1. If you draw a circle with a 4 in . radius, describe how you would find the measure of the arc cut off by the chord 3 in. from the center.
2. The circles shown are tangent at A. The smaller circle passes through O, the center of the larger circle. Explain why any chord of the larger circle containing A is bisected by the smaller circle.

3. If $E C=2 A E$ and $A B=6$, explain how you can find x and y.

\qquad
4. Theorem 12-12 states that the measure of an angle formed by two chords that intersect inside a circle is half the sum of the measures of the intercepted arcs. Theorem 12-13 states that the measure of an angle formed by two secants, two tangents or a secant and a tangent is half the difference of the measures of the intercepted arcs. Describe the differences between the two theorems.
5. Write a problem that uses the relationship of the segments of intersecting chords. Include your solution.
6. Central angles in two circles are congruent but the circles are not congruent. There is a chord joining the endpoints of the radii of the central angles in each circle. What is the relationship of the lengths of the chords?
7. Write a problem that can be solved using the properties of inscribed angles. Include your solution.
8. Write a problem using secants or chords. Include your solution.

Measure 3 in. along a radius to construct a perpendicular at that point. Draw the central angle formed by
[1] radii to the ends of the chord and measure that angle.
$\angle A R O$ is a right angle because it is inscribed in a semi-circle. $\overline{O R}$ is the perpendicular bisector of $\overline{A B}$
[2] since the perpendicular bisector of a chord contains the center of the circle.
If $A E=x$, then $E C=2 x$ and $A C=3 x$. So, multiply $3 x$ by x, set the product equal to $6 \cdot 6$, and solve for
[3] x. Then double that value to find y.
[4] Check students' work.
[5] Check students' work.
[6] The chords are proportional in the same ratio as the radii.
[7] Check students' work.
[8] Check students' work.

