4-4 y i+y^{2} i^{2}=-y^{2}-4 y i+4$
PTS: 2
REF: 061603aii TOP: Operations with Complex Numbers

249 ANS:
496 ± 230
$496 \pm 2(115)$
PTS: 2 REF: 011718aii TOP: Normal Distributions
KEY: interval
250 ANS:
$-\frac{2}{3}$
$\sin ^{2} A+\left(\frac{\sqrt{5}}{3}\right)^{2}=1 \quad$ Since $\tan A<0, \sin A=-\frac{2}{3}$
$\sin ^{2} A+\frac{5}{9}=\frac{9}{9}$
$\sin ^{2} A=\frac{4}{9}$
$\sin A= \pm \frac{2}{3}$
PTS: 2 REF: 012320aii TOP: Determining Trigonometric Functions
251 ANS:
$\frac{13}{24}$
$\frac{13}{13+11}=\frac{13}{24}$
PTS: 2 REF: 012011aii TOP: Conditional Probability
252 ANS:
1,850,000
$y=1.77(1.18)^{x} \quad y(41) \approx 1,850,950$
PTS: 2 REF: 062314aii TOP: Regression KEY: exponential
253 ANS:
$(3,1)$

$$
\begin{aligned}
y & =-(x-1)^{2}+5 \quad 3+y=4 \\
4-x & =-x^{2}+2 x-1+5 \quad y=1 \\
x^{2}-3 x & =0 \\
x(x-3) & =0 \\
x & =0,3
\end{aligned}
$$

PTS: 2 REF: 082305aii TOP: Quadratic-Linear Systems

254 ANS:
$2,-2, i$, and $-i$
PTS: 2 REF: 081708aii TOP: Solving Polynomial Equations
255 ANS:
1660
PTS: 2 REF: 062214aii TOP: Normal Distributions
KEY: predict
256 ANS:
$P=12,150(0.679)^{d}$
$.962^{10} \approx .679$
PTS: 2 REF: 082311aii TOP: Modeling Exponential Functions
257 ANS:
18\%
$45 \%+31 \%-58 \%=18 \%$
PTS: 2 REF: 082307aii TOP: Theoretical Probability
258 ANS:
150°
PTS: 2 REF: 082205aii TOP: Unit Circle
259 ANS:
$-2+\ln \left(\frac{7}{5}\right)$
$\ln e^{x+2}=\ln \frac{7}{5}$
$(x+2) \ln e=\ln \frac{7}{5}$

$$
x=-2+\ln \frac{7}{5}
$$

PTS: 2 REF: 062207aii TOP: Exponential Equations
KEY: without common base
260
ANS:
I and III
$(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \neq x^{3}+3 x y+y^{3}$
PTS: 2 REF: 081620aii TOP: Polynomial Identities
261 ANS:
left a units, down b units
PTS: 2 REF: 061706aii TOP: Graphing Trigonometric Functions

262
ANS:
$y=-\frac{1}{8}(x-2)^{2}-1$
The vertex is $(2,-1)$ and $p=2 . y=-\frac{1}{4(2)}(x-2)^{2}-1$

PTS: 2 REF: 081619aii TOP: Graphing Quadratic Functions
263 ANS:
$B(t)=750(1.012)^{12 t}$
$B(t)=750\left(1.16^{\frac{1}{12}}\right)^{12 t} \approx 750(1.012)^{12 t} \quad B(t)=750\left(1+\frac{0.16}{12}\right)^{12 t} \quad$ is wrong, because the growth is an annual rate that is not compounded monthly.

PTS: 2 REF: spr1504aii TOP: Modeling Exponential Functions
264 ANS:
\{-6\}
$\frac{(x+3)(x+2)}{(x-5)(x+2)}+\frac{6(x-5)}{(x+2)(x-5)}=\frac{6+10 x}{(x-5)(x+2)} 5$ is extraneous.

$$
\begin{aligned}
x^{2}+5 x+6+6 x-30 & =10 x+6 \\
x^{2}+x-30 & =0 \\
(x+6)(x-5) & =0 \\
x & =-6,5
\end{aligned}
$$

PTS: 2 REF: 062319aii TOP: Solving Rationals
265 ANS:
$(x-4)^{2}=-8(y+1)$
The distance between the focus and directrix is $1--3=4 . p$ is half this distance, or 2 . The vertex of the parabola is $(4,-1)$. Since the directrix is above the focus, the parabola faces downward. $y=-\frac{1}{4 p}(x-h)^{2}+k$

$$
\begin{aligned}
& y=-\frac{1}{4(2)}(x-4)^{2}-1 \\
& y+1=-\frac{1}{8}(x-4)^{2}
\end{aligned}
$$

PTS: 2
REF: 012322aii
TOP: Graphing Quadratic Functions

266 ANS:

$$
\begin{aligned}
& 2 d(d+3)^{2}(d-3) \\
& 2 d\left(d^{3}+3 d^{2}-9 d-27\right) \\
& 2 d\left(d^{2}(d+3)-9(d+3)\right) \\
& 2 d\left(d^{2}-9\right)(d+3) \\
& 2 d(d+3)(d-3)(d+3) \\
& 2 d(d+3)^{2}(d-3)
\end{aligned}
$$

PTS: 2 REF: 081615aii TOP: Factoring Polynomials
KEY: factoring by grouping
267 ANS:

PTS: 2 REF: 081603aii TOP: Other Systems
268 ANS:
$j_{1}=250,000$
$j_{n}=1.00375 j_{n-1}$
PTS: 2 REF: 061623aii TOP: Sequences
269 ANS:
$f(x)=\frac{3}{2} x-\frac{1}{4}$
$x=\frac{2}{3} y+\frac{1}{6}$
$6 x=4 y+1$
$4 y=6 x-1$
$y=\frac{6}{4} x-\frac{1}{4}$
PTS: 2
KEY: linear
ANS:
$300(1.30)^{\frac{365}{14}}$
PTS: 2
REF: 081622aii
TOP: Modeling Exponential Functions

271 ANS:
-2.41,5
PTS: 2 REF: 012317aii TOP: Other Systems
272 ANS:
8.5
$a_{2}=8+\log _{2+1} 1=8+0=8$
$a_{3}=8+\log _{3+1} 2=8+\frac{1}{2}=8.5$
PTS: 2
REF: 062221aii TOP: Sequences
273 ANS:
$f^{-1}(x)=\frac{x+4}{12}$
$x=12 y-4$
$x+4=12 y$
$\frac{x+4}{12}=y$

PTS: 2
REF: 082304aii
TOP: Inverse of Functions
KEY: linear
274 ANS:
$P_{0}=19,378,000$
$P_{t}=1.015 P_{t-1}$
PTS: 2 REF: 081624aii TOP: Sequences
275 ANS:
$x+2$
PTS: 2
REF: 082324aii TOP: Graphing Polynomial Functions

