1 Which graph represents a circle with the equation \((x - 5)^2 + (y + 1)^2 = 9\)?

2 Which graph represents a circle with the equation \((x - 3)^2 + (y + 1)^2 = 4\)?
3 The equation of a circle is \((x - 2)^2 + (y + 4)^2 = 4\). Which diagram is the graph of the circle?

4 Which graph represents a circle whose equation is \((x - 2)^2 + (y + 4)^2 = 4\)?
5 Which graph represents a circle whose equation is
\[(x + 2)^2 + y^2 = 16?\]

6 Which graph represents a circle whose equation is
\[x^2 + (y - 1)^2 = 9?\]
7 Which graph represents a circle whose equation is \(x^2 + (y - 2)^2 = 4 \)?

1)

2)

3)

4)

8 Which graph represents the graph of the equation \((x - 1)^2 + y^2 = 4\)?

1)

2)

3)

4)
9. Which graph represents a circle whose equation is
\[(x + 3)^2 + (y - 1)^2 = 4?\]

1)

2)

3)

4)

10. John uses the equation \(x^2 + y^2 = 9\) to represent the shape of a garden on graph paper.

a. Graph \(x^2 + y^2 = 9\) on the accompanying grid.

b. What is the area of the garden to the nearest square unit?
11 On the set of axes below, graph and label circle A whose equation is $(x + 4)^2 + (y - 2)^2 = 16$ and circle B whose equation is $x^2 + y^2 = 9$. Determine, in simplest radical form, the length of the line segment with endpoints at the centers of circles A and B.

12 For a carnival game, John is painting two circles, V and M, on a square dartboard.

a On the accompanying grid, draw and label circle V, represented by the equation $x^2 + y^2 = 25$, and circle M, represented by the equation $(x - 8)^2 + (y + 6)^2 = 4$.

b A point, (x,y), is randomly selected such that $-10 \leq x \leq 10$ and $-10 \leq y \leq 10$. What is the probability that point (x,y) lies outside both circle V and circle M?
G.GPE.A.1: Equations of Circles 6
Answer Section

1 ANS: 1 REF: 060920ge
2 ANS: 2 REF: 011125ge
3 ANS: 2 REF: 011020ge
4 ANS: 3 REF: 011518ge
5 ANS: 3 REF: 061220ge
6 ANS: 1 REF: 061325ge
7 ANS: 1 REF: 081324ge
8 ANS: 2 REF: 081425ge
9 ANS: 1 REF: 011614ge
10 ANS:

 ![Diagram]

 a) ; b) 28

 REF: 010133a

11 ANS:

 ![Diagram]

 REF: 081537ge
The dartboard is 20 x 20, with area of 400. \(A = \pi r^2 \), so the area of circle \(V \) is \(25\pi \) and of circle \(M \) is \(4\pi \). The percentage of the area of the dartboard outside both circles is

\[
\frac{400 - (25\pi + 4\pi)}{400} \approx 0.77
\]

REF: 060334b