Regents Exam Questions G.C.A.2: Chords, Secants and Tangents 1 Name: \qquad www.jmap.org

G.C.A.2: Chords, Secants and Tangents 1

1 In the diagram below, chords $\overline{P Q}$ and $\overline{R S}$ of circle O intersect at T.

Which relationship must always be true?

1) $R T=T Q$
2) $R T=T S$
3) $R T+T S=P T+T Q$
4) $R T \times T S=P T \times T Q$

2 The accompanying diagram shows two intersecting paths within a circular garden.

What is the length of the portion of the path marked x ?

1) $8 \frac{1}{3}$
2) 11
3) 3
4) 12

3 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $C E=10, E D=6$, and $A E=4$, what is the length of $\overline{E B}$?

1) 15
2) 12
3) 6.7
4) 2.4

4 In the diagram below of circle O, chord $\overline{D F}$ bisects chord $\overline{B C}$ at E.

If $B C=12$ and $F E$ is 5 more than $D E$, then $F E$ is 1) 13
2) 9
3) 6
4) 4

Regents Exam Questions G.C.A.2: Chords, Secants and Tangents 1 Name: \qquad www.jmap.org

5 In the diagram of circle O below, chord $\overline{A B}$ intersects chord $\overline{C D}$ at $E, D E=2 x+8, E C=3$, $A E=4 x-3$, and $E B=4$.

What is the value of x ?

1) 1
2) 3.6
3) 5
4) 10.25

6 In the diagram below of circle O, chords $\overline{J T}$ and $\overline{E R}$ intersect at M.

If $E M=8$ and $R M=15$, the lengths of $\overline{J M}$ and $\overline{T M}$ could be

1) 12 and 9.5
2) 14 and 8.5
3) 16 and 7.5
4) 18 and 6.5

7 Chords $\overline{A B}$ and $\overline{C D}$ intersect at point E in a circle with center at O. If $A E=8, A B=20$, and $D E=16$, what is the length of $\overline{C E}$?

1) 6
2) 9
3) 10
4) 12

8 In the diagram below of circle O, chord $\overline{A B}$ bisects chord $\overline{C D}$ at E. If $A E=8$ and $B E=9$, find the length of $\overline{C E}$ in simplest radical form.

9 In the accompanying diagram of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E. If $A E=3, E B=4$, $C E=x$, and $E D=x-4$, what is the value of x ?

10 A toy truck is located within a circular play area. Alex and Dominic are sitting on opposite endpoints of a chord that contains the truck. Alex is 4 feet from the truck, and Dominic is 3 feet from the truck. Meira and Tamara are sitting on opposite endpoints of another chord containing the truck. Meira is 8 feet from the truck. How many feet, to the nearest tenth of a foot, is Tamara from the truck? Draw a diagram to support your answer.

G.C.A.2: Chords, Secants and Tangents 1

Answer Section

1 ANS: 4
REF: 081922geo
2 ANS: 4
If two chords intersect, the product of the segments of one chord equals the product of the segments of the other chord. $\begin{aligned} 5 x & =10 \times 6 . \\ x & =12\end{aligned}$.

REF: 010908b
3 ANS: 1
$4 x=6 \cdot 10$

$x=15$
REF: 081017ge
4 ANS: 2
$6 \cdot 6=x(x-5)$

$$
\begin{aligned}
36 & =x^{2}-5 x \\
0 & =x^{2}-5 x-36 \\
0 & =(x-9)(x+4) \\
x & =9
\end{aligned}
$$

REF: 061708geo
5 ANS: 2
$4(4 x-3)=3(2 x+8)$
$16 x-12=6 x+24$

$$
10 x=36
$$

$$
x=3.6
$$

REF: 080923ge
6 ANS: 3
$8 \cdot 15=16 \cdot 7.5$
REF: 061913geo

7 ANS: 1
$8 \times 12=16 x$

$$
6=x
$$

REF: 081328ge
8 ANS:
$x^{2}=9 \cdot 8$
$x=\sqrt{72}$
$x=\sqrt{36} \sqrt{2}$
$x=6 \sqrt{2}$
REF: 011132ge
9 ANS:
6. If two chords intersect, the product of the segments of one chord equals the product of the segments of the

$$
x(x-4)=4 \times 3
$$

other chord. $\begin{aligned} x^{2}-4 x-12 & =0 \\ (x-6)(x+2) & =0\end{aligned} \quad$. If you substitute -2 for x, distance is negative, which cannot be

$$
(x-6)(x+2)=0
$$

$$
x=6 \text { or } x=-2
$$

the case. Therefore $x=6$.
REF: 060723b
10 ANS:

1.5. If two chords intersect, the product of the segments of one chord equals the product of the segments of the other chord.

$$
\begin{aligned}
8 x & =3 \times 4 \\
x & =1.5
\end{aligned}
$$

REF: 080225b

