Algebra II Journal G.GPE.A.2: Graphing Quadratic Functions 1 www.jmap.org

NAME: _____

1. Write an equation of the parabola with its vertex at the origin if its directrix is y = 4.

[A]
$$y = -16x^2$$
 [B] $x = -\frac{1}{16}y^2$ [C] $y = -\frac{1}{16}x^2$ [D] $x = 4y^2$

2. Write an equation of the parabola with its vertex at the origin if its focus is at (0, -6).

[A]
$$x = -\frac{1}{24}y^2$$
 [B] $y = -\frac{1}{24}x^2$ [C] $y = 6x^2$ [D] $y = -6x^2$

3. Write an equation of the parabola with its vertex at the origin if its focus is at (0, -3).

[A]
$$y = -\frac{1}{12}x^2$$
 [B] $x = -\frac{1}{12}y^2$ [C] $y = 3x^2$ [D] $y = -3x^2$

4. Compare the quantity in Column A with the quantity in Column B. Column A Column B

-5 the y-coordinate of the focus of $y = -\frac{1}{20}x^2$

[A] The quantity in Column A is greater. [B] The quantity in Column B is greater.

- [C] The two quantities are equal.
- [D] The relationship cannot be determined on the basis of the information supplied.
- 5. Use the information in the graph to write an equation for the parabola.

NAME:

- 6. Write an equation of the parabola with its vertex at the origin if its focus is at (0, -5).
- 7. Write an equation of the parabola with its vertex at the origin if its directrix is y = -2.
- 8. Write an equation of the parabola with its vertex at the origin if its directrix is y = -5.
- 9. Find an equation for the parabola with focus at (-5, -4) and vertex at (-5, -3).
- 10. Find an equation for the parabola with focus at (1, -3) and vertex at (1, -7).
- 11. Find an equation for the parabola with focus at (-4, 5) and vertex at (-4, -1).
- 12. Find an equation for the parabola with focus at (3, 6) and vertex at (3, 4).
- 13. Find an equation for the parabola with focus at (6, 8) and vertex at (6, 5).
- 14. Find an equation for the parabola with focus at (-3, -11) and vertex at (-3, -6).
- 15. The shape of a solar collector can be modeled by the equation $y = \frac{1}{8}x^2$, where x and y are in inches. Find the distance from the vertex to the focus.

[1]	<u>C</u>
[2]	<u>B</u>
[3]	<u>A</u>
[4]	<u>C</u>
[5]	$y = \frac{x^2}{4}$
[6]	$y = -\frac{1}{20}x^2$
[7]	$y = \frac{1}{8}x^2$
[8]	$y = \frac{1}{20}x^2$
[9]	$\frac{x^2 + 10x + 4y + 37}{0} = 0$
[10]	$x^2 - 2x - 16y - 111 = 0$
[11]	$x^2 + 8x - 24y - 8 = 0$
[12]	$\frac{x^2 - 6x - 8y + 41}{2} = 0$
[13]	$x^2 - 12x - 12y + 96 = 0$
[14]	$x^2 + 6x + 20y + 129 = 0$
[15]	<u>2 in.</u>