G.C.A.2: Chords, Secants and Tangents 8

1. In the accompanying diagram, \(PA \) is tangent to circle \(O \) at \(A \), \(PBC \) is a secant, \(PB = 4 \), and \(BC = 8 \).

What is the length of \(PA \)?
1) \(4\sqrt{6} \)
2) \(4\sqrt{2} \)
3) \(4\sqrt{3} \)
4) 4

2. In the diagram below, tangent \(PA \) and secant \(PBC \) are drawn to circle \(O \) from external point \(P \).

If \(PB = 4 \) and \(BC = 5 \), what is the length of \(PA \)?
1) 20
2) 9
3) 8
4) 6

3. In the diagram below, \(PS \) is a tangent to circle \(O \) at point \(S \), \(PQR \) is a secant, \(PS = x \), \(PQ = 3 \), and \(PR = x + 18 \).

What is the length of \(PS \)?
1) 6
2) 9
3) 3
4) 27
4 In the diagram shown below, \(\overline{PA} \) is tangent to circle \(T \) at \(A \), and secant \(PBC \) is drawn where point \(B \) is on circle \(T \).

If \(PB = 3 \) and \(BC = 15 \), what is the length of \(\overline{PA} \)?
1) \(3\sqrt{5} \)
2) \(3\sqrt{6} \)
3) 3
4) 9

5 In the accompanying diagram, cabins \(B \) and \(G \) are located on the shore of a circular lake, and cabin \(L \) is located near the lake. Point \(D \) is a dock on the lake shore and is collinear with cabins \(B \) and \(L \). The road between cabins \(G \) and \(L \) is 8 miles long and is tangent to the lake. The path between cabin \(L \) and dock \(D \) is 4 miles long.

What is the length, in miles, of \(\overline{BD} \)?
1) 24
2) 12
3) 8
4) 4

6 In the accompanying diagram, \(\overline{PA} \) is tangent to circle \(O \) at \(A \), secant \(PBC \) is drawn, \(PB = 4 \), and \(BC = 12 \). Find \(PA \).

7 In the accompanying diagram, \(\overline{AB} \) is tangent to circle \(O \) at \(B \). If \(AC = 16 \) and \(CD = 9 \), what is the length of \(\overline{AB} \)?

8 In the accompanying diagram of circle \(O \), \(\overline{PA} \) is a tangent and \(\overline{PBC} \) is a secant. If \(PB = 2 \) and \(BC = 6 \), find \(PA \).
9. In the accompanying figure, \(PA \) is tangent to circle \(O \) at \(A \), and \(PBC \) is a secant. If \(PC = 16 \) and \(BC = 12 \), find \(PA \).

10. In the accompanying diagram, \(PA \) is tangent to circle \(O \) at \(A \) and \(PBC \) is a secant. If \(CB = 9 \) and \(PB = 3 \), find the length of \(PA \).

11. In the diagram below of circle \(O \), secant \(ABC \) and tangent \(AD \) are drawn.

 If \(CA = 12.5 \) and \(CB = 4.5 \), determine and state the length of \(DA \).

12. In the accompanying diagram, tangent \(AB \) and secant \(ACD \) are drawn to circle \(O \) from point \(A \), \(AB = 6 \), and \(AC = 4 \). Find \(AD \).

13. In the accompanying diagram, \(AD \) is tangent to circle \(O \) at \(D \) and \(ABC \) is a secant. If \(AD = 4 \) and \(AC = 8 \), find \(AB \).

14. In the accompanying diagram, \(PA \) is tangent to circle \(O \) and \(PBC \) is a secant. If \(PA = 4 \) and \(BC = 6 \), find \(PB \).
15 In the accompanying diagram, \overline{AB} is tangent to circle O at B and \overline{ACD} is a secant. If $AB = 9$ and $AD = 27$, find AC.

16 In the accompanying diagram, \overline{AD} is tangent to circle O at D and \overline{ABC} is a secant. If $AD = 6$ and $AC = 9$, find AB.

17 In the accompanying diagram, tangent \overline{PA} and secant \overline{PBC} are drawn to circle O from external point P. If $PA = 8$ and $PB = 4$, find the length of BC.

18 In the accompanying diagram, \overrightarrow{PC} is tangent to circle O, \overline{PBA} is a secant, $PC = 6$, and $PB = 3$. Find AB.

19 In the diagram below of circle O, chords \overline{RT} and \overline{QS} intersect at M. Secant \overline{PTR} and tangent \overline{PS} are drawn to circle O. The length of \overline{RM} is two more than the length of \overline{TM}, $QM = 2$, $SM = 12$, and $PT = 8$.

Find the length of \overline{RT}. Find the length of \overline{PS}.
G.C.A.2: Chords, Secants and Tangents 8

Answer Section

1 ANS: 3
If a tangent and a secant intersect outside a circle, the tangent squared will equal the product of the secant and its external segment.

\[x^2 = 4(8 + 4) \]

\[x^2 = 48 \]

\[x = 4\sqrt{3} \]

REF: 080719b

2 ANS: 4
\[x^2 = (4 + 5) \times 4 \]

\[x^2 = 36 \]

\[x = 6 \]

REF: 011008ge

3 ANS: 2
\[x^2 = 3(x + 18) \]

\[x^2 - 3x - 54 = 0 \]

\[(x - 9)(x + 6) = 0 \]

\[x = 9 \]

REF: fall0817ge

4 ANS: 2
\[x^2 = 3 \cdot 18 \]

\[x = \sqrt{3 \cdot 3 \cdot 6} \]

\[x = 3\sqrt{6} \]

REF: 081712geo

5 ANS: 2
If a tangent and a secant intersect outside a circle, the tangent squared will equal the product of the secant and its external segment.

\[4(x + 4) = 8^2 \]

\[4x + 16 = 64 \]

\[x = 12 \]

REF: 080103b
6 ANS:
8. If a tangent and a secant intersect outside a circle, the tangent squared will equal the product of the secant and its external segment.

\[x^2 = 4(12 + 4) \]

\[x^2 = 64 \]

\[x = 8 \]

REF: 010623b

7 ANS:
20. If a tangent and a secant intersect outside a circle, the tangent squared will equal the product of the secant and its external segment.

\[x^2 = 16(16 + 9) \]

\[x^2 = 400 \]

\[x = 20 \]

REF: 010821b

8 ANS:
4

REF: 068805siii

9 ANS:
8

REF: 068914siii

10 ANS:
6

REF: 089011siii

11 ANS:

\[x^2 = 8 \times 12.5 \]

\[x = 10 \]

REF: 012028geo

12 ANS:
9

REF: 010416siii

13 ANS:
2

REF: 068607siii
14 ANS: 2
REF: 019408siii
15 ANS: 3
REF: 019701siii
16 ANS: 4
REF: 089715siii
17 ANS: 12
REF: 010314siii
18 ANS: 9
REF: 060314siii
19 ANS:
\[x(x + 2) = 12 \cdot 2. \quad \overline{RT} = 6 + 4 = 10. \quad y \cdot y = 18 \cdot 8 \]
\[x^2 + 2x - 24 = 0 \quad y^2 = 144 \]
\[(x + 6)(x - 4) = 0 \quad y = 12 \]
\[x = 4 \]

REF: 061237ge