Regents Exam Questions F.IF.C.9: Comparing Quadratic Functions \qquad www.jmap.org

F.IF.C.9: Comparing Quadratic Functions

1 Which quadratic function has the largest maximum over the set of real numbers?

1) $f(x)=-x^{2}+2 x+4$
2) $g(x)=-(x-5)^{2}+5$

\mathbf{x}	$\mathbf{k}(\mathbf{x})$
-1	-1
0	3
1	5
2	5
3	3
4	-1

4)

\mathbf{x}	$\mathbf{h}(\mathbf{x})$
-2	-9
-1	-3
0	1
1	3
2	3
3	1

2 Which quadratic function has the largest maximum?

1) $h(x)=(3-x)(2+x)$
2) $k(x)=-5 x^{2}-12 x+4$

\mathbf{x}	$\mathbf{f}(\mathbf{x})$
-1	-3
0	5
1	9
2	9
3	5
4	-3

4)

3 Which of the quadratic functions below has the smallest minimum value?

1) $h(x)=x^{2}+2 x-6$

2)

(2)
3) $k(x)=(x+5)(x+2)$
4)

\mathbf{x}	$\mathbf{f}(\mathbf{x})$
-1	-2
0	-5
1	-6
2	-5
3	-2

Regents Exam Questions F.IF.C.9: Comparing Quadratic Functions Name: \qquad www.jmap.org

4 Which quadratic function has the smallest minimum value?

1) $f(x)=6 x^{2}+5 x-2$
2) $g(x)=6(x-2)^{2}-2$
3)

5 The quadratic functions $r(x)$ and $q(x)$ are given below.

\boldsymbol{x}	$\boldsymbol{r}(\boldsymbol{x})$
-4	-12
-3	-15
-2	-16
-1	-15
0	-12
1	7

$$
q(x)=x^{2}+2 x-8
$$

The function with the smaller minimum value is

1) $q(x)$, and the value is -9
2) $q(x)$, and the value is -1
3) $r(x)$, and the value is -16
4) $r(x)$, and the value is -2

Regents Exam Questions F.IF.C.9: Comparing Quadratic Functions \qquad www.jmap.org

6 Four quadratic functions are shown below.

\mathbf{x}	$f(\mathbf{x})$
-4	-4
-2	4
-1	5
0	4
2	-4

$$
g(x)=-(x-4)^{2}+5
$$

Which statement is true?

1) The maximum of $f(x)$ is less than the maximum of $j(x)$.
2) The maximum of $g(x)$ is less than the maximum of $h(x)$.

$j(x)=-\frac{1}{2} x^{2}+x+4$
3) The maximum of $f(x)$ equals the maximum of $g(x)$.
4) The maximum of $h(x)$ equals the maximum of $j(x)$.

7 Three quadratic functions are given below.
I.

$$
f(x)=(x+2)^{2}+5
$$

II.

\mathbf{x}	-4	-3	-2	-1	0	1
$\mathbf{g}(\mathbf{x})$	-3	2	5	5	2	-3

Which of these functions have the same vertex?

1) I and II, only
2) I and III, only
3) II and III, only
4) I, II, and III
\qquad www.jmap.org

8 Which statement is true about the quadratic functions $g(x)$, shown in the table below, and $f(x)=(x-3)^{2}+2$?

\mathbf{x}	$\mathbf{g}(\mathbf{x})$
0	4
1	-1
2	-4
3	-5
4	-4
5	-1
6	4

1) They have the same vertex.
2) They have the same zeros.
3) They have the same axis of symmetry.
4) They intersect at two points.

9 Which statement is true about the functions $f(x)$ and $g(x)$, given below?

$$
f(x)=-x^{2}-4 x-4
$$

1) The minimum value of $g(x)$ is greater than the maximum value of $f(x)$.
2) $f(x)$ and $g(x)$ have the same y-intercept.
3) $f(x)$ and $g(x)$ have the same roots.
4) $f(x)=g(x)$ when $x=-4$.
\qquad www.jmap.org

10 Given the following quadratic functions:
$8(x)=-x^{2}-x+6$

\mathbf{x}	-3	-2	-1	0	1	2	3	4	5
$\mathbf{n}(\mathbf{x})$	-7	0	5	8	9	8	5	0	-7

Which statement about these functions is true?

1) Over the interval $-1 \leq x \leq 1$, the average rate of change for $n(x)$ is less than that for $g(x)$.
2) The y-intercept of $g(x)$ is greater than the y-intercept for $n(x)$.
3) The function $g(x)$ has a greater maximum value than $n(x)$.
4) The sum of the roots of $n(x)=0$ is greater than the sum of the roots of $g(x)=0$.

11 Let f be the function represented by the graph below.

Let g be a function such that $g(x)=-\frac{1}{2} x^{2}+4 x+3$. Determine which function has the larger maximum value. Justify your answer.

F.IF.C.9: Comparing Quadratic Functions

Answer Section

1 ANS: 2

1) $x=\frac{-2}{2(-1)}=1 \quad$; 2) $h=\frac{3}{2} \operatorname{Using}(0,3), 3=a\left(0-\frac{3}{2}\right)^{2}+k ; \operatorname{Using}(1,5), 5=a\left(1-\frac{3}{2}\right)^{2}+k$
$y=-1^{2}+2(1)+4=5$
vertex $(1,5)$

$$
\begin{array}{ll}
3=\frac{9}{4} a+k & 5=\frac{1}{4} a+k \\
k=3-\frac{9}{4} a & k=5-\frac{1}{4} a
\end{array}
$$

$\left.5-\frac{1}{4} a=3-\frac{9}{4} a \quad k=5-\frac{1}{4}(-1)=\frac{21}{4} ; 3\right)$ vertex $\left.(5,5) ; 4\right)$ Using $c=1 \quad-9=(-2)^{2} a+(-2) b+1$

$$
\begin{aligned}
20-a & =12-9 a \quad \text { vertex }\left(\frac{3}{2}, \frac{21}{4}\right) \\
8 a & =-8 \\
a & =-1
\end{aligned}
$$

$$
-10=4 a-2 b
$$

$$
\begin{array}{lll}
-3 & =(-1)^{2} a+(-1) b+1 & 2 a+5=a+4 \quad x=\frac{-3}{2(-1)}=\frac{3}{2} \\
-3=a-h+1 & \text { vertex }\left(\frac{3}{2}, \frac{13}{4}\right)
\end{array}
$$

$$
-3=a-b+1
$$

$$
a=-1
$$

$b=a+4$

$$
b=-1+4=3 \quad y=-\left(\frac{3}{2}\right)^{2}+3\left(\frac{3}{2}\right)+1=-\frac{9}{4}+\frac{18}{4}+\frac{4}{4}=\frac{13}{4}
$$

REF: 011823ai
2 ANS: 3

$$
\left.\begin{array}{rlrl}
h(x) & =-x^{2}+x+6 & \text { Maximum of } f(x)=9 & k(x)
\end{array}=-5 x^{2}-12 x+4 \quad \text { Maximum of } g(x)<5\right)
$$

REF: 061514ai

3 ANS: 2

1) $x=\frac{-2}{2(1)}=-1, h(-1)=(-1)^{2}+2(-1)-6=-7$; 2) $y=-10$; 3) $k\left(\frac{-5+-2}{2}\right)=(-3.5+5)(-3.5+2)=-2.25$; 4) $y=-6$

REF: 061813ai
4 ANS: 1

1) $f\left(\frac{-5}{2(6)}\right) \approx-3.04$; 2) $h(2.5)=(2.5-2)(2.5-3)=-0.25$; 3) $g(2)=-2$; 4) 0

REF: 012320ai
5 ANS: 3
The minimum of $r(x)$ is -16 . The minimum of $q(x)$ is $-9\left(x=\frac{-2}{2(1)}=-1, q(-1)=-9\right)$.
REF: 081917ai
6 ANS: 3
Maximum of $f(x)=5$ Maximum of $h(x)=4$ Maximum of $g(x)=5 j(x)=-\frac{1}{2} x^{2}+x+4$

$$
\begin{aligned}
& x=\frac{-1}{2\left(-\frac{1}{2}\right)}=1 \\
& j(1)=-\frac{1}{2}(1)^{2}+1+4=4 \frac{1}{2}
\end{aligned}
$$

REF: 062219ai
7 ANS: 3
f and h 's vertex is $(-2,5)$. g 's axis of symmetry is $x=-1.5$.

REF: 062319ai
8 ANS: 3
$x=3$
REF: 061717ai
9 ANS: 2
The y-intercept of both $f(x)$ and $g(x)$ is -4 .
REF: 012013ai

10 ANS: 4

1) $\frac{g(1)-g(-1)}{1--1}=\frac{4-6}{2}=\frac{-2}{2}=-1$ 2) $g(0)=6$ 3) $x=\frac{-(-1)}{2(-1)}=-\frac{1}{2} ; g\left(-\frac{1}{2}\right)=-\left(-\frac{1}{2}\right)^{2}+\frac{1}{2}+6=6 \frac{1}{4}$

$$
\frac{n(1)-n(-1)}{1--1}=\frac{9-5}{2}=\frac{4}{2}=2 \quad n(0)=8 \quad x=1 ; n(1)=9
$$

4) $g: S=\frac{-(-1)}{-1}=-1$

$$
n: S=-2+4=2
$$

REF: 081521ai
11 ANS:
g. The maximum of f is 6 . For g, the maximum is 11. $x=\frac{-b}{2 a}=\frac{-4}{2\left(-\frac{1}{2}\right)}=\frac{-4}{-1}=4$

$$
y=-\frac{1}{2}(4)^{2}+4(4)+3=-8+16+3=11
$$

REF: 081429ai

