(C) 2022 Kuta $\operatorname{Softwared} \mathrm{L}$ C

A $1 \quad \mathrm{r}$ ights r es erved.

Calculus Practice: Related Rates 1

Solve each related rate problem.

1) A hypothetical square grows so that the length of its diagonals are increasing at a rate of $5 \mathrm{~m} / \mathrm{min}$. How fast is the area of the square increasing when the diagonals are 12 m each?
2) A 17 ft ladder is leaning against a wall and sliding towards the floor. The top of the ladder is sliding down the wall at a rate of $5 \mathrm{ft} / \mathrm{sec}$. How fast is the base of the ladder sliding away from the wall when the base of the ladder is 15 ft from the wall?
3) Water slowly evaporates from a circular shaped puddle. The radius of the puddle decreases at a rate of $9 \mathrm{in} / \mathrm{hr}$. Assuming the puddle retains its circular shape, at what rate is the area of the puddle changing when the radius is 6 in?
4) A hypothetical cube grows so that the length of its sides are increasing at a rate of 3 $\mathrm{m} / \mathrm{min}$. How fast is the volume of the cube increasing when the sides are 2 m each?
5) A spherical snowball is rolled in fresh snow, causing it to grow so that its radius increases at a rate of $2 \mathrm{in} / \mathrm{sec}$. How fast is the volume of the snowball increasing when the radius is 8 in?
6) A conical paper cup is 10 cm tall with a radius of 20 cm . The cup is being filled with water so that the water level rises at a rate of $4 \mathrm{~cm} / \mathrm{sec}$. At what rate is water being poured into the cup when the water level is 7 cm ?

Calculus Practice: Related Rates 1

Solve each related rate problem.

1) A hypothetical square grows so that the length of its diagonals are increasing at a rate of $5 \mathrm{~m} / \mathrm{min}$. How fast is the area of the square increasing when the diagonals are 12 m each?

$$
\begin{aligned}
& A=\text { area of square } \quad x=\text { length of diagonals } \quad t=\text { time } \\
& \text { Equation: } A=\frac{x^{2}}{2} \quad \text { Given rate: } \frac{d x}{d t}=5 \quad \text { Find: }\left.\frac{d A}{d t}\right|_{x=12} \\
& \left.\frac{d A}{d t}\right|_{x=12}=x \cdot \frac{d x}{d t}=60 \mathrm{~m}^{2} / \mathrm{min}
\end{aligned}
$$

2) A 17 ft ladder is leaning against a wall and sliding towards the floor. The top of the ladder is sliding down the wall at a rate of $5 \mathrm{ft} / \mathrm{sec}$. How fast is the base of the ladder sliding away from the wall when the base of the ladder is 15 ft from the wall?
$x=$ horizontal distance from base of ladder to wall $y=$ vertical distance from top of ladder to floor $t=$ tim

$$
\text { Equation: } x^{2}+y^{2}=17^{2} \quad \text { Given rate: } \frac{d y}{d t}=-5 \quad \text { Find: }\left.\frac{d x}{d t}\right|_{x=15}
$$

$$
\left.\frac{d x}{d t}\right|_{x=15}=-\frac{y}{x} \cdot \frac{d y}{d t}=\frac{8}{3} \mathrm{ft} / \mathrm{sec}
$$

3) Water slowly evaporates from a circular shaped puddle. The radius of the puddle decreases at a rate of $9 \mathrm{in} / \mathrm{hr}$. Assuming the puddle retains its circular shape, at what rate is the area of the puddle changing when the radius is 6 in?

$$
\begin{aligned}
& A=\text { area of circle } \quad r=\text { radius } \quad t=\text { time } \\
& \text { Equation: } A=\pi r^{2} \quad \text { Given rate: } \frac{d r}{d t}=-9 \quad \text { Find: }\left.\frac{d A}{d t}\right|_{r=6} \\
& \left.\frac{d A}{d t}\right|_{r=6}=2 \pi r \cdot \frac{d r}{d t}=-108 \pi \mathrm{in}^{2} / \mathrm{hr}
\end{aligned}
$$

4) A hypothetical cube grows so that the length of its sides are increasing at a rate of 3 $\mathrm{m} / \mathrm{min}$. How fast is the volume of the cube increasing when the sides are 2 m each?

$$
V=\text { volume of cube } s=\text { length of sides } t=\text { time }
$$

Equation: $V=s^{3} \quad$ Given rate: $\frac{d s}{d t}=3 \quad$ Find: $\left.\frac{d V}{d t}\right|_{s=2}$

$$
\left.\frac{d V}{d t}\right|_{s=2}=3 s^{2} \cdot \frac{d s}{d t}=36 \mathrm{~m}^{3} / \mathrm{min}
$$

5) A spherical snowball is rolled in fresh snow, causing it to grow so that its radius increases at a rate of $2 \mathrm{in} / \mathrm{sec}$. How fast is the volume of the snowball increasing when the radius is 8 in?

$$
\begin{aligned}
& V=\text { volume of sphere } \quad r=\text { radius } t=\text { time } \\
& \text { Equation: } V=\frac{4}{3} \pi r^{3} \quad \text { Given rate: } \frac{d r}{d t}=2 \quad \text { Find: }\left.\frac{d V}{d t}\right|_{r=8} \\
& \left.\frac{d V}{d t}\right|_{r=8}=4 \pi r^{2} \cdot \frac{d r}{d t}=512 \pi \mathrm{in}^{3} / \mathrm{sec}
\end{aligned}
$$

6) A conical paper cup is 10 cm tall with a radius of 20 cm . The cup is being filled with water so that the water level rises at a rate of $4 \mathrm{~cm} / \mathrm{sec}$. At what rate is water being poured into the cup when the water level is 7 cm ?

$$
\begin{aligned}
& V=\text { volume of material in cone } h=\text { height } \quad t=\text { time } \\
& \text { Equation: } V=\frac{4 \pi h^{3}}{3} \text { Given rate: } \frac{d h}{d t}=4 \quad \text { Find: }\left.\frac{d V}{d t}\right|_{h=7} \\
& \left.\frac{d V}{d t}\right|_{h=7}=4 \pi h^{2} \cdot \frac{d h}{d t}=784 \pi \mathrm{~cm}^{3} / \mathrm{sec}
\end{aligned}
$$

