1. Which points are restricted from the domain of the function graphed below?

![Graph of a rational function]

2. Find the vertical asymptote(s) of the graph of \(f(x) = \frac{x^2 - 9}{(x + 3)(x - 1)} \).

 [A] \(x = 1, -3 \)
 [B] \(x = 1 \)
 [C] \(y = 1 \)
 [D] \(y = 1, -1 \)

3. Find the vertical asymptote(s) of the graph of \(f(x) = \frac{x^2 - 4}{(x + 2)(x + 9)} \).

 [A] \(y = 1 \)
 [B] \(y = 1, -1 \)
 [C] \(x = -9, -2 \)
 [D] \(x = -9 \)

4. Find the horizontal asymptote of the graph of \(f(x) = \frac{3}{x - 2} \).

 [A] \(x = 0 \)
 [B] \(y = 3 \)
 [C] \(x = 2 \)
 [D] \(y = 0 \)

5. What are the asymptotes of the function \(y = -\frac{3}{(x + 1)} - 2 \)?

 [A] \(x = -1, y = -2 \)
 [B] \(x = -1, y = -3 \)
 [C] \(x = 1, y = 2 \)
 [D] \(x = 1, y = -2 \)
6. Write the equations of the horizontal asymptote and vertical asymptote of the graph \(y = \frac{3x}{x+6} \).

7. Write the equations of the horizontal asymptote and vertical asymptote of the graph \(y = \frac{4x}{x-8} \).

8. Graph the function on your graphing calculator and find the asymptotes. \(f(x) = \frac{x^4}{x^2-4} \)

9. What are the discontinuities of the function \(y = \frac{(x-1)(x-2)(x+3)}{(x+1)(x-2)} \)? Classify them as asymptotes or removable discontinuities.

10. Compare the quantity in Column A with the quantity in Column B.

<table>
<thead>
<tr>
<th>Column A</th>
<th>Column B</th>
</tr>
</thead>
<tbody>
<tr>
<td>the number of asymptotes of (F(x) = \frac{x}{(x^2-9)})</td>
<td>the number of asymptotes of (G(x) = \frac{x^2-9}{x})</td>
</tr>
</tbody>
</table>

[A] The quantity in Column A is greater. [B] The quantity in Column B is greater.
[C] The two quantities are equal.
[D] The relationship cannot be determined on the basis of the information supplied.
[1] \(x = 3 \)

[2] B____

[3] D____

[4] D____

[6] \(y = 3; \ x = -6 \)

[7] \(y = 4; \ x = 8 \)

[8] \(x = 2 \) and \(x = -2 \) are vertical asymptotes.

[9] \(x = -1 \) is an asymptote and \(x = 2 \) is a removable discontinuity.

[10] A____