\qquad

F.BF.A.1: Sequences 2

1 Which function could be used to represent the sequence $8,20,50,125,312.5, \ldots$, given that $a_{1}=8$?

1) $a_{n}=a_{n-1}+a_{1}$
2) $a_{n}=2.5\left(a_{n-1}\right)$
3) $a_{n}=a_{1}+1.5\left(a_{n-1}\right)$
4) $a_{n}=\left(a_{1}\right)\left(a_{n-1}\right)$

2 In 2014, the cost to mail a letter was 49 d for up to one ounce. Every additional ounce cost 21ϕ. Which recursive function could be used to determine the cost of a 3 -ounce letter, in cents?

1) $a_{1}=49 ; a_{n}=a_{n-1}+21$
2) $a_{1}=0 ; a_{n}=49 a_{n-1}+21$
3) $a_{1}=21 ; a_{n}=a_{n-1}+49$
4) $a_{1}=0 ; a_{n}=21 a_{n-1}+49$

3 The formula below can be used to model which scenario?

$$
\begin{aligned}
& a_{1}=3000 \\
& a_{n}=0.80 a_{n-1}
\end{aligned}
$$

1) The first row of a stadium has 3000 seats, and each row thereafter has 80 more seats than the row in front of it.
2) The last row of a stadium has 3000 seats, and each row before it has 80 fewer seats than the row behind it.
3) A bank account starts with a deposit of $\$ 3000$, and each year it grows by 80%.
4) The initial value of a specialty toy is $\$ 3000$, and its value each of the following years is 20% less.

4 Write a recursive formula for the sequence $6,9,13.5,20.25, \ldots$

5 Write a recursive formula for the sequence 189, 63, 21,7, ...

6 Write a recursive formula, a_{n}, to describe the sequence graphed below.

7 While experimenting with her calculator, Candy creates the sequence $4,9,19,39,79, \ldots$. Write a recursive formula for Candy's sequence. Determine the eighth term in Candy's sequence.

F.BF.A.1: Sequences 2

Answer Section

1 ANS: 2 REF: 011919ai
2 ANS: 1 REF: 011708ai
3 ANS: 4
The scenario represents a decreasing geometric sequence with a common ratio of 0.80 .
REF: 061610aii
4 ANS:

$$
\begin{aligned}
\frac{9}{6}=1.5 & a_{1}
\end{aligned}=6
$$

REF: 061931aii
5 ANS:
$\frac{63}{189}=\frac{1}{3} \quad a_{1}=189$

$$
a_{n}=\frac{1}{3} a_{n-1}
$$

REF: 062329aii
6 ANS:
$a_{1}=4$
$a_{n}=3 a_{n-1}$
REF: 081931aii
7 ANS:
$a_{1}=4 \quad a_{8}=639$
$a_{n}=2 a_{n-1}+1$
REF: 081729aii

