G.C.A.2: Chords, Secants and Tangents 3

1 In the diagram below of circle O, radius \overline{OC} is 5 cm. Chord \overline{AB} is 8 cm and is perpendicular to \overline{OC} at point P.

What is the length of \overline{OP} , in centimeters?

- 1) 8
- 2 2)
- 3 3)
- 4) 4
- 2 In the diagram below of circle O, diameter \overline{AOB} is perpendicular to chord \overline{CD} at point E, OA = 6, and OE = 2.

What is the length of \overline{CE} ?

- 1) $4\sqrt{3}$
- 2) $2\sqrt{3}$
- 3) $8\sqrt{2}$
- 4) $4\sqrt{2}$

3 In circle O shown below, diameter \overline{DB} is perpendicular to chord \overline{AC} at E.

If DB = 34, AC = 30, and DE > BE, what is the length of \overline{BE} ?

- 1) 8
- 9 2)
- 3) 16
- 4) 25
- 4 In the diagram below, diameter \overline{AB} bisects chord \overline{CD} at point E in circle F.

If AE = 2 and FB = 17, then the length of \overline{CE} is 7

- 1)
- 2) 8
- 3) 15
- 4) 16

Regents Exam Questions G.C.A.2: Chords, Secants and Tangents 3 Name: www.jmap.org

5 In the accompanying diagram of circle O, diameter \overline{AB} is perpendicular to chord \overline{CD} and intersects \overline{CD} at E, AE = 9, and EB = 4.

What is *ED*?

- 1) 8
- 2) 7
- 3) 6
- 4) 4
- 6 In the diagram below of circle *O*, diameter \overline{AB} is perpendicular to chord \overline{CD} at *E*. If AO = 10 and BE = 4, find the length of \overline{CE} .

7 In the accompanying diagram of circle O, diameter \overline{AB} is perpendicular to chord \overline{CD} at E, CD = 8, and EB = 2. What is the length of the diameter of circle O?

8 In the accompanying diagram of circle O, diameter $\overline{AB} \perp \overline{CD}$. and CD = 14. Find CE.

Regents Exam Questions G.C.A.2: Chords, Secants and Tangents 3 Name: www.jmap.org

9 In the diagram below, circle *O* has a radius of 5, and CE = 2. Diameter \overline{AC} is perpendicular to chord \overline{BD} at *E*.

What is the length of BD?

- 1) 12
- 2) 10
- 3) 8
- 4) 4
- 10 In circle *O* shown below, chords \overline{AB} and \overline{CD} and radius \overline{OA} are drawn, such that $\overline{AB} \cong \overline{CD}$, $\overline{OE} \perp \overline{AB}$, $\overline{OF} \perp \overline{CD}$, OF = 16, CF = y + 10, and CD = 4y - 20.

Determine the length of DF. Determine the length of \overline{OA} .

11 The accompanying diagram shows a semicircular arch over a street that has a radius of 14 feet. A banner is attached to the arch at points A and B, such that AE = EB = 5 feet. How many feet above the ground are these points of attachment for the banner?

- 12 In circle *O*, diameter *AB* intersects chord *CD* at *E*. If CE = ED, then $\angle CEA$ is which type of angle?
 - 1) straight
 - 2) obtuse
 - 3) acute
 - 4) right
- 13 In a circle, diameter \overline{AB} is perpendicular to chord \overline{CD} at *L*. Which statement will always be true about this circle?
 - 1) CL = LD
 - 2) AL > LB
 - 3) $(CL) \times (LD) = AB$
 - $4) \quad BL > LA$

Regents Exam Questions G.C.A.2: Chords, Secants and Tangents 3 Name: www.jmap.org

14 In the accompanying diagram of circle O, diameter \overline{AB} is perpendicular to chord \overline{CD} at point E. What is the image of \overline{AC} in \overline{AB} ?

- 1) AD
- 2) *BD*
- 3) *ED*
- 4) *AE*
- 15 In circle R shown below, diameter \overline{DE} is perpendicular to chord \overline{ST} at point L.

Which statement is *not* always true?

- 1) $SL \cong TL$
- $2) \quad RS = DR$
- 3) $\overline{RL} \cong \overline{LE}$
- $4) \quad (DL)(LE) = (SL)(LT)$

16 In the diagram below of circle O, diameter \overline{AB} and chord \overline{CD} intersect at E.

- If $\overline{AB} \perp \overline{CD}$, which statement is always true? 1) $\overline{AC} \cong \overline{BD}$ 2) $\overline{BD} \cong \overline{DA}$ 3) $\overline{AD} \cong \overline{BC}$ 4) $\overline{CB} \cong \overline{BD}$
- 17 In the diagram below, $\triangle ABC$ is inscribed in circle *P*. The distances from the center of circle *P* to each side of the triangle are shown.

Which statement about the sides of the triangle is true?

- 1) AB > AC > BC
- 2) AB < AC and AC > BC
- 3) AC > AB > BC
- 4) AC = AB and AB > BC

G.C.A.2: Chords, Secants and Tangents 3 Answer Section

8 ANS:

7

REF: 068104siii

9 ANS: 3

Because \overline{OC} is a radius, its length is 5. Since CE = 2 OE = 3. $\triangle EDO$ is a 3-4-5 triangle. If ED = 4, BD = 8.

REF: fall0811ge

10 ANS:

 $2(y+10) = 4y - 20. \ \overline{DF} = y + 10 = 20 + 10 = 30. \ \overline{OA} = \overline{OD} = \sqrt{16^2 + 30^2} = 34$ 2y + 20 = 4y - 2040 = 2y20 = y

REF: 061336ge

11 ANS:

 $\sqrt{171}$. The distance from *A* to the point on the street directly below *E* is also a radius of 14 feet. $5^2 + b^2 = 14^2$

 $b^2 = 171$. $b = \sqrt{171}$

REF: 080124b

12	ANS:	4	REF:	081308ge
13	ANS:	1	REF:	089617siii
14	ANS:	1	REF:	069018siii
15	ANS:	3	REF:	011322ge
16	ANS:	4	REF:	081403ge

17 ANS: 1

The closer a chord is to the center of a circle, the longer the chord.

REF: 011005ge