www.jmap.org Name © 2022 Kuta Software LLC. All rights reserved. Calculus Practice: Optimization 2

Solve each optimization problem.

1) Which points on the graph of $y = 3 - x^2$ are closest to the point (0, 2)?

2) Which point on the graph of $y = \sqrt{x}$ is closest to the point (4, 0)?

3) A geometry student wants to draw a rectangle inscribed in the ellipse $x^2 + 4y^2 = 36$. What is the area of the largest rectangle that the student can draw? 4) A geometry student wants to draw a rectangle inscribed in a semicircle of radius 8. If one side must be on the semicircle's diameter, what is the area of the largest rectangle that the student can draw?

5) A graphic designer is asked to create a movie poster with a 50 in² photo surrounded by a 2 in border at the top and bottom and a 1 in border on each side. What overall dimensions for the poster should the designer choose to use the least amount of paper?

6) Engineers are designing a box-shaped aquarium with a square bottom and an open top. The aquarium must hold 1372 ft³ of water. What dimensions should they use to create an acceptable aquarium with the least amount of glass?

www.jmap.org Name_ © 2022 Kuta Software LLC. All rights reserved. Calculus Practice: Optimization 2

Solve each optimization problem.

1) Which points on the graph of $y = 3 - x^2$ are closest to the point (0, 2)?

d = the distance from point (0, 2) to a point on the parabola x = the *x*-coord. of a point on the parabola Function to minimize: $d = \sqrt{x^2 + (3 - x^2 - 2)^2}$ where $-\infty < x < \infty$ Points on the parabola that are closest to the point (0, 2): $\left(-\frac{\sqrt{2}}{2}, \frac{5}{2}\right), \left(\frac{\sqrt{2}}{2}, \frac{5}{2}\right)$

2) Which point on the graph of $y = \sqrt{x}$ is closest to the point (4, 0)?

d = the distance from point (4, 0) to a point on the curve x = the *x*-coordinate of a point on the curve Function to minimize: $d = \sqrt{(x-4)^2 + (\sqrt{x})^2}$ where $-\infty < x < \infty$ Point on the curve that is closest to the point (4, 0): $\left(\frac{7}{2}, \frac{\sqrt{14}}{2}\right)$

3) A geometry student wants to draw a rectangle inscribed in the ellipse $x^2 + 4y^2 = 36$. What is the area of the largest rectangle that the student can draw?

A = the area of the rectangle x = half the base of the rectangle Function to maximize: $A = 2x \cdot 2 \cdot \frac{\sqrt{36 - x^2}}{2}$ where 0 < x < 6Area of largest rectangle: 36 4) A geometry student wants to draw a rectangle inscribed in a semicircle of radius 8. If one side must be on the semicircle's diameter, what is the area of the largest rectangle that the student can draw?

A = the area of the rectangle x = half the base of the rectangleFunction to maximize: $A = 2x\sqrt{8^2 - x^2}$ where 0 < x < 8Area of largest rectangle: 64

5) A graphic designer is asked to create a movie poster with a 50 in² photo surrounded by a 2 in border at the top and bottom and a 1 in border on each side. What overall dimensions for the poster should the designer choose to use the least amount of paper?

A = the area of the poster x = the width of the photo Function to minimize: $A = (x + 2 \cdot 1) \left(\frac{50}{x} + 2 \cdot 2\right)$ where $0 < x < \infty$ Dimensions of the entire poster: 7 in wide by 14 in tall

6) Engineers are designing a box-shaped aquarium with a square bottom and an open top. The aquarium must hold 1372 ft³ of water. What dimensions should they use to create an acceptable aquarium with the least amount of glass?

A = the area of the glass x = the length of the sides of the square bottom Function to minimize: $A = x^2 + 4x \cdot \frac{1372}{x^2}$ where $0 < x < \infty$ Dimensions of the aquarium: 14 ft by 14 ft by 7 ft tall