\qquad www.jmap.org

F.BF.A.1: Sequences 3

1 Which recursively defined function has a first term equal to 10 and a common difference of 4 ?

1) $f(1)=10$

$$
f(x)=f(x-1)+4
$$

2) $f(1)=4$

$$
f(x)=f(x-1)+10
$$

3) $f(1)=10$

$$
f(x)=4 f(x-1)
$$

4) $f(1)=4$

$$
f(x)=10 f(x-1)
$$

2 Which function defines the sequence $-6,-10,-14,-18, \ldots$, where $f(6)=-26$?

1) $f(x)=-4 x-2$
2) $f(x)=4 x-2$
3) $f(x)=-x+32$
4) $f(x)=x-26$

3 Given $f(9)=-2$, which function can be used to generate the sequence $-8,-7.25,-6.5,-5.75, \ldots$?

1) $f(n)=-8+0.75 n$
2) $f(n)=-8-0.75(n-1)$
3) $f(n)=-8.75+0.75 n$
4) $f(n)=-0.75+8(n-1)$

4 If the pattern below continues, which equation(s) is a recursive formula that represents the number of squares in this sequence?

Design 1

Design 2

Design 3

Design 4

5 Given the pattern below, which recursive formula represents the number of triangles in this sequence?

Δ

1) $y=2 x+3$
2) $y=3 x+2$
3) $a_{1}=2$
$a_{n}=a_{n-1}+3$

$$
\text { 4) } \begin{aligned}
& a_{1}=3 \\
& a_{n}=a_{n-1}+2
\end{aligned}
$$

6 Which recursively defined function represents the sequence $3,7,15,31, \ldots$?

1) $f(1)=3, f(n+1)=2^{f(n)}+3$
2) $f(1)=3, f(n+1)=2^{f(n)}-1$
3) $f(1)=3, f(n+1)=2 f(n)+1$
4) $f(1)=3, f(n+1)=3 f(n)-2$

7 A sunflower is 3 inches tall at week 0 and grows 2 inches each week. Which function(s) shown below can be used to determine the height, $f(n)$, of the sunflower in n weeks?
I. $f(n)=2 n+3$
II. $f(n)=2 n+3(n-1)$
III. $f(n)=f(n-1)+2$ where $f(0)=3$

1) I and II
2) II, only
3) III, only
4) I and III
5) $y=2 x+1$
6) $y=2 x+3$
7) $a_{1}=3$
$a_{n}=a_{n-1}+2$
8) $a_{1}=1$
$a_{n}=a_{n-1}+2$

F.BF.A.1: Sequences 3

Answer Section

1	ANS: 1	REF: 081514ai
2	ANS:	REF: 081610ai
3	ANS: 3	REF: 061720aii
4	ANS: 3	REF: 011818ai
5	ANS: 4	REF: 062121ai
6	ANS: 3	REF: 011618ai
7	ANS: 4	REF: 061421ai

