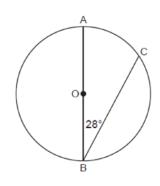
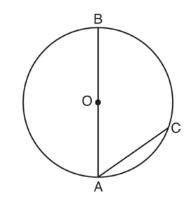

G.C.A.2: Chords, Secants and Tangents 11

1 In the diagram below, $\angle ABC$ is inscribed in circle O.

The ratio of the measure of $\angle ABC$ to the measure


- of \overrightarrow{AC} is
- 1) 1:1
- 2) 1:2
- 3) 1:3
- 4) 1:4
- 2 In the diagram below, $\widehat{mABC} = 268^{\circ}$.

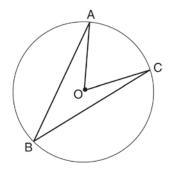
What is the number of degrees in the measure of $\angle ABC$?


- 1) 134°
- 2) 92°
- 3) 68°
- 4) 46°

3 In the diagram below of Circle *O*, diameter \overline{AOB} and chord \overline{CB} are drawn, and $m \angle B = 28^{\circ}$.

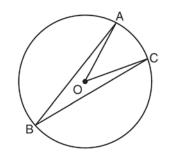
What is \widehat{mBC} ?

- 1) 56°
- 2) 124°
- 3) 152°
- 4) 166°
- 4 As shown in the diagram below, \overline{AB} is a diameter of circle *O*, and chord \overline{AC} is drawn.



If $m \angle BAC = 70$, then mAC is 1) 40

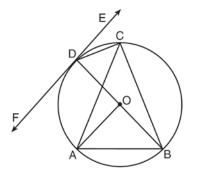
- 2) 70
- 3) 110
- 4) 140


Regents Exam Questions G.C.A.2: Chords, Secants and Tangents 11 Name: www.jmap.org

5 Circle *O* with $\angle AOC$ and $\angle ABC$ is shown in the diagram below.

What is the ratio of $m \angle AOC$ to $m \angle ABC$?

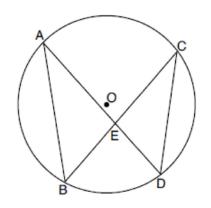
- 1) 1:1
- 2) 2:1
- 3) 3:1
- 4) 1:2
- 6 In the diagram below of circle O, m $\angle ABC = 24$.


What is the m $\angle AOC$?

- 1) 12
- 2) 24
- 3) 48
- 4) 60

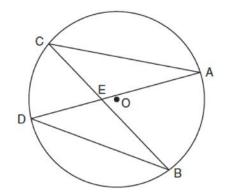
7 In the diagram below of circle *O*, chords \overline{DF} , \overline{DE} , \overline{FG} , and \overline{EG} are drawn such that m $\overline{DF}:$ m $\overline{FE}:$ m $\overline{EG}:$ m $\overline{GD} = 5:2:1:7$. Identify one pair of inscribed angles that are congruent to each other and give their measure.

8 In the diagram below, \overline{DC} , \overline{AC} , \overline{DOB} , \overline{CB} , and \overline{AB} are chords of circle O, \overline{FDE} is tangent at point D, and radius \overline{AO} is drawn. Sam decides to apply this theorem to the diagram: "An angle inscribed in a semi-circle is a right angle."



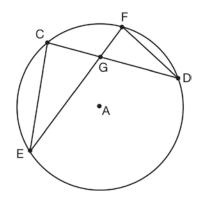
Which angle is Sam referring to?

- 1) ∠*AOB*
- 2) $\angle BAC$
- 3) $\angle DCB$
- 4) $\angle FDB$

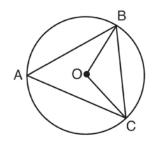

Regents Exam Questions G.C.A.2: Chords, Secants and Tangents 11 Name: www.jmap.org

9 In the diagram below of circle O, chords \overline{AD} and \overline{BC} intersect at *E*, and chords \overline{AB} and \overline{CD} are drawn.

Which statement must always be true?

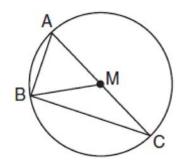

- $\overline{AB} \cong \overline{CD}$ 1)
- $\overline{AD} \cong \overline{BC}$ 2)
- $\angle B \cong \angle C$ 3)
- 4) $\angle A \cong \angle C$
- 10 In the diagram below of circle O, chords AD and BC intersect at E.

Which relationship must be true?


- $\triangle CAE \cong \triangle DBE$ 1)
- $\triangle AEC \sim \triangle BED$ 2)
- $\angle ACB \cong \angle CBD$ 3)
- $\widehat{CA} \cong \widehat{DB}$ 4)

11 In the diagram of circle A shown below, chords CD and \overline{EF} intersect at G, and chords \overline{CE} and \overline{FD} are drawn.

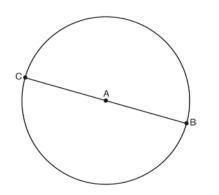
Which statement is not always true?


- $\overline{CG} \cong \overline{FG}$ 1)
- $\angle CEG \cong \angle FDG$ 2)
- $\frac{CE}{EG} = \frac{FD}{DG}$ 3)
- $\triangle CEG \sim \triangle FDG$ 4)
- 12 In the diagram below of circle O, \overline{OB} and \overline{OC} are radii, and chords \overline{AB} , \overline{BC} , and \overline{AC} are drawn.

Which statement must always be true?

- 1) $\angle BAC \cong \angle BOC$
- $m \angle BAC = \frac{1}{2} m \angle BOC$ 2)
- 3) $\triangle BAC$ and $\triangle BOC$ are isosceles.
- The area of $\triangle BAC$ is twice the area of $\triangle BOC$. 4)

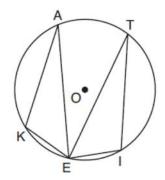
13 In circle *M* below, diameter \overline{AC} , chords \overline{AB} and \overline{BC} , and radius \overline{MB} are drawn.



Which statement is *not* true?

- 1) $\triangle ABC$ is a right triangle.
- 2) $\triangle ABM$ is isosceles.
- 3) $\widehat{mBC} = m \angle BMC$

4)
$$\widehat{\mathbf{mAB}} = \frac{1}{2} \mathbf{m} \angle ACB$$

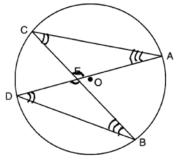

14 In the diagram below, \overline{BC} is the diameter of circle A.

Point D, which is unique from points B and C, is plotted on circle A. Which statement must always be true?

- 1) $\triangle BCD$ is a right triangle.
- 2) $\triangle BCD$ is an isosceles triangle.
- 3) $\triangle BAD$ and $\triangle CBD$ are similar triangles.
- 4) $\triangle BAD$ and $\triangle CAD$ are congruent triangles.

15 In the diagram below of circle *O*, points *K*, *A*, *T*, *I*, and *E* are on the circle, $\triangle KAE$ and $\triangle ITE$ are drawn, $\overline{KE} \cong \widehat{EI}$, and $\angle EKA \cong \angle EIT$.

Which statement about $\triangle KAE$ and $\triangle ITE$ is always true?


- 1) They are neither congruent nor similar.
- 2) They are similar but not congruent.
- 3) They are right triangles.
- 4) They are congruent.

G.C.A.2: Chords, Secants and Tangents 11 Answer Section

1 ANS: 2 REF: 011602ge 2 ANS: 4 $\frac{1}{2}(360 - 268) = 46$ REF: 061704geo 3 ANS: 2 56 0 REF: 062305geo ANS: 1 REF: 081518ge 4 5 ANS: 2 REF: 061322ge 6 ANS: 3 REF: 011523ge 7 ANS: $\angle D$, $\angle G$ and 24° or $\angle E$, $\angle F$ and 84°. $\widehat{mFE} = \frac{2}{15} \times 360 = 48$. Since the chords forming $\angle D$ and $\angle G$ are intercepted by \widehat{FE} , their measure is 24°. $\widehat{mGD} = \frac{7}{15} \times 360 = 168$. Since the chords forming $\angle E$ and $\angle F$ are intercepted by \widehat{GD} , their measure is 84°. REF: fall0836ge 8 ANS: 3 REF: 011621geo 9 ANS: 4

REF: 082218geo

	REF:	061026ge			
11	ANS:	1	REF:	061508geo	
12	ANS:	2	REF:	061610geo	
13	ANS:	4	REF:	011816geo	
14	ANS:	1			
	The other statements are true only if $\overline{AD} \perp \overline{BC}$.				

REF: 081623geo

15 AN	NS: 4	REF:	011905geo
-------	-------	------	-----------