1

# Regents Exam Questions

G.CO.A.5: Compositions of Transformations 2 www.jmap.org

## G.CO.A.5: Compositions of Transformations 2

1 On the set of axes below,  $\triangle ABC$  is graphed with coordinates A(-2,-1), B(3,-1), and C(-2,-4). Triangle *QRS*, the image of  $\triangle ABC$ , is graphed with coordinates Q(-5,2), R(-5,7), and S(-8,2).



Describe a sequence of transformations that would map  $\triangle ABC$  onto  $\triangle QRS$ .

2 Describe a sequence of transformations that will map  $\triangle ABC$  onto  $\triangle DEF$  as shown below.



3 The graph below shows  $\triangle ABC$  and its image,  $\triangle A"B"C"$ .



Describe a sequence of rigid motions which would map  $\triangle ABC$  onto  $\triangle A"B"C"$ .

Name:

**Regents Exam Questions** 

G.CO.A.5: Compositions of Transformations 2 www.jmap.org

4 On the set of axes below,  $\triangle ABC \cong \triangle STU$ .



Describe a sequence of rigid motions that maps  $\triangle ABC$  onto  $\triangle STU$ .

5 On the set of axes below,  $\triangle ABC \cong \triangle DEF$ .



Describe a sequence of rigid motions that maps  $\triangle ABC$  onto  $\triangle DEF$ .

Name:

6 On the set of axes below,  $\triangle DOG \cong \triangle CAT$ .



Describe a sequence of transformations that maps  $\triangle DOG$  onto  $\triangle CAT$ .

Regents Exam Questions G.CO.A.5: Compositions of Transformations 2

www.jmap.org

7 On the set of axes below,  $\triangle ABC$  and  $\triangle DEF$  are graphed.



Describe a sequence of rigid motions that would map  $\triangle ABC$  onto  $\triangle DEF$ .

8 Triangles *ABC* and *DEF* are graphed on the set of axes below.



Describe a sequence of transformations that maps  $\triangle ABC$  onto  $\triangle DEF$ .

Name:

9 Triangle *ABC* and triangle *DEF* are drawn below.



If  $\overline{AB} \cong \overline{DE}$ ,  $\overline{AC} \cong \overline{DF}$ , and  $\angle A \cong \angle D$ , write a sequence of transformations that maps triangle *ABC* onto triangle *DEF*.

10 Quadrilateral *MATH* and its image M''A''T''H'' are graphed on the set of axes below.



Describe a sequence of transformations that maps quadrilateral *MATH* onto quadrilateral *M"A"T"H"*.

4

X

Regents Exam Questions G.CO.A.5: Compositions of Transformations 2 www.jmap.org

11 Quadrilaterals *BIKE* and *GOLF* are graphed on the set of axes below.



G

Describe a sequence of transformations that maps quadrilateral *BIKE* onto quadrilateral *GOLF*.

12 On the set of axes below, congruent quadrilaterals ROCK and R'O'C'K' are graphed.



13 Trapezoids *ABCD* and *A"B"C"D"* are graphed on the set of axes below.



Describe a sequence of transformations that maps trapezoid *ABCD* onto trapezoid *A"B"C"D"*.

14 In the diagram below,  $\triangle ABC$  has coordinates A(1,1), B(4,1), and C(4,5). Graph and label  $\triangle A"B"C"$ , the image of  $\triangle ABC$  after the translation five units to the right and two units up followed by the reflection over the line y = 0.



Name:

## G.CO.A.5: Compositions of Transformations 2 Answer Section

1 ANS:  $R_{(-5,2),90^{\circ}} \circ T_{-3,1} \circ r_{x-axis}$ REF: 011928geo 2 ANS:  $T_{6,0} \circ r_{x-axis}$ REF: 061625geo 3 ANS:  $T_{0,-2} \circ r_{y-\text{axis}}$ REF: 011726geo 4 ANS:  $R_{90^{\circ}}$  or  $T_{2,-6} \circ R_{(-4,2),90^{\circ}}$  or  $R_{270^{\circ}} \circ r_{x-axis} \circ r_{y-axis}$ REF: 061929geo 5 ANS:  $r_{y=2} \circ r_{y-axis}$ REF: 081927geo 6 ANS:  $T_{0,5} \circ r_{y-axis}$ REF: 082225geo 7 ANS: Rotate  $90^{\circ}$  clockwise about *B* and translate down 4 and right 3. REF: 012326geo 8 ANS:  $T_{4,-4}$ , followed by a 90° clockwise rotation about point D. REF: 062326geo 9 ANS: Rotate  $\triangle ABC$  clockwise about point C until  $\overline{DF} \parallel \overline{AC}$ . Translate  $\triangle ABC$  along  $\overline{CF}$  so that C maps onto F.

REF: 061730geo

10 ANS:

 $R_{180^\circ}$  about  $\left(-\frac{1}{2}, \frac{1}{2}\right)$ 

REF: 081727geo

### 11 ANS:

Reflection across the *y*-axis, then translation up 5.







REF: 082325geo

13 ANS:

rotation 180° about the origin, translation 2 units down; rotation 180° about *B*, translation 6 units down and 6 units left; or reflection over *x*-axis, translation 2 units down, reflection over *y*-axis

REF: 081828geo

#### 14 ANS:



REF: 081626geo