Regents Exam Questions F.IF.B.5: Domain and Range 2 www.jmap.org

F.IF.B.5: Domain and Range 2

- 1 Skyler mows lawns in the summer. The function f(x) is used to model the amount of money earned, where x is the number of lawns completely mowed. A reasonable domain for this function would be
 - 1) real numbers
 - 2) rational numbers
 - 3) irrational numbers
 - 4) natural numbers
- 2 Which domain is most appropriate for a function that represents the number of items, f(x), placed into a laundry basket each day, x, for the month of January?
 - 1) integers
 - 2) whole numbers
 - 3) rational numbers
 - 4) irrational numbers
- 3 Which domain would be the most appropriate set to use for a function that predicts the number of household online-devices in terms of the number of people in the household?
 - 1) integers
 - 2) whole numbers
 - 3) irrational numbers
 - 4) rational numbers
- 4 Which domain would be the most appropriate to use for a function that compares the number of emails sent (*x*) to the amount of data used for a cell phone plan (*y*)?
 - 1) integers
 - 2) whole numbers
 - 3) rational numbers
 - 4) irrational numbers

- 5 A dolphin jumps out of the water and then back into the water. His jump could be graphed on a set of axes where *x* represents time and *y* represents distance above or below sea level. The domain for this graph is best represented using a set of
 - 1) integers
 - 2) positive integers
 - 3) real numbers
 - 4) positive real numbers
- 6 A construction company uses the function f(p), where p is the number of people working on a project, to model the amount of money it spends to complete a project. A reasonable domain for this function would be
 - 1) positive integers
 - 2) positive real numbers
 - 3) both positive and negative integers
 - 4) both positive and negative real numbers
- 7 A store sells self-serve frozen yogurt sundaes. The function C(w) represents the cost, in dollars, of a sundae weighing *w* ounces. An appropriate domain for the function would be
 - 1) integers
 - 2) rational numbers
 - 3) nonnegative integers
 - 4) nonnegative rational numbers
- 8 The function G(m) represents the amount of gasoline consumed by a car traveling *m* miles. An appropriate domain for this function would be
 - 1) integers
 - 2) rational numbers
 - 3) nonnegative integers
 - 4) nonnegative rational numbers

Name:

Regents Exam Questions F.IF.B.5: Domain and Range 2 www.jmap.org

- 9 A grocery store sells packages of beef. The function C(w) represents the cost, in dollars, of a package of beef weighing w pounds. The most appropriate domain for this function would be
 - 1) integers
 - 2) rational numbers
 - 3) positive integers
 - 4) positive rational numbers
- 10 The daily cost of production in a factory is calculated using c(x) = 200 + 16x, where x is the number of complete products manufactured. Which set of numbers best defines the domain of c(x)?
 - 1) integers
 - 2) positive real numbers
 - 3) positive rational numbers
 - 4) whole numbers
- 11 A store manager is trying to determine if they should continue to sell a particular brand of nails. To model their profit, they use the function p(n), where *n* is the number of boxes of these nails sold in a day. A reasonable domain for this function would be
 - 1) nonnegative integers
 - 2) rational numbers
 - 3) real numbers
 - 4) integers
- 12 An online company lets you download songs for \$0.99 each after you have paid a \$5 membership fee. Which domain would be most appropriate to calculate the cost to download songs?
 - 1) rational numbers greater than zero
 - 2) whole numbers greater than or equal to one
 - 3) integers less than or equal to zero
 - 4) whole numbers less than or equal to one

13 At an ice cream shop, the profit, P(c), is modeled by the function P(c) = 0.87c, where *c* represents the number of ice cream cones sold. An appropriate domain for this function is

- 1) an integer ≤ 0
- 2) an integer ≥ 0
- 3) a rational number ≤ 0
- 4) a rational number ≥ 0
- 14 Officials in a town use a function, C, to analyze traffic patterns. C(n) represents the rate of traffic through an intersection where n is the number of observed vehicles in a specified time interval. What would be the most appropriate domain for the function?
 - 1) $\{\ldots -2, -1, 0, 1, 2, 3, \ldots\}$
 - $2) \quad \{-2, -1, 0, 1, 2, 3\}$
 - 3) $\{0, \frac{1}{2}, 1, 1\frac{1}{2}, 2, 2\frac{1}{2}\}$
 - 4) $\{0, 1, 2, 3, \dots\}$
- 15 The function $h(t) = -16t^2 + 144$ represents the height, h(t), in feet, of an object from the ground at *t* seconds after it is dropped. A realistic domain for this function is
 - 1) $-3 \le t \le 3$
 - $2) \quad 0 \le t \le 3$
 - $3) \quad 0 \le h(t) \le 144$
 - 4) all real numbers
- 16 A population of paramecia, *P*, can be modeled using the exponential function $P(t) = 3(2)^t$, where *t* is the number of days since the population was first observed. Which domain is most appropriate to use to determine the population over the course of the first two weeks?
 - 1) $t \ge 0$
 - 2) *t* ≤ 2
 - 3) $0 \le t \le 2$
 - $4) \quad 0 \le t \le 14$

Name:

F.IF.B.5: Domain and Range 2 Answer Section

1	ANS:	4	REF:	012313ai	
2	ANS:	2	REF:	062206ai	
3	ANS:	2	REF:	011506ai	
4	ANS:	2	REF:	062116ai	
5	ANS:	4			
	Time is continuous and positive.				
	DEE	0810215			
6	ANG.	1	DEE.	011615	
0	ANG.	1	NEF.	0(1(22))	
/	ANS:	4	KEF:	061623ai	
8	ANS:	4	REF:	082322ai	
9	ANS:	4	REF:	061920ai	
10	ANS:	4	REF:	011719ai	
11	ANS:	1	REF:	062324ai	
12	ANS:	2	REF:	081620ai	
13	ANS:	2	REF:	061821ai	
14	ANS:	4			
	There are no negative or fractional cars.				
	REE	061402ai			
15	ANS.	2			
15	0-	$-16t^2 + 144$			
	0 -	101 1144			
	$16t^2 =$	144			
	$t^2 = 9$				
	<i>t</i> = 3				
	REF:	081423ai			
16	ANS:	4	REF:	012021ai	