G.CO.C.11: Parallelograms 1

1. In quadrilateral BLUE shown below, $\overline{BE} \cong \overline{UL}$.

Which information would be sufficient to prove quadrilateral BLUE is a parallelogram?

1) $\overline{BL} \parallel \overline{EU}$
2) $\overline{LU} \parallel \overline{BE}$
3) $\overline{BE} \cong \overline{BL}$
4) $\overline{LU} \cong \overline{EU}$

2. Quadrilateral ABCD with diagonals \overline{AC} and \overline{BD} is shown in the diagram below.

Which information is not enough to prove ABCD is a parallelogram?

1) $\overline{AB} \cong \overline{CD}$ and $\overline{AB} \parallel \overline{DC}$
2) $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$
3) $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \parallel \overline{AD}$
4) $\overline{AB} \parallel \overline{DC}$ and $\overline{BC} \parallel \overline{AD}$

3. Quadrilateral ABCD has diagonals \overline{AC} and \overline{BD}. Which information is not sufficient to prove ABCD is a parallelogram?

1) \overline{AC} and \overline{BD} bisect each other.
2) $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{AD}$
3) $\overline{AB} \cong \overline{CD}$ and $\overline{AB} \parallel \overline{CD}$
4) $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \parallel \overline{AD}$

4. Parallelogram HAND is drawn below with diagonals \overline{HN} and \overline{AD} intersecting at S.

Which statement is always true?

1) $\overline{AN} = \frac{1}{2} \overline{AD}$
2) $\overline{AS} = \frac{1}{2} \overline{AD}$
3) $\angle \text{AHS} \cong \angle \text{ANS}$
4) $\angle \text{HDS} \cong \angle \text{NDS}$

5. Which statement about parallelograms is always true?

1) The diagonals are congruent.
2) The diagonals bisect each other.
3) The diagonals are perpendicular.
4) The diagonals bisect their respective angles.
6 Quadrilateral $MATH$ has both pairs of opposite sides congruent and parallel. Which statement about quadrilateral $MATH$ is always true?
1) $MT \cong AH$
2) $MT \perp AH$
3) $\angle MHT \cong \angle ATH$
4) $\angle MAT \cong \angle MHT$

7 In parallelogram $ABCD$ shown below, the bisectors of $\angle ABC$ and $\angle DCB$ meet at E, a point on AD.

If $m\angle A = 68^\circ$, determine and state $m\angle BEC$.
G.CO.C.11: Parallelograms 1

Answer Section

1 ANS: 2 REF: 061720geo
2 ANS: 3
(3) Could be a trapezoid.

 REF: 081607geo
3 ANS: 4 REF: 061513geo
4 ANS: 2 REF: 011802geo
5 ANS: 2 REF: 011912geo
6 ANS: 4 REF: 081813geo
7 ANS:

 REF: 081826geo