1. What are the amplitude and the period of the graph represented by the equation $y = -3 \cos \frac{\theta}{3}$?

1) amplitude: -3; period: $\frac{\pi}{3}$
2) amplitude: -3; period: 6π
3) amplitude: 3; period: $\frac{\pi}{3}$
4) amplitude: 3; period: 6π

2. The graph of which equation has amplitude 2 and period π?

1) $y = 2 \cos 2x$
2) $y = \frac{1}{2} \sin 2x$
3) $y = 2 \sin x$
4) $y = 2 \cos \frac{1}{2}x$

3. The graph of which function has an amplitude of 2 and a period of 4π?

1) $y = 2 \sin \frac{1}{2}x$
2) $y = 2 \sin 4x$
3) $y = 4 \sin \frac{1}{2}x$
4) $y = 4 \sin 2x$

4. Which statement is incorrect for the graph of the function $y = -3 \cos \left[\frac{\pi}{3} (x - 4) \right] + 7$?

1) The period is 6.
2) The amplitude is 3.
3) The range is $[4,10]$.
4) The midline is $y = -4$.

5. Tides are a periodic rise and fall of ocean water. On a typical day at a seaport, to predict the time of the next high tide, the most important value to have would be the

1) time between consecutive low tides
2) time when the tide height is 20 feet
3) average depth of water over a 24-hour period
4) difference between the water heights at low and high tide

6. A sine function is graphed below.

Determine and state the amplitude and period of this function.

7. The volume of air in a person’s lungs, as the person breathes in and out, can be modeled by a sine graph. A scientist is studying the differences in this volume for people at rest compared to people told to take a deep breath. When examining the graphs, should the scientist focus on the amplitude, period, or midline? Explain your choice.
As the range is \([4,10]\), the midline is \(y = \frac{4 + 10}{2} = 7\).

The time of the next high tide will be the midpoint of consecutive low tides.

Amplitude, because the height of the graph shows the volume of the air.