F.LE.A.2: Sequences 1a

1 What is the \(n \)th term of the sequence
\(-1, 3, 7, 11, \ldots \)?

1) \(a_n = -1 - 4(n - 1) \)
2) \(a_n = -1 + 4(n - 1) \)
3) \(a_n = 4 - (n - 1) \)
4) \(a_n = 4 + (n - 1) \)

2 The diagrams below represent the first three terms
of a sequence.

Assuming the pattern continues, which formula
determines \(a_n \), the number of shaded squares in the
\(n \)th term?

1) \(a_n = 4n + 12 \)
2) \(a_n = 4n + 8 \)
3) \(a_n = 4n + 4 \)
4) \(a_n = 4n + 2 \)

3 What is a formula for the \(n \)th term of sequence \(B \)
shown below?

\(B = 10, 12, 14, 16, \ldots \)

1) \(b_n = 8 + 2n \)
2) \(b_n = 10 + 2n \)
3) \(b_n = 10(2)^n \)
4) \(b_n = 10(2)^{n-1} \)

4 Given \(f(9) = -2 \), which function can be used to
generate the sequence \(-8, -7.25, -6.5, -5.75, \ldots \)?

1) \(f(n) = -8 + 0.75n \)
2) \(f(n) = -8 - 0.75(n - 1) \)
3) \(f(n) = -8.75 + 0.75n \)
4) \(f(n) = -0.75 + 8(n - 1) \)

5 For the sequence \(-27, -12, 3, 18, \ldots \), the expression
that defines the \(n \)th term where \(a_1 = -27 \) is

1) \(15 - 27n \)
2) \(15 - 27(n - 1) \)
3) \(-27 + 15n \)
4) \(-27 + 15(n - 1) \)

6 Which function defines the sequence
\(-6, -10, -14, -18, \ldots \), where \(f(6) = -26 \)?

1) \(f(x) = -4x - 2 \)
2) \(f(x) = 4x - 2 \)
3) \(f(x) = -x + 32 \)
4) \(f(x) = x - 26 \)

7 The third term in an arithmetic sequence is 10 and
the fifth term is 26. If the first term is \(a_1 \), which is
an equation for the \(n \)th term of this sequence?

1) \(a_n = 8n + 10 \)
2) \(a_n = 8n - 14 \)
3) \(a_n = 16n + 10 \)
4) \(a_n = 16n - 38 \)
8 In an arithmetic sequence, \(a_4 = 19 \) and \(a_7 = 31 \).

Determine a formula for \(a_n \), the \(n^{th} \) term of this sequence.

9 What is the formula for the \(n \)th term of the sequence 54, 18, 6, . . .?

1) \(a_n = 6 \left(\frac{1}{3} \right)^n \)

2) \(a_n = 6 \left(\frac{1}{3} \right)^{n-1} \)

3) \(a_n = 54 \left(\frac{1}{3} \right)^n \)

4) \(a_n = 54 \left(\frac{1}{3} \right)^{n-1} \)

10 The formula of the \(n \)th term of the sequence 3, −6, 12, −24, 48 . . . is

1) \(a_n = −2(3)^n \)

2) \(a_n = 3(−2)^n \)

3) \(a_n = −2(3)^{n−1} \)

4) \(a_n = 3(−2)^{n−1} \)

11 A sequence has the following terms: \(a_1 = 4 \), \(a_2 = 10 \), \(a_3 = 25 \), \(a_4 = 62.5 \). Which formula represents the \(n \)th term in the sequence?

1) \(a_n = 4 + 2.5n \)

2) \(a_n = 4 + 2.5(n − 1) \)

3) \(a_n = 4(2.5)^n \)

4) \(a_n = 4(2.5)^{n−1} \)
F.L.E.A.2: Sequences 1a
Answer Section

1 ANS: 2 REF: 061624a2
2 ANS: 2 REF: 061424ai
3 ANS: 1
 common difference is 2. \(b_n = x + 2n \)

 \[10 = x + 2(1) \]
 \[8 = x \]
 REF: 081014a2
4 ANS: 3 REF: 061720aii
5 ANS: 4 REF: 081820ai
6 ANS: 1 REF: 081610ai
7 ANS: 2 REF: 081416ai
8 ANS:
 \[\frac{31 - 19}{7 - 4} = \frac{12}{3} = 4 \]
 \[x + (4 - 1)4 = 19 \]
 \[a_n = 7 + (n - 1)4 \]

 \[x + 12 = 19 \]
 \[x = 7 \]
 REF: 011434a2
9 ANS: 4 REF: 061026a2
10 ANS: 4 REF: 011715a2
11 ANS: 4
 \[\frac{10}{4} = 2.5 \]
 REF: 011217a2