1. Find the area of a triangle if its three sides are 7 inches, 8 inches, and 9 inches. Use Heron’s formula
\[A = \sqrt{S(S-a)(S-b)(S-c)} \], where \(a, b, \) and \(c \) are the lengths of the sides and \(S = \frac{a+b+c}{2} \).

2. Find the area of a triangle if its three sides are 5 inches, 6 inches, and 7 inches. Use Heron’s formula
\[A = \sqrt{S(S-a)(S-b)(S-c)} \], where \(a, b, \) and \(c \) are the lengths of the sides and \(S = \frac{a+b+c}{2} \).

[A] 18 in.² [B] 14.7 in.² [C] 4.9 in.² [D] 4.24 in.²

3. Find the area of a triangle if its three sides are 8 inches, 9 inches, and 13 inches. Use Heron’s formula
\[A = \sqrt{S(S-a)(S-b)(S-c)} \], where \(a, b, \) and \(c \) are the lengths of the sides and \(S = \frac{a+b+c}{2} \).

[A] 5.48 in.² [B] 35.5 in.² [C] 30 in.² [D] 9.17 in.²

4. Find the area of a triangle if its three sides are 9 inches, 10 inches, and 15 inches. Use Heron’s formula
\[A = \sqrt{S(S-a)(S-b)(S-c)} \], where \(a, b, \) and \(c \) are the lengths of the sides and \(S = \frac{a+b+c}{2} \).

[A] 10.58 in.² [B] 43.63 in.² [C] 5.83 in.² [D] 34 in.²

5. Find the area of a triangle if its three sides are 4 inches, 5 inches, and 7 inches. Use Heron’s formula
\[A = \sqrt{S(S-a)(S-b)(S-c)} \], where \(a, b, \) and \(c \) are the lengths of the sides and \(S = \frac{a+b+c}{2} \).

[A] 3.46 in.² [B] 16 in.² [C] 9.8 in.² [D] 4 in.²

6. Find the area of a triangle if its three sides are 8 inches, 9 inches, and 11 inches. Use Heron’s formula
\[A = \sqrt{S(S-a)(S-b)(S-c)} \], where \(a, b, \) and \(c \) are the lengths of the sides and \(S = \frac{a+b+c}{2} \).

[A] 5.29 in.² [B] 9.49 in.² [C] 35.5 in.² [D] 28 in.²
[1] D
[2] B
[3] B
[4] B
[5] C
[6] C