1. The diagram below shows the construction of the bisector of $\angle ABC$.

Which statement is not true?
1) $m\angle EBF = \frac{1}{2} m\angle ABC$
2) $m\angle DBF = \frac{1}{2} m\angle ABC$
3) $m\angle EBF = m\angle ABC$
4) $m\angle DBF = m\angle EBF$

2. A student used a compass and a straightedge to construct \overline{CE} in $\triangle ABC$ as shown below.

Which statement must always be true for this construction?
1) $\angle CEA \cong \angle CEB$
2) $\angle ACE \cong \angle BCE$
3) $AE \cong BE$
4) $EC \cong AC$

3. Based on the construction below, which statement must be true?
1) $m\angle ABD = \frac{1}{2} m\angle CBD$
2) $m\angle ABD = m\angle CBD$
3) $m\angle ABD = m\angle ABC$
4) $m\angle CBD = \frac{1}{2} m\angle ABD$
4 A straightedge and compass were used to create the construction below. Arc EF was drawn from point B, and arcs with equal radii were drawn from E and F.

Which statement is false?
1) $m\angle ABD = m\angle DBC$
2) $\frac{1}{2} (m\angle ABC) = m\angle ABD$
3) $2(m\angle DBC) = m\angle ABC$
4) $2(m\angle ABC) = m\angle CBD$

5 As shown in the diagram below of $\triangle ABC$, a compass is used to find points D and E, equidistant from point A. Next, the compass is used to find point F, equidistant from points D and E. Finally, a straightedge is used to draw \overrightarrow{AF}. Then, point G, the intersection of \overrightarrow{AF} and side BC of $\triangle ABC$, is labeled.

Which statement must be true?
1) \overrightarrow{AF} bisects side BC
2) \overrightarrow{AF} bisects $\angle BAC$
3) $\overrightarrow{AF} \perp BC$
4) $\triangle ABG \sim \triangle ACG$
6 Which diagram shows the construction of a 45° angle?

1)

2)

3)

4)

7 Which illustration shows the correct construction of an angle bisector?

1)

2)

3)

4)

8 Using only a ruler and compass, construct the bisector of angle \(BAC \) in the accompanying diagram.
9 Using a compass and straightedge, construct the bisector of the angle shown below. [Leave all construction marks.]

10 Using a compass and straightedge, construct the angle bisector of ∠ABC shown below. [Leave all construction marks.]

11 On the diagram below, use a compass and straightedge to construct the bisector of ∠ABC. [Leave all construction marks.]

12 On the diagram below, use a compass and straightedge to construct the bisector of ∠XYZ. [Leave all construction marks.]
13 Using a compass and straightedge, construct the bisector of \(\angle MJH \). [Leave all construction marks.]

14 Using a compass and a straightedge, construct the bisector of \(\angle CDE \). [Leave all construction marks.]

15 Using a compass and straightedge, construct the bisector of \(\angle CBA \). [Leave all construction marks.]

16 Using a compass and straightedge, construct an equilateral triangle with \(\overline{AB} \) as a side. Using this triangle, construct a 30° angle with its vertex at \(A \). [Leave all construction marks.]
G.CO.D.12: Constructions 1
Answer Section

1 ANS: 3 REF: 080902ge
2 ANS: 2 REF: 011509ge
3 ANS: 2 REF: 011004ge
4 ANS: 4 REF: 081106ge
5 ANS: 2 REF: 081205ge
6 ANS: 3 REF: 011402ge
7 ANS: 3 REF: 060925ge
8 ANS:

REF: 060022a
9 ANS:

REF: fall0832ge
10 ANS:

REF: 080932ge
11 ANS:

REF: 011133ge

12 ANS:

REF: 011233ge

13 ANS:

REF: 081330ge

14 ANS:

REF: 011634ge

15 ANS:

REF: 061232ge
16 ANS:

REF: 061437ge