F.I.F.C.7: Graphing Logarithmic Functions

1 The graph of \(y = \log x \) lies in Quadrant(s)
 1) I and II 3) III and IV
 2) II and III 4) I and IV

2 Which statement about the graph of \(c(x) = \log_6 x \) is false?
 1) The asymptote has equation \(y = 0 \).
 2) The graph has no \(y \)-intercept.
 3) The domain is the set of positive reals.
 4) The range is the set of all real numbers.

3 If \(f(x) = \log_3 x \) and \(g(x) \) is the image of \(f(x) \) after a translation five units to the left, which equation represents \(g(x) \)?
 1) \(g(x) = \log_3 (x + 5) \)
 2) \(g(x) = \log_3 x + 5 \)
 3) \(g(x) = \log_3 (x - 5) \)
 4) \(g(x) = \log_3 x - 5 \)

4 The graph of \(y = \log_2 x \) is translated to the right 1 unit and down 1 unit. The coordinates of the \(x \)-intercept of the translated graph are
 1) \((0,0)\)
 2) \((1,0)\)
 3) \((2,0)\)
 4) \((3,0)\)

5 Which sketch shows the inverse of \(y = a^x \), where \(a > 1 \)?

1)

2)

3)

4)
6 The cells of a particular organism increase logarithmically. If \(g \) represents cell growth and \(h \) represents time, in hours, which graph best represents the growth pattern of the cells of this organism?

1)
2)
3)
4)

7 Which graph represents the function \(\log_2 x = y \)?

1)
2)
3)
4)
8 Sketch and label the graph of \(y = 2^x \).

The graph of \(y = 2^x \) is subject to each of these transformations:
(1) reflection in the \(y \)-axis
(2) reflection in the line \(y = x \)
(3) translation: \((x,y) \rightarrow (x,y + 1)\)

Next to the appropriate numeral below, write the letter of the equation, chosen from the list below, that best described the image of \(y = 2^x \) under each of the numbered transformations.

Equations
(a) \(y = \log_2 x \)
(b) \(y = -2^x \)
(c) \(y = 2^{-x} \)
(d) \(y = 2^x + 1 \)

(1)
(2)
(3)
9 Which sketch best represents the graph of \(x = 3^y \)?

1)

2)

3)

4)

10 Sketch the graph of the functions \(f(x) = 3^x \) and \(g(x) = \log_3 x \). Considering the graphs, describe the relationship between \(f(x) \) and \(g(x) \). Specify the domain and the range of \(g \).
11 If a function is defined by the equation \(f(x) = 4^x \), which graph represents the inverse of this function?

1)
2)
3)
4)

12 Sketch below the graph of \(y = 4^x \). On the same set of axes, sketch the graph of \(y = \log_4 x \).
13 Sketch and label the graph of the equation $y = \log x$ for all values of x in the interval $0.1 \leq x \leq 10$. On the same set of axes, reflect the graph drawn in the line $y = x$, and label it c. What is the equation of c?

14 Graph $f(x) = \log_2(x + 6)$ on the set of axes below.
15 On the grid below, graph the function \(y = \log_2(x - 3) + 1 \)

16 Graph \(y = \log_2(x + 3) - 5 \) on the set of axes below. Use an appropriate scale to include both intercepts.

Describe the behavior of the given function as \(x \) approaches -3 and as \(x \) approaches positive infinity.
17 A hotel finds that its total annual revenue and the number of rooms occupied daily by guests can best be modeled by the function \(R = 3 \log(n^2 + 10n) \), \(n > 0 \), where \(R \) is the total annual revenue, in millions of dollars, and \(n \) is the number of rooms occupied daily by guests. The hotel needs an annual revenue of $12 million to be profitable. Graph the function on the accompanying grid over the interval \(0 < n \leq 100 \). Calculate the minimum number of rooms that must be occupied daily to be profitable.
F.IF.C.7: Graphing Logarithmic Functions
Answer Section

1 ANS: 4 REF: 018535siii

2 ANS: 1

3 ANS: 1 REF: 011902aaii

4 ANS: 4

\[\log_2 (x - 1) - 1 = 0 \]

\[\log_2 (x - 1) = 1 \]

\[x - 1 = 2^1 \]

\[x = 3 \]

REF: 061819aaii

5 ANS: 3 REF: 011422a2

6 ANS: 3 REF: 010420b

7 ANS: 1 REF: 061211a2

8 ANS: c, a, d

REF: 088539siii

9 ANS: 2 REF: 081816aaii
f(x) and g(x) are inverses of each other. The domain of g is the positive reals and the range of g is the reals.

ANS:

\[f^{-1}(x) = \log_4 x \]

ANS:

\[y = 10^x \]
As $x \to -3, y \to -\infty$. As $x \to \infty, y \to \infty$.
ANS:

\[3\log(x^2 + 10x) = 12 \]
\[\log(x^3 + 10x) = 4 \]
\[x^2 + 10x = 10^4 \]
\[x^2 + 10x - 10000 = 0 \]

\[
x = \frac{-10 \pm \sqrt{10^2 - 4(1)(-10000)}}{2}
\]

\[
x = \frac{-10 + \sqrt{40100}}{2}
\approx 95.1
\]

96 rooms must be occupied. The other root is negative.

REF: 080530b