F.IF.C.7: Graphing Trigonometric Functions 2a

1. How many full cycles of the function \(y = 3 \sin 2x \) appear in \(\pi \) radians?
 1) 1
 2) 2
 3) 3
 4) 4

2. What is the period of the function \(y = 5 \sin 3x \)?
 1) 5
 2) \(\frac{2\pi}{3} \)
 3) 3
 4) \(\frac{2\pi}{3} \)

3. What is the period of the graph \(y = \frac{1}{2} \sin 6x \)?
 1) \(\frac{\pi}{6} \)
 2) \(\frac{\pi}{3} \)
 3) \(\frac{\pi}{2} \)
 4) \(6\pi \)

4. What is the period of the function \(f(\theta) = -2 \cos 3\theta \)?
 1) \(\pi \)
 2) \(\frac{2\pi}{3} \)
 3) \(\frac{3\pi}{2} \)
 4) \(2\pi \)

5. What is the period of the graph of the equation \(y = \frac{1}{3} \sin 2x \)?
 1) \(\frac{1}{3} \)
 2) 2
 3) \(\pi \)
 4) \(6\pi \)

6. What is the period of the graph of the equation \(y = 2 \sin \frac{1}{3} x \)?
 1) \(\frac{2}{3} \pi \)
 2) \(2\pi \)
 3) \(6\pi \)
 4) \(\frac{3\pi}{2} \)

7. What is the period of \(y = \sin 2x \)?
 1) \(4\pi \)
 2) 2
 3) \(\pi \)
 4) \(4 \)
8. What is the period of the function $y = \frac{1}{2} \sin \left(\frac{x}{3} - \pi \right)$?

1) $\frac{1}{2}$
2) $\frac{1}{3}$
3) $\frac{2}{3}\pi$
4) 6π

9. A certain radio wave travels in a path represented by the equation $y = 5 \sin 2x$. What is the period of this wave?

1) 5
2) 2
3) π
4) 2π

10. A sound wave is modeled by the curve $y = 3 \sin 4x$. What is the period of this curve?

1) π
2) $\frac{\pi}{2}$
3) 3
4) 4

11. A wave displayed by an oscilloscope is represented by the equation $y = 3 \sin x$. What is the period of this function?

1) 2π
2) 2
3) 3
4) 3π

12. A modulated laser heats a diamond. Its variable temperature, in degrees Celsius, is given by $f(t) = T \sin at$. What is the period of the curve?

1) $|T|$
2) $\frac{2\pi}{a}$
3) $\frac{1}{a}$
4) $\frac{2a\pi}{a}$

13. An object that weighs 2 pounds is suspended in a liquid. When the object is depressed 3 feet from its equilibrium point, it will oscillate according to the formula $x = 3 \cos (8t)$, where t is the number of seconds after the object is released. How many seconds are in the period of oscillation?

1) $\frac{\pi}{4}$
2) π
3) 3
4) 2π

14. The Sea Dragon, a pendulum ride at an amusement park, moves from its central position at rest according to the trigonometric function $P(t) = -10 \sin \left(\frac{\pi}{3} t \right)$, where t represents time, in seconds. How many seconds does it take the pendulum to complete one full cycle?

1) 5
2) 6
3) 3
4) 10
15. The height above ground for a person riding a Ferris wheel after \(t \) seconds is modeled by
\[
h(t) = 150\sin\left(\frac{\pi}{45}t + 67.5\right) + 160\text{ feet.}
\]
How many seconds does it take to go from the bottom of the wheel to the top of the wheel?
1) 10
2) 45
3) 90
4) 150

16. The brightness of the star MIRA over time is given by the equation \(y = 2\sin\frac{\pi}{4}x + 6 \), where \(x \) represents time and \(y \) represents brightness. What is the period of this function, in radian measure?

17. Which equation represents a graph that has a period of \(4\pi \)?
1) \(y = 3\sin\frac{1}{2}x \)
2) \(y = 3\sin2x \)
3) \(y = 3\sin\frac{1}{4}x \)
4) \(y = 3\sin4x \)

18. The graph below represents the height above the ground, \(h \), in inches, of a point on a triathlete's bike wheel during a training ride in terms of time, \(t \), in seconds.

Identify the period of the graph and describe what the period represents in this context.
F.IF.C.7: Graphing Trigonometric Functions 2a
Answer Section

1 ANS: 1
\[\frac{2\pi}{2} = \pi \]
\[\frac{\pi}{\pi} = 1 \]
REF: 061519a2

2 ANS: 4
\[\text{period} = \frac{2\pi}{b} = \frac{2\pi}{3} \]
REF: 080113b

3 ANS: 2
\[\frac{2\pi}{6} = \frac{\pi}{3} \]
REF: 061413a2

4 ANS: 2
\[\frac{2\pi}{b} = \frac{2\pi}{3} \]
REF: 061111a2

5 ANS: 3
\[\frac{2\pi}{2} = \pi \]
REF: 081519a2

6 ANS: 3
\[\text{period} = \frac{2\pi}{b} = \frac{2\pi}{1} = 6\pi \]
REF: 080615b

7 ANS: 3 REF: 069025siii

8 ANS: 4
\[\frac{2\pi}{b} = \frac{2\pi}{1} = 6\pi \]
REF: 061027a2
9 ANS: 3

\[
\text{period} = \frac{2\pi}{b} = \frac{2\pi}{2} = \pi
\]

REF: 080514b

10 ANS: 2

\[
\text{period} = \frac{2\pi}{b} = \frac{2\pi}{4} = \frac{\pi}{2}
\]

REF: 010606b

11 ANS: 1

\[
\text{period} = \frac{2\pi}{b} = \frac{2\pi}{1} = 2\pi
\]

REF: 010810b

12 ANS: 2

\[
\text{period} = \frac{2\pi}{b} = \frac{2\pi}{a}
\]

REF: 060105b

13 ANS: 1

\[
\text{period} = \frac{2\pi}{b} = \frac{2\pi}{8} = \frac{\pi}{4}
\]

REF: 010204b

14 ANS: 2

\[
\text{period} = \frac{2\pi}{b} = \frac{2\pi}{\frac{\pi}{3}} = 6
\]

REF: 060920b

15 ANS: 2

\[
P = \frac{2\pi}{\frac{\pi}{45}} = 90
\]

REF: 081822aii

16 ANS:

8. period = \[
\frac{2\pi}{b} = \frac{2\pi}{\frac{\pi}{4}} = 8
\]

REF: 010425b
17 ANS: 1
\[
\frac{2\pi}{b} = 4\pi
\]
\[b = \frac{1}{2}\]

REF: 011425a2

18 ANS:

period is \(\frac{2}{3}\). The wheel rotates once every \(\frac{2}{3}\) second.

REF: 061728aii