\qquad

Calculus Practice: Derivatives of Functions 2b

For each problem, find the slope of the function at the given value.

1) $f(x)=-2 x^{2}-12 x-16$ at $x=-4$
2) $f(x)=-2 x^{2}+6$ at $x=-2$
3) $f(x)=-x^{3}+4 x^{2}-7$ at $x=3$
4) $f(x)=x^{3}-x^{2}$ at $x=1$
5) $f(x)=-\frac{1}{x^{2}+1}$ at $x=3$
6) $f(x)=\frac{3}{x^{2}-16}$ at $x=-1$
7) $f(x)=\frac{2}{x^{2}-16}$ at $x=3$
8) $f(x)=\frac{2}{x-1}$ at $x=4$
9) $f(x)=(x+4)^{\frac{1}{3}}$ at $x=5$
10) $f(x)=(-3 x+6)^{\frac{1}{2}}$ at $x=-4$
11) $f(x)=-(2 x-8)^{\frac{2}{3}}$ at $x=1$
12) $f(x)=-(x+4)^{\frac{1}{3}}$ at $x=5$
13) $f(x)=\ln (-x+4)$ at $x=-2$
14) $f(x)=e^{x+3}$ at $x=-2$
15) $f(x)=-2 \csc (2 x)$ at $x=-\frac{3 \pi}{4}$
16) $f(x)=2 \csc (2 x)$ at $x=-\frac{3 \pi}{4}$
17) $f(x)=2 \cos (2 x)$ at $x=\frac{\pi}{2}$
\qquad

Calculus Practice: Derivatives of Functions 2b

For each problem, find the slope of the function at the given value.

1) $f(x)=-2 x^{2}-12 x-16$ at $x=-4$
2) $f(x)=-2 x^{2}+6$ at $x=-2$
8
3) $f(x)=-x^{3}+4 x^{2}-7$ at $x=3$ -3
4) $f(x)=x^{3}-x^{2}$ at $x=1$

1
5) $f(x)=-\frac{1}{x^{2}+1}$ at $x=3$
6) $f(x)=\frac{3}{x^{2}-16}$ at $x=-1$
$\frac{3}{50}$

$$
\frac{2}{75}
$$

7) $f(x)=\frac{2}{x^{2}-16}$ at $x=3$
$-\frac{12}{49}$
8) $f(x)=\frac{2}{x-1}$ at $x=4$
$-\frac{2}{9}$
9) $f(x)=(x+4)^{\frac{1}{3}}$ at $x=5$
$\sqrt[3]{9}$
27
10) $f(x)=(-3 x+6)^{\frac{1}{2}}$ at $x=-4$

$$
-\frac{\sqrt{2}}{4}
$$

11) $f(x)=-(2 x-8)^{\frac{2}{3}}$ at $x=1$
$\frac{2 \sqrt[3]{36}}{9}$
12) $f(x)=-(x+4)^{\frac{1}{3}}$ at $x=5$

$$
-\frac{\sqrt[3]{9}}{27}
$$

13) $f(x)=\ln (-x+4)$ at $x=-2$
$-\frac{1}{6}$
14) $f(x)=e^{x+3}$ at $x=-2$
e
15) $f(x)=-2 \csc (2 x)$ at $x=-\frac{3 \pi}{4}$

0
14) $f(x)=\ln (-x)$ at $x=-2$ $-\frac{1}{2}$
16) $f(x)=-\ln (-x+2)$ at $x=0$ $\frac{1}{2}$
18) $f(x)=-2 \tan (x)$ at $x=0$
-2
19) $f(x)=2 \csc (2 x)$ at $x=-\frac{3 \pi}{4}$

0
20) $f(x)=2 \cos (2 x)$ at $x=\frac{\pi}{2}$

0

