G.GPE.B.4: Quadrilaterals in the Coordinate Plane 2

1 In square $GEOM$, the coordinates of G are $(2, -2)$ and the coordinates of O are $(-4, 2)$. Determine and state the coordinates of vertices E and M. [The use of the set of axes below is optional.]

2 The coordinates of quadrilateral $ABCD$ are $A(-1, -5), B(8, 2), C(11, 13)$, and $D(2, 6)$. Using coordinate geometry, prove that quadrilateral $ABCD$ is a rhombus. [The use of the grid is optional.]
3 Jim is experimenting with a new drawing program on his computer. He created quadrilateral \(TEAM \) with coordinates \(T(-2,3), E(-5,-4), A(2,-1), \) and \(M(5,6) \). Jim believes that he has created a rhombus but not a square. Prove that Jim is correct. [The use of the grid is optional.]

4 Quadrilateral \(PQRS \) has vertices \(P(-2,3), Q(3,8), R(4,1), \) and \(S(-1,-4) \). Prove that \(PQRS \) is a rhombus. Prove that \(PQRS \) is not a square. [The use of the set of axes below is optional.]
5. The vertices of quadrilateral \(MATH \) have coordinates \(M(-4,2), A(-1,-3), T(9,3), \) and \(H(6,8) \). Prove that quadrilateral \(MATH \) is a parallelogram. Prove that quadrilateral \(MATH \) is a rectangle. [The use of the set of axes below is optional.]

6. Given: \(A(-2,2), B(6,5), C(4,0), D(-4,-3) \) Prove: \(ABCD \) is a parallelogram but not a rectangle. [The use of the grid is optional.]

7. The vertices of quadrilateral \(JKLM \) have coordinates \(J(-3,1), K(1,-5), L(7,-2), \) and \(M(3,4) \). Prove that \(JKLM \) is a parallelogram. Prove that \(JKLM \) is not a rhombus. [The use of the set of axes below is optional.]

8. Quadrilateral \(MATH \) has coordinates \(M(1,1), A(-2,5), T(3,5), \) and \(H(6,1) \). Prove that quadrilateral \(MATH \) is a rhombus and prove that it is not a square. [The use of the grid is optional.]
9 Quadrilateral $ABCD$ has vertices $A(2,3)$, $B(7,10)$, $C(9,4)$, and $D(4,-3)$. Prove that $ABCD$ is a parallelogram but not a rhombus. [The use of the grid is optional.]

10 Given: Quadrilateral $ABCD$ has vertices $A(-5,6)$, $B(6,6)$, $C(8,-3)$, and $D(-3,-3)$. Prove: Quadrilateral $ABCD$ is a parallelogram but is neither a rhombus nor a rectangle. [The use of the grid below is optional.]

11 In rhombus $MATH$, the coordinates of the endpoints of the diagonal MT are $M(0,-1)$ and $T(4,6)$. Write an equation of the line that contains diagonal AH. [Use of the set of axes below is optional.] Using the given information, explain how you know that your line contains diagonal AH. [The use of the set of axes below is optional.]
12 In the coordinate plane, the vertices of \(\triangle RST \) are \(R(6, -1), S(1, -4), \) and \(T(-5, 6) \). Prove that \(\triangle RST \) is a right triangle. State the coordinates of point \(P \) such that quadrilateral \(RSTP \) is a rectangle. Prove that your quadrilateral \(RSTP \) is a rectangle. [The use of the set of axes below is optional.]

13 Ashanti is surveying for a new parking lot shaped like a parallelogram. She knows that three of the vertices of parallelogram \(ABCD \) are \(A(0, 0), B(5, 2), \) and \(C(6, 5) \). Find the coordinates of point \(D \) and sketch parallelogram \(ABCD \) on the accompanying set of axes. Justify mathematically that the figure you have drawn is a parallelogram.

14 Given: \(\triangle ABC \) with vertices \(A(-6, -2), B(2, 8), \) and \(C(6, -2) \). \(AB \) has midpoint \(D \), \(BC \) has midpoint \(E \), and \(AC \) has midpoint \(F \).
Prove: \(ADEF \) is a parallelogram
\(ADEF \) is not a rhombus
[The use of the grid is optional.]
15 Quadrilateral $ABCD$ with vertices $A(-7,4)$, $B(-3,6), C(3,0)$, and $D(1,-8)$ is graphed on the set of axes below. Quadrilateral $MNPQ$ is formed by joining $M, N, P,$ and Q, the midpoints of AB, BC, CD, and AD, respectively. Prove that quadrilateral $MNPQ$ is a parallelogram. Prove that quadrilateral $MNPQ$ is not a rhombus.

16 Given: $A(1,6), B(7,9), C(13,6),$ and $D(3,1)$
Prove: $ABCD$ is a trapezoid. [The use of the accompanying grid is optional.]

17 Quadrilateral $KATE$ has vertices $K(1,5), A(4,7), T(7,3),$ and $E(1,-1)$.
 a Prove that $KATE$ is a trapezoid. [The use of the grid is optional.]
 b Prove that $KATE$ is not an isosceles trapezoid.

18 The coordinates of quadrilateral $JKLM$ are $J(1,-2), K(13,4), L(6,8), \text{and } M(-2,4)$. Prove that quadrilateral $JKLM$ is a trapezoid but not an isosceles trapezoid. [The use of the grid is optional.]
19 Given: $T(-1,1)$, $R(3,4)$, $A(7,2)$, and $P(-1,-4)$
Prove: $TRAP$ is a trapezoid.
$TRAP$ is not an isosceles trapezoid.
[The use of the grid is optional.]

20 In the coordinate plane, the vertices of triangle PAT are $P(-1,-6)$, $A(-4,5)$, and $T(5,-2)$. Prove that $	riangle PAT$ is an isosceles triangle. [The use of the set of axes below is optional.] State the coordinates of R so that quadrilateral $PART$ is a parallelogram. Prove that quadrilateral $PART$ is a parallelogram.

21 In the accompanying diagram of $ABCD$, where $a \neq b$, prove $ABCD$ is an isosceles trapezoid.
G.GPE.B.4: Quadrilaterals in the Coordinate Plane 2
Answer Section

1 ANS:

![Diagram of quadrilateral ABCD]

REF: 011731geo

2 ANS:

To prove that $ABCD$ is a rhombus, show that all sides are congruent using the distance formula:

$$d_{AB} = \sqrt{(8 - (-1))^2 + (2 - (-5))^2} = \sqrt{130}.$$

$$d_{BC} = \sqrt{(11 - 8)^2 + (13 - 2)^2} = \sqrt{130}$$

$$d_{CD} = \sqrt{(11 - 2)^2 + (13 - 6)^2} = \sqrt{130}$$

$$d_{AD} = \sqrt{(2 - (-1))^2 + (6 - (-5))^2} = \sqrt{130}$$

REF: 060327b
To prove that $TEAM$ is a rhombus, show that all sides are congruent using the distance formula:

$$d_{ET} = \sqrt{(-2 - (-5))^2 + (3 - (-4))^2} = \sqrt{58}.$$ A square has four right angles. If $TEAM$ is a square, then $ET \perp AE$,

$$d_{AM} = \sqrt{(2 - 5)^2 + ((-1) - 6)^2} = \sqrt{58}$$

$$d_{AE} = \sqrt{(-5 - 2)^2 + (-4 - (-1))^2} = \sqrt{58}$$

$$d_{MT} = \sqrt{(-2 - 5)^2 + (3 - 6)^2} = \sqrt{58}$$

$AE \perp AM$, $AM \perp AT$ and $MT \perp ET$. Lines that are perpendicular have slopes that are opposite reciprocals of each other. The slopes of sides of $TEAM$ are:

$$m_{ET} = \frac{-4 - 3}{-5 - (-2)} = \frac{7}{3} \quad m_{AE} = \frac{-4 - (-1)}{-5 - 2} = \frac{3}{7}$$

Because $\frac{7}{3}$ and $\frac{3}{7}$ are not opposite reciprocals, consecutive sides of $TEAM$ are not perpendicular, and $TEAM$ is not a square.

$PQRS$ is a rhombus because all sides are congruent. $m_{PQ} = \frac{8 - 3}{3 - 2} = \frac{5}{1} = 5$, $m_{QR} = \frac{1 - 8}{4 - 3} = -7$. Because the slopes of adjacent sides are not opposite reciprocals, they are not perpendicular and do not form a right angle. Therefore $PQRS$ is not a square.
\[m_{MH} = \frac{6}{10} = \frac{3}{5}, \quad m_{AT} = \frac{6}{10} = \frac{3}{5}, \quad m_{MA} = -\frac{5}{3}, \quad m_{HT} = -\frac{3}{5}; \quad \overline{MH} \parallel \overline{AT} \quad \text{and} \quad \overline{MA} \parallel \overline{HT}. \]

\(MATH \) is a parallelogram since both sides of opposite sides are parallel. \(m_{MA} = -\frac{5}{3}, \quad m_{AT} = \frac{3}{5} \). Since the slopes are negative reciprocals, \(MA \perp AT \) and \(\angle A \) is a right angle. \(MATH \) is a rectangle because it is a parallelogram with a right angle.

REF: 081835geo

6 ANS:

To prove that \(ABCD \) is a parallelogram, show that both pairs of opposite sides of the parallelogram are parallel by showing the opposite sides have the same slope:

\[m_{AB} = \frac{5 - 2}{6 - (-2)} = \frac{3}{8}, \quad m_{CD} = \frac{-3 - 2}{-4 - (-2)} = \frac{5}{2} \]

\[m_{CD} = \frac{-3 - 0}{-4 - 4} = \frac{3}{8}, \quad m_{BC} = \frac{5 - 0}{6 - 4} = \frac{5}{2} \]

A rectangle has four right angles. If \(ABCD \) is a rectangle, then \(AB \perp BC, \quad BC \perp CD, \quad CD \perp AD, \) and \(AD \perp AB. \)

Lines that are perpendicular have slopes that are the opposite and reciprocal of each other. Because \(\frac{3}{8} \) and \(\frac{5}{2} \) are not opposite reciprocals, the consecutive sides of \(ABCD \) are not perpendicular, and \(ABCD \) is not a rectangle.

REF: 060633b
7 ANS:
\[m_{JM} = \frac{1 - 4}{-3 - 3} = \frac{-3}{-6} = \frac{1}{2} \]
Since both opposite sides have equal slopes and are parallel, \(JKLM \) is a parallelogram.
\[m_{ML} = \frac{4 - 2}{3 - 7} = \frac{6}{-4} = -\frac{3}{2} \]
\[m_{LK} = \frac{-2 - 5}{7 - 1} = \frac{3}{6} = \frac{1}{2} \]
\[m_{KL} = \frac{-5 - 1}{1 - 3} = \frac{-6}{4} = -\frac{3}{2} \]
\[JM = \sqrt{(-3 - 3)^2 + (1 - 4)^2} = \sqrt{45} \]
\(JM \) is not congruent to \(ML \), so \(JKLM \) is not a rhombus since not all sides are congruent.
\[ML = \sqrt{(7 - 3)^2 + (-2 - 4)^2} = \sqrt{52} \]

REF: 061438ge

8 ANS:
\[m_{AB} = \frac{10 - 3}{7 - 2} = \frac{7}{5}, \quad m_{CD} = \frac{4 - (-3)}{9 - 4} = \frac{7}{5}, \quad m_{AD} = \frac{3 - (-3)}{2 - 4} = \frac{6}{-2} = -3, \quad m_{BC} = \frac{10 - 4}{7 - 9} = \frac{6}{-2} = -3 \]
(Definition of slope). \(AB \parallel CD, AD \parallel BC \) (Parallel lines have equal slope). Quadrilateral \(ABCD \) is a parallelogram (Definition of parallelogram). \[d_{AD} = \sqrt{(2 - 4)^2 + (3 - (-3))^2} = \sqrt{40}, \quad d_{AB} = \sqrt{(7 - 2)^2 + (10 - 3)^2} = \sqrt{74} \]
(Definition of distance). \(AD \) is not congruent to \(AB \) (Congruent lines have equal distance). \(ABCD \) is not a rhombus (A rhombus has four equal sides).

REF: 011138ge

9 ANS:
\[m_{AB} = \frac{10 - 3}{7 - 2} = \frac{7}{5}, \quad m_{CD} = \frac{4 - (-3)}{9 - 4} = \frac{7}{5}, \quad m_{AD} = \frac{3 - (-3)}{2 - 4} = \frac{6}{-2} = -3, \quad m_{BC} = \frac{10 - 4}{7 - 9} = \frac{6}{-2} = -3 \]
(Definition of slope). \(AB \parallel CD, AD \parallel BC \) (Parallel lines have equal slope). Quadrilateral \(ABCD \) is a parallelogram (Definition of parallelogram). \[d_{AD} = \sqrt{(2 - 4)^2 + (3 - (-3))^2} = \sqrt{40}, \quad d_{AB} = \sqrt{(7 - 2)^2 + (10 - 3)^2} = \sqrt{74} \]
(Definition of distance). \(AD \) is not congruent to \(AB \) (Congruent lines have equal distance). \(ABCD \) is not a rhombus (A rhombus has four equal sides).

REF: 061031b
AB \parallel CD \text{ and } AD \parallel CB \text{ because their slopes are equal. } ABCD \text{ is a parallelogram because opposite sides are parallel. } AB \neq BC. \text{ } ABCD \text{ is not a rhombus because all sides are not equal. } AB \perp BC \text{ because their slopes are not opposite reciprocals. } ABCD \text{ is not a rectangle because } \angle ABC \text{ is not a right angle.}

\text{REF: 081038ge}

11 \text{ ANS:}

\begin{align*}
M\left(\frac{4+0}{2}, \frac{6-1}{2}\right) &= M\left(2, \frac{5}{2}\right) \quad m = \frac{6-(-1)}{4-0} = \frac{7}{4} \quad m_\perp = -\frac{4}{7} \\
y - 2.5 &= -\frac{4}{7}(x - 2)
\end{align*}

The diagonals, \overline{MT} \text{ and } \overline{AH}, \text{ of rhombus } MATH \text{ are perpendicular bisectors of each other.}

\text{REF: fall1411geo}

12 \text{ ANS:}

\begin{align*}
m_{TS} &= -\frac{10}{6} = -\frac{5}{3} \\
m_{SR} &= \frac{3}{5}
\end{align*}

Since the slopes of \overline{TS} \text{ and } \overline{SR} \text{ are opposite reciprocals, they are perpendicular and form a right angle. } \triangle RST \text{ is a right triangle because } \angle S \text{ is a right angle. } P(0, 9) \quad m_{PR} = -\frac{10}{6} = -\frac{5}{3} \quad m_{PT} = \frac{3}{5}

Since the slopes of all four adjacent sides (\overline{TS} \text{ and } \overline{SR}, \overline{SR} \text{ and } \overline{RP}, \overline{RP} \text{ and } \overline{TS}, \overline{TS} \text{ and } \overline{RP} \text{ and } \overline{PT}) \text{ are opposite reciprocals, they are perpendicular and form right angles. Quadrilateral } RSTP \text{ is a rectangle because it has four right angles.}

\text{REF: 061536geo}
Both pairs of opposite sides of a parallelogram are parallel. Parallel lines have the same slope. The slope of side \overline{BC} is 3. For side \overline{AD} to have a slope of 3, the coordinates of point D must be (1,3).

\overline{AB}: $m_{\overline{AB}} = \frac{2 - 0}{5 - 0} = \frac{2}{5}$

\overline{AD}: $m_{\overline{AD}} = \frac{3 - 0}{1 - 0} = 3$

\overline{CD}: $m_{\overline{CD}} = \frac{5 - 3}{6 - 1} = \frac{2}{5}$

\overline{BC}: $m_{\overline{BC}} = \frac{5 - 2}{6 - 5} = 3$

REF: 080032a

14 ANS:

\overline{AD}: $m_{\overline{AD}} = \left(\frac{-6 + 2}{2}, \frac{-2 + 8}{2}\right) = D(2,3)$

\overline{BC}: $m_{\overline{BC}} = \left(\frac{2 + 6}{2}, \frac{8 + 2}{2}\right) = E(4,3)$

$F(0,-2)$. To prove that $ADEF$ is a parallelogram, show that both pairs of opposite sides of the parallelogram are parallel by showing the opposite sides have the same slope: $m_{\overline{AD}} = \frac{3 - 2}{-2 - 6} = \frac{5}{4}$ $\overline{AF} \parallel \overline{DE}$ because all horizontal lines have the same slope. $ADEF$ is not a rhombus because not all sides are congruent. $AD = \sqrt{5^2 + 4^2} = \sqrt{41}$ $AF = 6$

REF: 081138ge
15 ANS:
\[M\left(\frac{-7+3}{2}, \frac{4+6}{2} \right) = M(-5,5). \quad m_{MN} = \frac{5-3}{-5-0} = \frac{2}{-5}. \]
Since both opposite sides have equal slopes and are parallel, \(MNPQ \) is a parallelogram.

\[\overline{MN} = \sqrt{(-5-0)^2 + (5-3)^2} = \sqrt{29}. \quad \overline{MN} \text{ is not congruent to } \overline{NP}, \text{ so } MNPQ \]

is not a rhombus since not all sides are congruent.

REF: 081338ge

16 ANS:

To prove that \(ABCD \) is a trapezoid, show that one pair of opposite sides of the figure is parallel by showing they have the same slope and that the other pair of opposite sides is not parallel by showing they do not have the same slope:

\[m_{AB} = \frac{9-6}{7-1} = \frac{3}{6} = \frac{1}{2}, \quad m_{AD} = \frac{6-1}{1-3} = \frac{5}{-2} \]

\[m_{CD} = \frac{6-1}{13-3} = \frac{5}{10} = \frac{1}{2}, \quad m_{BC} = \frac{9-6}{7-13} = \frac{-3}{6} = \frac{-1}{2} \]

REF: 080134b
To prove that $KATE$ is a trapezoid, show that one pair of opposite sides of the figure is parallel by showing they have the same slope and that the other pair of opposite sides is not parallel by showing they do not have the same slope: \[
m_{AK} = \frac{7 - 5}{4 - 1} = \frac{2}{3} \quad m_{EK} = \frac{-1 - 5}{1 - 1} = \text{undefined}
\]
\[
m_{ET} = \frac{3 - (-1)}{7 - 1} = \frac{4}{6} = \frac{2}{3} \quad m_{AT} = \frac{7 - 3}{4 - 7} = -\frac{4}{3}
\]
To prove that a trapezoid is not an isosceles trapezoid, show that the opposite sides that are not parallel are also not congruent using the distance formula: \[
d_{EK} = \sqrt{(1 - 1)^2 + (5 - 1)^2} = 6
\]
\[
d_{AT} = \sqrt{(4 - 7)^2 + (7 - 3)^2} = 5
\]

To prove that $JKLM$ is a trapezoid, show that one pair of opposite sides of the figure is parallel by showing they have the same slope and that the other pair of opposite sides is not parallel by showing they do not have the same slope: \[
m_{JK} = \frac{4 - (-2)}{13 - 1} = \frac{1}{2} \quad m_{KL} = \frac{-2 - 4}{1 - (-2)} = -2
\]
\[
m_{LM} = \frac{8 - 4}{6 - (-2)} = \frac{1}{2} \quad m_{ML} = \frac{4 - 8}{13 - 6} = -\frac{4}{7}
\]
To prove that a trapezoid is not an isosceles trapezoid, show that the opposite sides that are not parallel are also not congruent using the distance formula: \[
d_{JM} = \sqrt{(1 - (-2))^2 + (-2 - 4)^2} = \sqrt{45}
\]
\[
d_{KL} = \sqrt{(13 - 6)^2 + (4 - 8)^2} = \sqrt{65}
\]
To prove that \(TRAP \) is a trapezoid, show that one pair of opposite sides of the figure is parallel by showing they have the same slope and that the other pair of opposite sides is not parallel by showing they do not have the same slope:

\[
m_{TR} = \frac{1 - 4}{-1 - 3} = \frac{3}{4} \quad m_{TP} = \frac{1 - (-4)}{-1 - (-1)} = \text{undefined}
\]

\[
m_{PA} = \frac{-4 - 2}{-1 - 7} = \frac{3}{4} \quad m_{RA} = \frac{4 - 2}{3 - 7} = \frac{1}{2}
\]

To prove that a trapezoid is not an isosceles trapezoid, show that the opposite sides that are not parallel are also not congruent using the distance formula:

\[
d_{TP} = \sqrt{(-1 - (-1))^2 + (1 - (-4))^2} = 5
\]

\[
d_{RA} = \sqrt{(3 - 7)^2 + (4 - 2)^2} = \sqrt{20} = 2\sqrt{5}
\]

\(\text{REF: 080933b} \)

\[20 \ \text{ANS:} \]

\(\triangle PAT \) is an isosceles triangle because sides \(AP \) and \(AT \) are congruent \((\sqrt{3^2 + 11^2} = \sqrt{7^2 + 9^2} = \sqrt{130}) \).

\(R(2,9) \). Quadrilateral \(PART \) is a parallelogram because the opposite sides are parallel

\[
(m_{AR} = \frac{4}{6} = \frac{2}{3}; \ m_{PT} = \frac{4}{6} = \frac{2}{3}; \ m_{PA} = \frac{-11}{3}; \ m_{RT} = \frac{-11}{3})
\]

\(\text{REF: 011835geo} \)
21 ANS:
To prove that $ABCD$ is a trapezoid, show that one pair of opposite sides of the figure is parallel by showing they have the same slope and that the other pair of opposite sides is not parallel by showing they do not have the same slope:

$m_{AB} = \frac{0-0}{-a-a} = 0 \quad m_{AD} = \frac{c-0}{-b-(-a)} = \frac{c}{-b+a}$

If AD and BC are parallel, then:

$\frac{c}{-b+a} = \frac{c}{b-a}$

$m_{CD} = \frac{c-c}{-b-b} = 0 \quad m_{BC} = \frac{c-0}{b-a} = \frac{c}{b-a}$

$c(b-a) = c(-b+a) \quad b-a = -b+a \quad 2a = 2b \quad a = b$

But the facts of the problem indicate $a \neq b$, so AD and BC are not parallel.

To prove that a trapezoid is an isosceles trapezoid, show that the opposite sides that are not parallel are congruent using the distance formula:

$d_{BC} = \sqrt{(b-a)^2 + (c-0)^2} \quad d_{AD} = \sqrt{(-b-(-a))^2 + (c-0)^2}$

$= \sqrt{b^2 - 2ab + a^2 + c^2} = \sqrt{(a-b)^2 + c^2}$

$= \sqrt{a^2 + b^2 - 2ab + c^2} = \sqrt{a^2 + b^2 - 2ab + c^2}$

REF: 080534b