Calculus Practice: Optimization 2

Solve each optimization problem.

1) Which points on the graph of $y=3-x^{2}$ are closest to the point $(0,2)$?
2) Which point on the graph of $y=\sqrt{x}$ is closest to the point $(4,0)$?
3) A geometry student wants to draw a rectangle inscribed in the ellipse $x^{2}+4 y^{2}=36$. What is the area of the largest rectangle that the student can draw?
4) A geometry student wants to draw a rectangle inscribed in a semicircle of radius 8 . If one side must be on the semicircle's diameter, what is the area of the largest rectangle that the student can draw?
5) A graphic designer is asked to create a movie poster with a $50 \mathrm{in}^{2}$ photo surrounded by a 2 in border at the top and bottom and a 1 in border on each side. What overall dimensions for the poster should the designer choose to use the least amount of paper?
6) Engineers are designing a box-shaped aquarium with a square bottom and an open top. The aquarium must hold $1372 \mathrm{ft}^{3}$ of water. What dimensions should they use to create an acceptable aquarium with the least amount of glass?
© 2022 Kuta Software Llc. All rightsreserved.

Calculus Practice: Optimization 2

Solve each optimization problem.

1) Which points on the graph of $y=3-x^{2}$ are closest to the point $(0,2)$?
$d=$ the distance from point $(0,2)$ to a point on the parabola $\quad x=$ the x-coord. of a point on the parabola Function to minimize: $d=\sqrt{x^{2}+\left(3-x^{2}-2\right)^{2}}$ where $-\infty<x<\infty$
Points on the parabola that are closest to the point $(0,2):\left(-\frac{\sqrt{2}}{2}, \frac{5}{2}\right),\left(\frac{\sqrt{2}}{2}, \frac{5}{2}\right)$
2) Which point on the graph of $y=\sqrt{x}$ is closest to the point $(4,0)$?
$d=$ the distance from point $(4,0)$ to a point on the curve $x=$ the x-coordinate of a point on the curve Function to minimize: $d=\sqrt{(x-4)^{2}+(\sqrt{x})^{2}}$ where $-\infty<x<\infty$
Point on the curve that is closest to the point $(4,0):\left(\frac{7}{2}, \frac{\sqrt{14}}{2}\right)$
3) A geometry student wants to draw a rectangle inscribed in the ellipse $x^{2}+4 y^{2}=36$. What is the area of the largest rectangle that the student can draw?
$A=$ the area of the rectangle $x=$ half the base of the rectangle Function to maximize: $A=2 x \cdot 2 \cdot \frac{\sqrt{36-x^{2}}}{2}$ where $0<x<6$
Area of largest rectangle: 36
4) A geometry student wants to draw a rectangle inscribed in a semicircle of radius 8 . If one side must be on the semicircle's diameter, what is the area of the largest rectangle that the student can draw?
$A=$ the area of the rectangle $x=$ half the base of the rectangle
Function to maximize: $A=2 x \sqrt{8^{2}-x^{2}}$ where $0<x<8$
Area of largest rectangle: 64
5) A graphic designer is asked to create a movie poster with a $50 \mathrm{in}^{2}$ photo surrounded by a 2 in border at the top and bottom and a 1 in border on each side. What overall dimensions for the poster should the designer choose to use the least amount of paper?
$A=$ the area of the poster $\quad x=$ the width of the photo
Function to minimize: $A=(x+2 \cdot 1)\left(\frac{50}{x}+2 \cdot 2\right)$ where $0<x<\infty$
Dimensions of the entire poster: 7 in wide by 14 in tall
6) Engineers are designing a box-shaped aquarium with a square bottom and an open top. The aquarium must hold $1372 \mathrm{ft}^{3}$ of water. What dimensions should they use to create an acceptable aquarium with the least amount of glass?
$A=$ the area of the glass $x=$ the length of the sides of the square bottom
Function to minimize: $A=x^{2}+4 x \cdot \frac{1372}{x^{2}}$ where $0<x<\infty$
Dimensions of the aquarium: 14 ft by 14 ft by 7 ft tall
