Geometry Multiple Choice Regents Exam Questions

1 What are the center and the radius of the circle whose equation is $(x-5)^{2}+(y+3)^{2}=16$?

1) $(-5,3)$ and 16
2) $(5,-3)$ and 16
3) $(-5,3)$ and 4
4) $(5,-3)$ and 4

2 The number of degrees in the sum of the interior angles of a pentagon is

1) 72
2) 360
3) 540
4) 720

3 The coordinates of the endpoints of $\overline{A B}$ are $A(0,0)$ and $B(0,6)$. The equation of the perpendicular bisector of $\overline{A B}$ is

1) $x=0$
2) $x=3$
3) $y=0$
4) $y=3$

6 In the diagram below, LATE is an isosceles trapezoid with $\overline{L E} \cong \overline{A T}, L A=24, E T=40$, and $A T=10$. Altitudes $\overline{L F}$ and $\overline{A G}$ are drawn.

What is the length of $\overline{L F}$?

1) 6
2) 8
3) 3
4) 4

7 In the diagram below of $\triangle A B C, \overline{B C}$ is extended to D.

If $\mathrm{m} \angle A=x^{2}-6 x, \mathrm{~m} \angle B=2 x-3$, and $\mathrm{m} \angle A C D=9 x+27$, what is the value of x ?

1) 10
2) 2
3) 3
4) 15

8 In rhombus $A B C D$, the diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. If $A E=5$ and $B E=12$, what is the length of $\overline{A B}$?

1) 7
2) 10
3) 13
4) 17

9 Scalene triangle $A B C$ is similar to triangle $D E F$. Which statement is false?

1) $A B: B C=D E: E F$
2) $A C: D F=B C: E F$
3) $\angle A C B \cong \angle D F E$
4) $\angle A B C \cong \angle E D F$

10 In the diagram below of $\triangle A B C, \overline{A B} \cong \overline{A C}$, $\mathrm{m} \angle A=3 x$, and $\mathrm{m} \angle B=x+20$.

What is the value of x ?

1) 10
2) 28
3) 32
4) 40

11 Quadrilateral $M N O P$ is a trapezoid with $\overline{M N} \| \overline{O P}$. If $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ is the image of $M N O P$ after a reflection over the x-axis, which two sides of quadrilateral $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ are parallel?

1) $\overline{M^{\prime} N^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
2) $\overline{M^{\prime} N^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$
3) $\overline{P^{\prime} M^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
4) $\overline{P^{\prime} M^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$

12 A sphere is inscribed inside a cube with edges of 6 cm . In cubic centimeters, what is the volume of the sphere, in terms of π ?

1) 12π
2) 36π
3) 48π
4) 288π

13 Which line is parallel to the line whose equation is $4 x+3 y=7$ and also passes through the point $(-5,2)$?

1) $4 x+3 y=-26$
2) $4 x+3 y=-14$
3) $3 x+4 y=-7$
4) $3 x+4 y=14$

14 In a given triangle, the point of intersection of the three medians is the same as the point of intersection of the three altitudes. Which classification of the triangle is correct?

1) scalene triangle
2) isosceles triangle
3) equilateral triangle
4) right isosceles triangle

15 Line n intersects lines l and m, forming the angles shown in the diagram below.

Which value of x would prove $l \| m$?

1) 2.5
2) 4.5
3) 6.25
4) 8.75

16 As shown on the graph below, $\Delta R^{\prime} S^{\prime} T^{\prime}$ is the image of $\triangle R S T$ under a single transformation.

Which transformation does this graph represent?

1) glide reflection
2) line reflection
3) rotation
4) translation

17 In the diagram below of circle $O, \overline{P A}$ is tangent to circle O at A, and $\overline{P B C}$ is a secant with points B and C on the circle.

If $P A=8$ and $P B=4$, what is the length of $\overline{B C}$?

1) 20
2) 16
3) 15
4) 12

Geometry Multiple Choice Regents Exam Questions www.jmap.org

18 Which type of triangle can be drawn using the points ($-2,3$), ($-2,-7$), and ($4,-5$)?

1) scalene
2) isosceles
3) equilateral
4) no triangle can be drawn

19 In the diagram below of rhombus $A B C D$, $\mathrm{m} \angle C=100$.

What is $\mathrm{m} \angle D B C$?

1) 40
2) 45
3) 50
4) 80

20 In the diagram below of $\overline{A B C D}, \overline{A C} \cong \overline{B D}$.

Using this information, it could be proven that

1) $B C=A B$
2) $A B=C D$
3) $A D-B C=C D$
4) $A B+C D=A D$

21 What is an equation of circle O shown in the graph below?

1) $(x+1)^{2}+(y-3)^{2}=25$
2) $(x-1)^{2}+(y+3)^{2}=25$
3) $(x-5)^{2}+(y+6)^{2}=25$
4) $(x+5)^{2}+(y-6)^{2}=25$

22 In the diagram below, $\overline{A B}, \overline{B C}$, and $\overline{A C}$ are tangents to circle O at points F, E, and D, respectively, $A F=6, C D=5$, and $B E=4$.

What is the perimeter of $\triangle A B C$?

1) 15
2) 25
3) 30
4) 60

23 Which reason could be used to prove that a parallelogram is a rhombus?

1) Diagonals are congruent.
2) Opposite sides are parallel.
3) Diagonals are perpendicular.
4) Opposite angles are congruent.

24 What is the equation of a line passing through $(2,-1)$ and parallel to the line represented by the equation $y=2 x+1$?

1) $y=-\frac{1}{2} x$
2) $y=-\frac{1}{2} x+1$
3) $y=2 x-5$
4) $y=2 x-1$

25 In the diagram below, $\triangle A B C$ is circumscribed about circle O and the sides of $\triangle A B C$ are tangent to the circle at points D, E, and F.

If $A B=20, A E=12$, and $C F=15$, what is the length of $\overline{A C}$?

1) 8
2) 15
3) 23
4) 27

26 The angle formed by the radius of a circle and a tangent to that circle has a measure of

1) 45°
2) 90°
3) 135°
4) 180°

27 In $\triangle F G H, \mathrm{~m} \angle F=42$ and an exterior angle at vertex H has a measure of 104 . What is $\mathrm{m} \angle G$?

1) 34
2) 62
3) 76
4) 146

28 In the diagram below of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}, A C=16$, and $C D=7$.

What is the length of $\overline{B D}$?

1) $3 \sqrt{7}$
2) $4 \sqrt{7}$
3) $7 \sqrt{3}$
4) 12

Geometry Multiple Choice Regents Exam Questions www.jmap.org

29 Pentagon $P Q R S T$ has $\overline{P Q}$ parallel to $\overline{T S}$. After a translation of $T_{2,-5}$, which line segment is parallel to $\overline{P^{\prime} Q^{\prime}}$?

1) $\overline{R^{\prime} Q^{\prime}}$
2) $\overline{R^{\prime} S^{\prime}}$
3) $\overline{T^{\prime} S^{\prime}}$
4) $\frac{T^{\prime} P^{\prime}}{}$

30 The slope of line ℓ is $-\frac{1}{3}$. What is an equation of a line that is perpendicular to line ℓ ?

1) $y+2=\frac{1}{3} x$
2) $-2 x+6=6 y$
3) $9 x-3 y=27$
4) $3 x+y=0$

31 The vertices of the triangle in the diagram below are $A(7,9), B(3,3)$, and $C(11,3)$.

What are the coordinates of the centroid of $\triangle A B C$?

1) $(5,6)$
2) $(7,3)$
3) $(7,5)$
4) $(9,6)$

32 In the diagram below, $\Delta A^{\prime} B^{\prime} C^{\prime}$ is a transformation of $\triangle A B C$, and $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is a transformation of $\Delta A^{\prime} B^{\prime} C^{\prime}$.

The composite transformation of $\triangle A B C$ to $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is an example of a

1) reflection followed by a rotation
2) reflection followed by a translation
3) translation followed by a rotation
4) translation followed by a reflection

33 Which equation represents the line parallel to the line whose equation is $4 x+2 y=14$ and passing through the point $(2,2)$?

1) $y=-2 x$
2) $y=-2 x+6$
3) $y=\frac{1}{2} x$
4) $y=\frac{1}{2} x+1$

34 In the diagram below of circle O, chord $\overline{A B}$ is parallel to chord $\overline{C D}$.

Which statement must be true?

1) $\overparen{A C} \cong \overparen{B D}$
2) $\overparen{A B} \cong \overparen{C D}$
3) $\overline{A B} \cong \overline{C D}$
4) $\widehat{A B D} \cong \widehat{C D B}$

35 What is an equation of circle O shown in the graph below?

1) $(x+2)^{2}+(y-2)^{2}=9$
2) $(x+2)^{2}+(y-2)^{2}=3$
3) $(x-2)^{2}+(y+2)^{2}=9$
4) $(x-2)^{2}+(y+2)^{2}=3$

36 A man wants to place a new bird bath in his yard so that it is 30 feet from a fence, f, and also 10 feet from a light pole, P. As shown in the diagram below, the light pole is 35 feet away from the fence.

How many locations are possible for the bird bath?

1) 1
2) 2
3) 3
4) 0

37 In the diagram below, $\triangle L M O$ is isosceles with $L O=M O$.

If $\mathrm{m} \angle L=55$ and $\mathrm{m} \angle N O M=28$, what is $\mathrm{m} \angle N$?

1) 27
2) 28
3) 42
4) 70

38 When solved graphically, what is the solution to the following system of equations?

$$
\begin{gathered}
y=x^{2}-4 x+6 \\
y=x+2
\end{gathered}
$$

1) $(1,4)$
2) $(4,6)$
3) $(1,3)$ and $(4,6)$
4) $(3,1)$ and $(6,4)$

39 For a triangle, which two points of concurrence could be located outside the triangle?

1) incenter and centroid
2) centroid and orthocenter
3) incenter and circumcenter
4) circumcenter and orthocenter

40 In $\triangle A E D$ with $\overline{A B C D}$ shown in the diagram below, $\overline{E B}$ and $\overline{E C}$ are drawn.

If $\overline{A B} \cong \overline{C D}$, which statement could always be proven?

1) $\overline{A C} \cong \overline{D B}$
2) $\overline{A E} \cong \overline{E D}$
3) $\overline{A B} \cong \overline{B C}$
4) $\overline{E C} \cong \overline{E A}$

41 The vertices of parallelogram $A B C D$ are $A(2,0)$, $B(0,-3), C(3,-3)$, and $D(5,0)$. If $A B C D$ is reflected over the x-axis, how many vertices remain invariant?

1) 1
2) 2
3) 3
4) 0

42 Which quadrilateral has diagonals that always bisect its angles and also bisect each other?

1) rhombus
2) rectangle
3) parallelogram
4) isosceles trapezoid

43 In the diagram below of $\triangle A B C, D$ is the midpoint of $\overline{A B}$, and E is the midpoint of $B C$.

If $A C=4 x+10$, which expression represents $D E$?

1) $x+2.5$
2) $2 x+5$
3) $2 x+10$
4) $8 x+20$

Geometry Multiple Choice Regents Exam Questions
www.jmap.org
44 What is the equation of a circle whose center is 4 units above the origin in the coordinate plane and whose radius is 6 ?

1) $x^{2}+(y-6)^{2}=16$
2) $(x-6)^{2}+y^{2}=16$
3) $x^{2}+(y-4)^{2}=36$
4) $(x-4)^{2}+y^{2}=36$

45 Segment $A B$ is the diameter of circle M. The coordinates of A are $(-4,3)$. The coordinates of M are $(1,5)$. What are the coordinates of B ?

1) $(6,7)$
2) $(5,8)$
3) $(-3,8)$
4) $(-5,2)$

46 In $\triangle D E F, \mathrm{~m} \angle D=3 x+5, \mathrm{~m} \angle E=4 x-15$, and $\mathrm{m} \angle F=2 x+10$. Which statement is true?

1) $D F=F E$
2) $D E=F E$
3) $\mathrm{m} \angle E=\mathrm{m} \angle F$
4) $\mathrm{m} \angle D=\mathrm{m} \angle F$

47 If $\overleftrightarrow{A B}$ is contained in plane \mathscr{P}, and $\overleftrightarrow{A B}$ is perpendicular to plane R, which statement is true?

1) $\overleftrightarrow{A B}$ is parallel to plane \mathbb{R}
2) Plane P is parallel to plane R.
3) $\overleftrightarrow{A B}$ is perpendicular to plane \mathscr{P}.
4) Plane \mathscr{P} is perpendicular to plane R.

48 In the diagram below of circle O, chord $\overline{A B}$ is parallel to chord $\overline{G H}$. Chord $\overline{C D}$ intersects $\overline{A B}$ at E and $\overline{G H}$ at F.

Which statement must always be true?

1) $\overparen{A C} \cong \overparen{C B}$
2) $\overparen{D H} \cong \overparen{B H}$
3) $\overparen{A B} \cong \widehat{G H}$
4) $\overparen{A G} \cong \overparen{B H}$

49 Given three distinct quadrilaterals, a square, a rectangle, and a rhombus, which quadrilaterals must have perpendicular diagonals?

1) the rhombus, only
2) the rectangle and the square
3) the rhombus and the square
4) the rectangle, the rhombus, and the square

50 The diameter of a sphere is 15 inches. What is the volume of the sphere, to the nearest tenth of a cubic inch?

1) 706.9
2) 1767.1
3) 2827.4
4) $14,137.2$

51 What is the slope of a line perpendicular to the line whose equation is $20 x-2 y=6$?

1) -10
2) $-\frac{1}{10}$
3) 10
4) $\frac{1}{10}$

52 What is the slope of a line that is perpendicular to the line whose equation is $3 x+5 y=4$?

1) $-\frac{3}{5}$
2) $\frac{3}{5}$
3) $-\frac{5}{3}$
4) $\frac{5}{3}$

53 In the diagram below, $\overline{E F}$ is the median of trapezoid $A B C D$.

If $A B=5 x-9, D C=x+3$, and $E F=2 x+2$, what is the value of x ?

1) 5
2) 2
3) 7
4) 8

54 As shown in the diagram below, $\triangle A B C \sim \triangle D E F$, $A B=7 x, B C=4, D E=7$, and $E F=x$.

What is the length of $\overline{A B}$?

1) 28
2) 2
3) 14
4) 4

55 A line segment has endpoints $A(7,-1)$ and $B(-3,3)$. What are the coordinates of the midpoint of $\overline{A B}$?

1) $(1,2)$
2) $(2,1)$
3) $(-5,2)$
4) $(5,-2)$

56 If $\Delta J K L \cong \triangle M N O$, which statement is always true?

1) $\angle K L J \cong \angle N M O$
2) $\angle K J L \cong \angle M O N$
3) $\overline{J L} \cong \overline{M O}$
4) $\overline{J K} \cong \overline{O N}$

57 In the diagram below of circle O, diameter $\overline{A B}$ is parallel to chord $\overline{C D}$.

If $\mathrm{m} \overparen{C D}=70$, what is $\mathrm{m} \overparen{A C}$?

1) 110
2) 70
3) 55
4) 35

58 In the diagram below of $\triangle A B C$, side $\overline{B C}$ is extended to point $D, \mathrm{~m} \angle A=x, \mathrm{~m} \angle B=2 x+15$, and $\mathrm{m} \angle A C D=5 x+5$.

What is $\mathrm{m} \angle B$?

1) 5
2) 20
3) 25
4) 55

59 When writing a geometric proof, which angle relationship could be used alone to justify that two angles are congruent?

1) supplementary angles
2) linear pair of angles
3) adjacent angles
4) vertical angles

60 The coordinates of point A are $(-3 a, 4 b)$. If point A^{\prime} is the image of point A reflected over the line $y=x$, the coordinates of A^{\prime} are

1) $(4 b,-3 a)$
2) $(3 a, 4 b)$
3) $(-3 a,-4 b)$
4) $(-4 b,-3 a)$

61 In the diagram below, $\triangle A B C \cong \triangle X Y Z$.

Which statement must be true?

1) $\angle C \cong \angle Y$
2) $\angle A \cong \angle X$
3) $\overline{A C} \cong \overline{Y Z}$
4) $\overline{C B} \cong \overline{X Z}$

62 What is an equation of the circle with a radius of 5 and center at $(1,-4)$?

1) $(x+1)^{2}+(y-4)^{2}=5$
2) $(x-1)^{2}+(y+4)^{2}=5$
3) $(x+1)^{2}+(y-4)^{2}=25$
4) $(x-1)^{2}+(y+4)^{2}=25$

63 What is an equation of the line that passes through the point $(-2,3)$ and is parallel to the line whose equation is $y=\frac{3}{2} x-4$?

1) $y=\frac{-2}{3} x$
2) $y=\frac{-2}{3} x+\frac{5}{3}$
3) $y=\frac{3}{2} x$
4) $y=\frac{3}{2} x+6$

64 In the diagram below of $\triangle B C D$, side $\overline{D B}$ is extended to point A.

Which statement must be true?

1) $\mathrm{m} \angle C>\mathrm{m} \angle D$
2) $\mathrm{m} \angle A B C<\mathrm{m} \angle D$
3) $\mathrm{m} \angle A B C>\mathrm{m} \angle C$
4) $\mathrm{m} \angle A B C>\mathrm{m} \angle C+\mathrm{m} \angle D$

65 What is the measure of each interior angle of a regular hexagon?

1) 60°
2) 120°
3) 135°
4) 270°

66 The volume of a rectangular prism is 144 cubic inches. The height of the prism is 8 inches. Which measurements, in inches, could be the dimensions of the base?

1) 3.3 by 5.5
2) 2.5 by 7.2
3) 12 by 8
4) 9 by 9

67 In the diagram below, $\overleftrightarrow{A B}$ is perpendicular to plane AEFG.

Which plane must be perpendicular to plane $A E F G$?

1) $A B C E$
2) $B C D H$
3) $C D F E$
4) $H D F G$

68 In parallelogram $A B C D$ shown below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

Which statement must be true?

1) $\overline{A C} \cong \overline{D B}$
2) $\angle A B D \cong \angle C B D$
3) $\triangle A E D \cong \triangle C E B$
4) $\triangle D C E \cong \triangle B C E$

69 The graph below shows $\overline{J T}$ and its image, $\overline{J^{\prime} T^{\prime}}$, after a transformation.

Which transformation would map $\overline{J T}$ onto $\overline{J^{\prime} T^{\prime} \text { ? }}$

1) translation
2) glide reflection
3) rotation centered at the origin
4) reflection through the origin

70 What is the slope of a line that is perpendicular to the line represented by the equation $x+2 y=3$?

1) -2
2) 2
3) $-\frac{1}{2}$
4) $\frac{1}{2}$

71 Plane \mathcal{A} is parallel to plane \mathscr{B}. Plane C intersects plane \mathcal{A} in line m and intersects plane \mathscr{B} in line n. Lines m and n are

1) intersecting
2) parallel
3) perpendicular
4) skew

72 Which equation represents the perpendicular bisector of $\overline{A B}$ whose endpoints are $A(8,2)$ and $B(0,6)$?

1) $y=2 x-4$
2) $y=-\frac{1}{2} x+2$
3) $y=-\frac{1}{2} x+6$
4) $y=2 x-12$

73 An equation of the line that passes through ($2,-1$) and is parallel to the line $2 y+3 x=8$ is

1) $y=\frac{3}{2} x-4$
2) $y=\frac{3}{2} x+4$
3) $y=-\frac{3}{2} x-2$
4) $y=-\frac{3}{2} x+2$

74 Which diagram shows the construction of the perpendicular bisector of $\overline{A B}$?
1)

75 When a quadrilateral is reflected over the line $y=x$, which geometric relationship is not preserved?

1) congruence
2) orientation
3) parallelism
4) perpendicularity

76 What is an equation of a circle with center $(7,-3)$ and radius 4 ?

1) $(x-7)^{2}+(y+3)^{2}=4$
2) $(x+7)^{2}+(y-3)^{2}=4$
3) $(x-7)^{2}+(y+3)^{2}=16$
4) $(x+7)^{2}+(y-3)^{2}=16$

77 Line segment $A B$ is shown in the diagram below.

Which two sets of construction marks, labeled I, II, III, and IV, are part of the construction of the perpendicular bisector of line segment $A B$?

1) I and II
2) I and III
3) II and III
4) II and IV

78 A straightedge and compass were used to create the construction below. Arc $E F$ was drawn from point B, and arcs with equal radii were drawn from E and F.

Which statement is false?

1) $\mathrm{m} \angle A B D=\mathrm{m} \angle D B C$
2) $\frac{1}{2}(\mathrm{~m} \angle A B C)=\mathrm{m} \angle A B D$
3) $2(\mathrm{~m} \angle D B C)=\mathrm{m} \angle A B C$
4) $2(\mathrm{~m} \angle A B C)=\mathrm{m} \angle C B D$

79 In the diagram of $\triangle K L M$ below, $\mathrm{m} \angle L=70$, $\mathrm{m} \angle M=50$, and $\overline{M K}$ is extended through N.

What is the measure of $\angle L K N$?

1) 60°
2) 120°
3) 180°
4) 300°

80 Point M is the midpoint of $\overline{A B}$. If the coordinates of A are $(-3,6)$ and the coordinates of M are $(-5,2)$, what are the coordinates of B ?

1) $(1,2)$
2) $(7,10)$
3) $(-4,4)$
4) $(-7,-2)$

81 What is the volume, in cubic centimeters, of a cylinder that has a height of 15 cm and a diameter of 12 cm ?

1) 180π
2) 540π
3) 675π
4) $2,160 \pi$

82 The angles of triangle $A B C$ are in the ratio of $8: 3: 4$. What is the measure of the smallest angle?

1) 12°
2) 24°
3) 36°
4) 72°

83 For which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?

1) hexagon
2) pentagon
3) quadrilateral
4) triangle

Geometry Multiple Choice Regents Exam Questions www.jmap.org

84 What is an equation of the circle shown in the graph below?

1) $(x-3)^{2}+(y-4)^{2}=25$
2) $(x+3)^{2}+(y+4)^{2}=25$
3) $(x-3)^{2}+(y-4)^{2}=10$
4) $(x+3)^{2}+(y+4)^{2}=10$

85 Which statement is true about every parallelogram?

1) All four sides are congruent.
2) The interior angles are all congruent.
3) Two pairs of opposite sides are congruent.
4) The diagonals are perpendicular to each other.

87 Given that $A B C D$ is a parallelogram, a student wrote the proof below to show that a pair of its opposite angles are congruent.

Statement	Reason
1. $A B C D$ is a parallelogram.	1. Given
2. $\overline{B C} \equiv \overline{A D}$	2. Opposite sides of a parallelogram
$\overline{A B} \equiv \overline{D C}$	are congruent.
3. $\overline{A C} \equiv \overline{C A}$	3. Reflexive Postulate of Congruency
4. $\triangle A B C \equiv \triangle C D A$	4. Side-Side-Side
$5 . \angle B \equiv \angle D$	5.

What is the reason justifying that $\angle B \cong \angle D$?

1) Opposite angles in a quadrilateral are congruent.
2) Parallel lines have congruent corresponding angles.
3) Corresponding parts of congruent triangles are congruent.
4) Alternate interior angles in congruent triangles are congruent.

88 Triangle $P Q R$ has angles in the ratio of 2:3:5. Which type of triangle is $\triangle P Q R$?

1) acute
2) isosceles
3) obtuse
4) right

86 Which equation represents circle O with center $(2,-8)$ and radius 9 ?

1) $(x+2)^{2}+(y-8)^{2}=9$
2) $(x-2)^{2}+(y+8)^{2}=9$
3) $(x+2)^{2}+(y-8)^{2}=81$
4) $(x-2)^{2}+(y+8)^{2}=81$

89 In $\triangle A B C$ and $\triangle D E F, \frac{A C}{D F}=\frac{C B}{F E}$. Which additional information would prove
$\triangle A B C \sim \triangle D E F$?

1) $A C=D F$
2) $C B=F E$
3) $\angle A C B \cong \angle D F E$
4) $\angle B A C \cong \angle E D F$

90 In the diagram of $\triangle A B C$ shown below, $\overline{D E} \| \overline{B C}$.

If $A B=10, A D=8$, and $A E=12$, what is the length of $\overline{E C}$?

1) 6
2) 2
3) 3
4) 15

91 In $\triangle R S T, \mathrm{~m} \angle R=58$ and $\mathrm{m} \angle S=73$. Which inequality is true?

1) $R T<T S<R S$
2) $R S<R T<T S$
3) $R T<R S<T S$
4) $R S<T S<R T$

92 In the diagram below of circle O, diameter $\overline{A O B}$ is perpendicular to chord $\overline{C D}$ at point $E, O A=6$, and $O E=2$.

What is the length of $\overline{C E}$?

1) $4 \sqrt{3}$
2) $2 \sqrt{3}$
3) $8 \sqrt{2}$
4) $4 \sqrt{2}$

93 In the diagram below of $\triangle A B C, \overline{A E} \cong \overline{B E}$, $\overline{A F} \cong \overline{C F}$, and $\overline{C D} \cong \overline{B D}$.

Point P must be the

1) centroid
2) circumcenter
3) Incenter
4) orthocenter

94 In the diagram below, $\triangle A B C \sim \Delta R S T$.

Which statement is not true?

1) $\angle A \cong \angle R$
2) $\frac{A B}{R S}=\frac{B C}{S T}$
3) $\frac{A B}{B C}=\frac{S T}{R S}$
4) $\frac{A B+B C+A C}{R S+S T+R T}=\frac{A B}{R S}$

95 In the diagram below of circle O, radius $\overline{O C}$ is 5 cm . Chord $\overline{A B}$ is 8 cm and is perpendicular to $\overline{O C}$ at point P.

What is the length of $\overline{O P}$, in centimeters?

1) 8
2) 2
3) 3
4) 4

96 In the diagram below, line p intersects line m and line n.

If $\mathrm{m} \angle 1=7 x$ and $\mathrm{m} \angle 2=5 x+30$, lines m and n are parallel when x equals

1) 12.5
2) 15
3) 87.5
4) 105

97 As shown in the diagram below, $\overline{A C}$ bisects $\angle B A D$ and $\angle B \cong \angle D$.

Which method could be used to prove $\triangle A B C \cong \triangle A D C$?

1) SSS
2) $A A A$
3) SAS
4) AAS

Geometry Multiple Choice Regents Exam Questions www.jmap.org

98 Parallelogram $A B C D$ has coordinates $A(1,5)$, $B(6,3), C(3,-1)$, and $D(-2,1)$. What are the coordinates of E, the intersection of diagonals $\overline{A C}$ and $\overline{B D}$?

1) $(2,2)$
2) $(4.5,1)$
3) $(3.5,2)$
4) $(-1,3)$

99 In the diagram of $\triangle J E A$ below, $\mathrm{m} \angle J E A=90$ and $\mathrm{m} \angle E A J=48$. Line segment $M S$ connects points M and S on the triangle, such that $\mathrm{m} \angle E M S=59$.

What is $\mathrm{m} \angle J S M$?

1) 163
2) 121
3) 42
4) 17

100 When $\triangle A B C$ is dilated by a scale factor of 2 , its image is $\Delta A^{\prime} B^{\prime} C^{\prime}$. Which statement is true?

1) $\overline{A C} \cong \overline{A^{\prime} C^{\prime}}$
2) $\angle A \cong \angle A^{\prime}$
3) perimeter of $\triangle A B C=$ perimeter of $\Delta A^{\prime} B^{\prime} C^{\prime}$
4) 2 (area of $\Delta A B C)=$ area of $\Delta A^{\prime} B^{\prime} C^{\prime}$

101 What is an equation of the line that is perpendicular to the line whose equation is $y=\frac{3}{5} x-2$ and that passes through the point $(3,-6)$?

1) $y=\frac{5}{3} x-11$
2) $y=-\frac{5}{3} x+11$
3) $y=-\frac{5}{3} x-1$
4) $y=\frac{5}{3} x+1$

102 In the diagram below of $\triangle A B C, \overleftrightarrow{T V} \| \overline{B C}, A T=5$, $T B=7$, and $A V=10$.

What is the length of $\overline{V C}$?

1) $3 \frac{1}{2}$
2) $7 \frac{1}{7}$
3) 14
4) 24

Geometry Multiple Choice Regents Exam Questions www.jmap.org

103 If two distinct planes, \mathcal{A} and \mathscr{B}, are perpendicular to line c, then which statement is true?

1) Planes \mathcal{A} and \mathcal{B} are parallel to each other.
2) Planes \mathcal{A} and \mathscr{B} are perpendicular to each other.
3) The intersection of planes \mathcal{A} and \mathscr{B} is a line parallel to line c.
4) The intersection of planes \mathcal{A} and \mathscr{B} is a line perpendicular to line c.

104 As shown in the diagram below, a kite needs a vertical and a horizontal support bar attached at opposite corners. The upper edges of the kite are 7 inches, the side edges are x inches, and the vertical support bar is $(x+1)$ inches.

What is the measure, in inches, of the vertical support bar?

1) 23
2) 24
3) 25
4) 26

105 As shown in the diagram below, lines m and n are cut by transversal p.

If $\mathrm{m} \angle 1=4 x+14$ and $\mathrm{m} \angle 2=8 x+10$, lines m and n are parallel when x equals

1) 1
2) 6
3) 13
4) 17

106 In $\triangle A B C$ shown below, P is the centroid and $B F=18$.

What is the length of $\overline{B P}$?

1) 6
2) 9
3) 3
4) 12

107 In circle O, a diameter has endpoints $(-5,4)$ and $(3,-6)$. What is the length of the diameter?

1) $\sqrt{2}$
2) $2 \sqrt{2}$
3) $\sqrt{10}$
4) $2 \sqrt{41}$

108 In the diagram below, MATH is a rhombus with diagonals $\overline{A H}$ and $\overline{M T}$.

If $\mathrm{m} \angle H A M=12$, what is $\mathrm{m} \angle A M T$?

1) 12
2) 78
3) 84
4) 156

109 What is the length of the line segment whose endpoints are $A(-1,9)$ and $B(7,4)$?

1) $\sqrt{61}$
2) $\sqrt{89}$
3) $\sqrt{205}$
4) $\sqrt{233}$

110 In the diagram below, quadrilateral JUMP is inscribed in a circle..

Opposite angles J and M must be

1) right
2) complementary
3) congruent
4) supplementary

111 In the diagram of quadrilateral $A B C D, \overline{A B} \| \overline{C D}$, $\angle A B C \cong \angle C D A$, and diagonal $\overline{A C}$ is drawn.

Which method can be used to prove $\triangle A B C$ is congruent to $\triangle C D A$?

1) AAS
2) SSA
3) SAS
4) SSS

112 In $\triangle P Q R, \angle P R Q$ is a right angle and $\overline{R T}$ is drawn perpendicular to hypotenuse $\overline{P Q}$. If $P T=x$, $R T=6$, and $T Q=4 x$, what is the length of $\overline{P Q}$?

1) 9
2) 12
3) 3
4) 15

113 The point $(3,-2)$ is rotated 90° about the origin and then dilated by a scale factor of 4 . What are the coordinates of the resulting image?

1) $(-12,8)$
2) $(12,-8)$
3) $(8,12)$
4) $(-8,-12)$

114 The diagram below shows a pair of congruent triangles, with $\angle A D B \cong \angle C D B$ and $\angle A B D \cong \angle C B D$.

Which statement must be true?

1) $\angle A D B \cong \angle C B D$
2) $\angle A B C \cong \angle A D C$
3) $\overline{A B} \cong \overline{C D}$
4) $\overline{A D} \cong \overline{C D}$

115 What is the length of $\overline{A B}$ with endpoints $A(-1,0)$ and $B(4,-3)$?

1) $\sqrt{6}$
2) $\sqrt{18}$
3) $\sqrt{34}$
4) $\sqrt{50}$

116 As shown in the diagram below, $\overleftrightarrow{E F}$ intersects planes \mathscr{P}, Q, and \mathbb{R}.

If $\overleftrightarrow{E F}$ is perpendicular to planes \mathscr{P} and \mathbb{R}, which statement must be true?

1) Plane \mathscr{P} is perpendicular to plane Q.
2) Plane \mathbb{R} is perpendicular to plane \mathscr{P}.
3) Plane \mathscr{P} is parallel to plane Q.
4) Plane \mathbb{R} is parallel to plane \mathscr{P}.

117 When a dilation is performed on a hexagon, which property of the hexagon will not be preserved in its image?

1) parallelism
2) orientation
3) length of sides
4) measure of angles

118 In the diagram below of $\triangle D A E$ and $\triangle B C E, \overline{A B}$ and $\overline{C D}$ intersect at E, such that $\overline{A E} \cong \overline{C E}$ and $\angle B C E \cong \angle D A E$.

Triangle $D A E$ can be proved congruent to triangle BCE by

1) $A S A$
2) SAS
3) SSS
4) HL

119 Which statement is the negation of "Two is a prime number" and what is the truth value of the negation?

1) Two is not a prime number; false
2) Two is not a prime number; true
3) A prime number is two; false
4) A prime number is two; true

120 How many points are both 4 units from the origin and also 2 units from the line $y=4$?

1) 1
2) 2
3) 3
4) 4

121 Triangle $A B C$ is graphed on the set of axes below.

Which transformation produces an image that is similar to, but not congruent to, $\triangle A B C$?

1) $T_{2,3}$
2) D_{2}
3) $r_{y=x}$
4) R_{90}

122 What is the equation of the line that passes through the point $(-9,6)$ and is perpendicular to the line $y=3 x-5$?

1) $y=3 x+21$
2) $y=-\frac{1}{3} x-3$
3) $y=3 x+33$
4) $y=-\frac{1}{3} x+3$

123 Which equation of a circle will have a graph that lies entirely in the first quadrant?

1) $(x-4)^{2}+(y-5)^{2}=9$
2) $(x+4)^{2}+(y+5)^{2}=9$
3) $(x+4)^{2}+(y+5)^{2}=25$
4) $(x-5)^{2}+(y-4)^{2}=25$

124 Which equation represents the line that is perpendicular to $2 y=x+2$ and passes through the point $(4,3)$?

1) $y=\frac{1}{2} x-5$
2) $y=\frac{1}{2} x+1$
3) $y=-2 x+11$
4) $y=-2 x-5$

125 In the diagram below of right triangle $A B C, \overline{C D}$ is the altitude to hypotenuse $\overline{A B}, C B=6$, and $A D=5$.

What is the length of $\overline{B D}$?

1) 5
2) 9
3) 3
4) 4

126 The two lines represented by the equations below are graphed on a coordinate plane.

$$
\begin{gathered}
x+6 y=12 \\
3(x-2)=-y-4
\end{gathered}
$$

Which statement best describes the two lines?

1) The lines are parallel.
2) The lines are the same line.
3) The lines are perpendicular.
4) The lines intersect at an angle other than 90°.

127 As shown in the diagram of $\triangle A C D$ below, B is a point on $\overline{A C}$ and $\overline{D B}$ is drawn.

If $\mathrm{m} \angle A=66, \mathrm{~m} \angle C D B=18$, and $\mathrm{m} \angle C=24$, what is the longest side of $\triangle A B D$?

1) $\overline{A B}$
2) $\overline{D C}$
3) $\overline{A D}$
4) $\overline{B D}$

128 A packing carton in the shape of a triangular prism is shown in the diagram below.

What is the volume, in cubic inches, of this carton?

1) 20
2) 60
3) 120
4) 240

Geometry Multiple Choice Regents Exam Questions www.jmap.org

129 Which graph represents a circle whose equation is $(x+2)^{2}+y^{2}=16 ?$
1)

2)

3)

130 If the vertex angles of two isosceles triangles are congruent, then the triangles must be

1) acute
2) congruent
3) right
4) similar

131 Which equation represents a line that is parallel to the line whose equation is $y=\frac{3}{2} x-3$ and passes through the point $(1,2)$?

1) $y=\frac{3}{2} x+\frac{1}{2}$
2) $y=\frac{2}{3} x+\frac{4}{3}$
3) $y=\frac{3}{2} x-2$
4) $y=-\frac{2}{3} x+\frac{8}{3}$

132 What is the length of the line segment whose endpoints are $(1,-4)$ and $(9,2)$?

1) 5
2) $2 \sqrt{17}$
3) 10
4) $2 \sqrt{26}$

133 In the diagram below, point P is the centroid of $\triangle A B C$.

If $P M=2 x+5$ and $B P=7 x+4$, what is the length of $\overline{P M}$?

1) 9
2) 2
3) 18
4) 27

Geometry Multiple Choice Regents Exam Questions www.jmap.org

134 Which diagram represents a correct construction of equilateral $\triangle A B C$, given side $\overline{A B}$?
1)

3)

4)

135 In the diagram below, $\overline{D E}$ joins the midpoints of two sides of $\triangle A B C$.

Which statement is not true?

1) $C E=\frac{1}{2} C B$
2) $D E=\frac{1}{2} A B$
3) area of $\triangle C D E=\frac{1}{2}$ area of $\triangle C A B$
4) perimeter of $\triangle C D E=\frac{1}{2}$ perimeter of $\triangle C A B$

136 Point P lies on line m. Point P is also included in distinct planes Q, R, S, and \mathcal{T}. At most, how many of these planes could be perpendicular to line m ?

1) 1
2) 2
3) 3
4) 4

137 A line segment has endpoints $(4,7)$ and $(1,11)$. What is the length of the segment?

1) 5
2) 7
3) 16
4) 25

138 In the diagram below, parallelogram $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$ that intersect at point E.

Which expression is not always true?

1) $\angle D A E \cong \angle B C E$
2) $\angle D E C \cong \angle B E A$
3) $\overline{A C} \cong \overline{D B}$
4) $\overline{D E} \cong \overline{E B}$

139 In the diagram below of $\triangle A C E$, medians $\overline{A D}, \overline{E B}$, and $\overline{C F}$ intersect at G. The length of $\overline{F G}$ is 12 cm .

What is the length, in centimeters, of $\overline{G C}$?

1) 24
2) 12
3) 6
4) 4

140 A student wrote the sentence " 4 is an odd integer." What is the negation of this sentence and the truth value of the negation?

1) 3 is an odd integer; true
2) 4 is not an odd integer; true
3) 4 is not an even integer; false
4) 4 is an even integer; false

141 What is the image of the point $(2,-3)$ after the transformation $r_{y \text {-axis }}$?

1) $(2,3)$
2) $(-2,-3)$
3) $(-2,3)$
4) $(-3,2)$

142 The equation of line k is $y=\frac{1}{3} x-2$. The equation of line m is $-2 x+6 y=18$. Lines k and m are

1) parallel
2) perpendicular
3) the same line
4) neither parallel nor perpendicular

143 Which set of numbers does not represent the sides of a right triangle?

1) $\{6,8,10\}$
2) $\{8,15,17\}$
3) $\{8,24,25\}$
4) $\{15,36,39\}$

144 Which graph represents a circle with the equation $(x-3)^{2}+(y+1)^{2}=4$?
1)

)
2)

3)

4)

145 The diagram below shows the construction of $\overleftrightarrow{A B}$ through point P parallel to $\overleftrightarrow{C D}$.

Which theorem justifies this method of construction?

1) If two lines in a plane are perpendicular to a transversal at different points, then the lines are parallel.
2) If two lines in a plane are cut by a transversal to form congruent corresponding angles, then the lines are parallel.
3) If two lines in a plane are cut by a transversal to form congruent alternate interior angles, then the lines are parallel.
4) If two lines in a plane are cut by a transversal to form congruent alternate exterior angles, then the lines are parallel.

146 Plane \mathbb{R} is perpendicular to line k and plane \mathcal{D} is perpendicular to line k. Which statement is correct?

1) Plane \mathcal{R} is perpendicular to plane \mathscr{D}.
2) Plane \mathbb{R} is parallel to plane \mathscr{D}.
3) Plane \mathbb{R} intersects plane \mathscr{D}.
4) Plane \mathbb{R} bisects plane \mathscr{D}.

147 In the diagram below of isosceles trapezoid $A B C D$, $A B=C D=25, A D=26$, and $B C=12$.

What is the length of an altitude of the trapezoid?

1) 7
2) 14
3) 19
4) 24

148 In the diagram below of $\triangle P A O, \overline{A P}$ is tangent to circle O at point $A, O B=7$, and $B P=18$.

What is the length of $\overline{A P}$?

1) 10
2) 12
3) 17
4) 24

149 What is the image of the point $(-5,2)$ under the translation $T_{3,-4}$?

1) $(-9,5)$
2) $(-8,6)$
3) $(-2,-2)$
4) $(-15,-8)$

150 The equation of a circle with its center at $(-3,5)$ and a radius of 4 is

1) $(x+3)^{2}+(y-5)^{2}=4$
2) $(x-3)^{2}+(y+5)^{2}=4$
3) $(x+3)^{2}+(y-5)^{2}=16$
4) $(x-3)^{2}+(y+5)^{2}=16$

151 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $\mathrm{m} \angle A E C=34$ and $\mathrm{m} \overparen{A C}=50$, what is $\mathrm{m} \overparen{D B}$?

1) 16
2) 18
3) 68
4) 118

Geometry Multiple Choice Regents Exam Questions www.jmap.org

152 Triangle $A B C$ has vertices $A(0,0), B(3,2)$, and $C(0,4)$. The triangle may be classified as

1) equilateral
2) isosceles
3) right
4) scalene

153 The sum of the interior angles of a polygon of n sides is

1) 360
2) $\frac{360}{n}$
3) $(n-2) \cdot 180$
4) $\frac{(n-2) \cdot 180}{n}$

154 In the diagram of $\triangle A B C$ shown below, D is the midpoint of $\overline{A B}, E$ is the midpoint of $\overline{B C}$, and F is the midpoint of $\overline{A C}$.

If $A B=20, B C=12$, and $A C=16$, what is the perimeter of trapezoid $A B E F$?

1) 24
2) 36
3) 40
4) 44

155 The statement " x is a multiple of 3 , and x is an even integer" is true when x is equal to

1) 9
2) 8
3) 3
4) 6

156 Lines m and n intersect at point A. Line k is perpendicular to both lines m and n at point A. Which statement must be true?

1) Lines m, n, and k are in the same plane.
2) Lines m and n are in two different planes.
3) Lines m and n are perpendicular to each other.
4) Line k is perpendicular to the plane containing lines m and n.

157 The diagonals of a quadrilateral are congruent but do not bisect each other. This quadrilateral is

1) an isosceles trapezoid
2) a parallelogram
3) a rectangle
4) a rhombus

158 Lines a and b intersect at point P. Line c passes through P and is perpendicular to the plane containing lines a and b. Which statement must be true?

1) Lines a, b, and c are coplanar.
2) Line a is perpendicular to line b.
3) Line c is perpendicular to both line a and line b.
4) Line c is perpendicular to line a or line b, but not both.

159 The volume, in cubic centimeters, of a sphere whose diameter is 6 centimeters is

1) 12π
2) 36π
3) 48π
4) 288π

160 In $\triangle A B C, A B=5$ feet and $B C=3$ feet. Which inequality represents all possible values for the length of $\overline{A C}$, in feet?

1) $2 \leq A C \leq 8$
2) $2<A C<8$
3) $3 \leq A C \leq 7$
4) $3<A C<7$

161 In circle O shown below, diameter $\overline{D B}$ is perpendicular to chord $\overline{A C}$ at E.

If $D B=34, A C=30$, and $D E>B E$, what is the length of $\overline{B E}$?

1) 8
2) 9
3) 16
4) 25

162 Point A lies in plane \mathscr{B}. How many lines can be drawn perpendicular to plane \mathscr{B} through point A ?

1) one
2) two
3) zero
4) infinite

163 As shown in the diagram below of $\triangle A B C$, a compass is used to find points D and E, equidistant from point A. Next, the compass is used to find point F, equidistant from points D and E. Finally, a straightedge is used to draw $\overrightarrow{A F}$. Then, point G, the intersection of $\overrightarrow{A F}$ and side $\overline{B C}$ of $\triangle A B C$, is labeled.

Which statement must be true?

1) $\overrightarrow{A F}$ bisects side $\overrightarrow{B C}$
2) $\overrightarrow{A F}$ bisects $\angle B A C$
3) $\overrightarrow{A F} \perp \overrightarrow{B C}$
4) $\triangle A B G \sim \triangle A C G$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

164 A circle has the equation $(x-2)^{2}+(y+3)^{2}=36$. What are the coordinates of its center and the length of its radius?

1) $(-2,3)$ and 6
2) $(2,-3)$ and 6
3) $(-2,3)$ and 36
4) $(2,-3)$ and 36

165 Which compound statement is true?

1) A triangle has three sides and a quadrilateral has five sides.
2) A triangle has three sides if and only if a quadrilateral has five sides.
3) If a triangle has three sides, then a quadrilateral has five sides.
4) A triangle has three sides or a quadrilateral has five sides.

166 The diagram below represents a rectangular solid.

Which statement must be true?

1) $\overline{E H}$ and $\overline{B C}$ are coplanar
2) $\overline{F G}$ and $\overline{A B}$ are coplanar
3) $\overline{E H}$ and $\overline{A D}$ are skew
4) $\overline{F G}$ and $\overline{C G}$ are skew

167 The diagram below shows a rectangular prism.

Which pair of edges are segments of lines that are coplanar?

1) $\overline{A B}$ and $\overline{D H}$
2) $\overline{A E}$ and $\overline{D C}$
3) $\overline{B C}$ and $\overline{E H}$
4) $\overline{C G}$ and $\overline{E F}$

168 As shown in the diagram below, $\overline{F J}$ is contained in plane $R, B C$ and $D E$ are contained in plane S, and $\overline{F J}, \overline{B C}$, and $\overline{D E}$ intersect at A.

Which fact is sufficient to show that planes R and S are perpendicular?

1) $\overline{F A} \perp \overline{D E}$
2) $\overline{A D} \perp \overline{A F}$
3) $\overline{B C} \perp \overline{F J}$
4) $\overline{D E} \perp \overline{B C}$

Geometry Multiple Choice Regents Exam Questions

www.jmap.org

Geometry Multiple Choice Regents Exam Questions

169 Based on the construction below, which conclusion is not always true?

1) $\overline{A B} \perp \overline{C D}$
2) $A B=C D$
3) $A E=E B$
4) $C E=D E$

171 The solution of the system of equations $y=x^{2}-2$ and $y=x$ is

1) $(1,1)$ and $(-2,-2)$
2) $(2,2)$ and $(-1,-1)$
3) $(1,1)$ and $(2,2)$
4) $(-2,-2)$ and $(-1,-1)$

172 In circle O, diameter $\overline{A B}$ intersects chord $\overline{C D}$ at E. If $C E=E D$, then $\angle C E A$ is which type of angle?

1) straight
2) obtuse
3) acute
4) right

173 What is the equation for circle O shown in the graph below?

1) $(x-3)^{2}+(y+1)^{2}=6$
2) $(x+3)^{2}+(y-1)^{2}=6$
3) $(x-3)^{2}+(y+1)^{2}=9$
4) $(x+3)^{2}+(y-1)^{2}=9$

174 In the diagram below, $\overleftrightarrow{R C B T}$ and $\triangle A B C$ are shown with $\mathrm{m} \angle A=60$ and $\mathrm{m} \angle A B T=125$.

What is $\mathrm{m} \angle A C R$?

1) 125
2) 115
3) 65
4) 55

175 A rectangular prism has a base with a length of 25, a width of 9 , and a height of 12 . A second prism has a square base with a side of 15 . If the volumes of the two prisms are equal, what is the height of the second prism?

1) 6
2) 8
3) 12
4) 15

176 Triangle $A B C$ is similar to triangle $D E F$. The lengths of the sides of $\triangle A B C$ are 5,8 , and 11 . What is the length of the shortest side of $\triangle D E F$ if its perimeter is 60 ?

1) 10
2) 12.5
3) 20
4) 27.5

177 In the diagram below, diameter $\overline{A B}$ bisects chord $\overline{C D}$ at point E in circle F.

If $A E=2$ and $F B=17$, then the length of $\overline{C E}$ is

1) 7
2) 8
3) 15
4) 16

178 As shown below, the medians of $\triangle A B C$ intersect at D.

If the length of $\overline{B E}$ is 12 , what is the length of $\overline{B D}$?

1) 8
2) 9
3) 3
4) 4

Geometry Multiple Choice Regents Exam Questions www.jmap.org

179 If $\triangle A B C$ and its image, $\Delta A^{\prime} B^{\prime} C^{\prime}$, are graphed on a set of axes, $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ under each transformation except

1) D_{2}
2) R_{90}
3) $r_{y=x}$
4) $T_{(-2,3)}$

180 If $\triangle A B C \cong \Delta J K L \cong \Delta R S T$, then $\overline{B C}$ must be congruent to

1) $\overline{J L}$
2) $\overline{J K}$
3) $\overline{S T}$
4) $\overline{R S}$

181 In $\triangle A B C, D$ is the midpoint of $\overline{A B}$ and E is the midpoint of $B C$. If $A C=3 x-15$ and $D E=6$, what is the value of x ?

1) 6
2) 7
3) 9
4) 12

182 Point A is on line m. How many distinct planes will be perpendicular to line m and pass through point A ?

1) one
2) two
3) zero
4) infinite

183 Which equation represents the circle whose center is $(-5,3)$ and that passes through the point $(-1,3)$?

1) $(x+1)^{2}+(y-3)^{2}=16$
2) $(x-1)^{2}+(y+3)^{2}=16$
3) $(x+5)^{2}+(y-3)^{2}=16$
4) $(x-5)^{2}+(y+3)^{2}=16$

184 Given: $\triangle A B D, \overline{B C}$ is the perpendicular bisector of $\overline{A D}$

Which statement can not always be proven?

1) $\overline{A C} \cong \overline{D C}$
2) $\overline{B C} \cong \overline{C D}$
3) $\angle A C B \cong \angle D C B$
4) $\triangle A B C \cong \triangle D B C$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

185 Triangle $A B C$ has vertices $A(0,0), B(6,8)$, and $C(8,4)$. Which equation represents the perpendicular bisector of $\overline{B C}$?

1) $y=2 x-6$
2) $y=-2 x+4$
3) $y=\frac{1}{2} x+\frac{5}{2}$
4) $y=-\frac{1}{2} x+\frac{19}{2}$

186 What is the equation of a line passing through the point $(6,1)$ and parallel to the line whose equation is $3 x=2 y+4$?

1) $y=-\frac{2}{3} x+5$
2) $y=-\frac{2}{3} x-3$
3) $y=\frac{3}{2} x-8$
4) $y=\frac{3}{2} x-5$

187 Triangle $A B C$ has the coordinates $A(1,2), B(5,2)$, and $C(5,5)$. Triangle $A B C$ is rotated 180° about the origin to form triangle $A^{\prime} B^{\prime} C^{\prime}$. Triangle $A^{\prime} B^{\prime} C^{\prime}$ is

1) acute
2) isosceles
3) obtuse
4) right

188 A circle with the equation $(x+6)^{2}+(y-7)^{2}=64$ does not include points in Quadrant

1) I
2) II
3) III
4) IV

189 In the diagram of $\Delta U V W$ below, A is the midpoint of $\overline{U V}, B$ is the midpoint of $\overline{U W}, C$ is the midpoint of $\overline{V W}$, and $\overline{A B}$ and $\overline{A C}$ are drawn.

If $V W=7 x-3$ and $A B=3 x+1$, what is the length of $\overline{V C}$?

1) 5
2) 13
3) 16
4) 32

190 What are the coordinates of A^{\prime}, the image of $A(-3,4)$, after a rotation of 180° about the origin?

1) $(4,-3)$
2) $(-4,-3)$
3) $(3,4)$
4) $(3,-4)$

191 When the system of equations $y+2=(x-4)^{2}$ and $2 x+y-6=0$ is solved graphically, the solution is

1) $(-4,-2)$ and $(-2,2)$
2) $(4,-2)$ and $(2,2)$
3) $(-4,2)$ and $(-6,6)$
4) $(4,2)$ and $(6,6)$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

192 A rectangular right prism is shown in the diagram below.

Which pair of edges are not coplanar?

1) $\overline{B F}$ and $\overline{C G}$
2) $\overline{B F}$ and $\overline{D H}$
3) $\overline{E F}$ and $\overline{C D}$
4) $\overline{E F}$ and $\overline{B C}$

193 The sides of a triangle are 8,12 , and 15 . The longest side of a similar triangle is 18 . What is the ratio of the perimeter of the smaller triangle to the perimeter of the larger triangle?

1) $2: 3$
2) $4: 9$
3) $5: 6$
4) $25: 36$

194 Which equation represents a line that is parallel to the line whose equation is $3 x-2 y=7$?

1) $y=-\frac{3}{2} x+5$
2) $y=-\frac{2}{3} x+4$
3) $y=\frac{3}{2} x-5$
4) $y=\frac{2}{3} x-4$

195 In trapezoid $R S T V$ with bases $\overline{R S}$ and $\overline{V T}$, diagonals $\overline{R T}$ and $\overline{S V}$ intersect at Q.

If trapezoid RSTV is not isosceles, which triangle is equal in area to $\triangle R S V$?

1) $\triangle R Q V$
2) $\triangle R S T$
3) $\Delta R V T$
4) $\Delta S V T$

196 In the diagram below, four pairs of triangles are shown. Congruent corresponding parts are labeled in each pair.

Using only the information given in the diagrams, which pair of triangles can not be proven congruent?

1) A
2) B
3) C
4) D

Geometry Multiple Choice Regents Exam Questions www.jmap.org

197 The equations $x^{2}+y^{2}=25$ and $y=5$ are graphed on a set of axes. What is the solution of this system?

1) $(0,0)$
2) $(5,0)$
3) $(0,5)$
4) $(5,5)$

198 If the vertices of $\triangle A B C$ are $A(-2,4), B(-2,8)$, and $C(-5,6)$, then $\triangle A B C$ is classified as

1) right
2) scalene
3) isosceles
4) equilateral

199 Triangle $A B C$ shown below is a right triangle with altitude $\overline{A D}$ drawn to the hypotenuse $\overline{B C}$.

If $B D=2$ and $D C=10$, what is the length of $\overline{A B}$?

1) $2 \sqrt{2}$
2) $2 \sqrt{5}$
3) $2 \sqrt{6}$
4) $2 \sqrt{30}$

200 In the diagram below, $\triangle X Y V \cong \triangle T S V$.

Which statement can not be proven?

1) $\angle X V Y \cong \angle T V S$
2) $\angle V Y X \cong \angle V U T$
3) $\overline{X Y} \cong \overline{T S}$
4) $\overline{Y V} \cong \overline{S V}$

201 Points $A(5,3)$ and $B(7,6)$ lie on $\overleftrightarrow{A B}$. Points $C(6,4)$ and $D(9,0)$ lie on $C D$. Which statement is true?

1) $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$
2) $\overleftrightarrow{A B} \perp \overleftrightarrow{C D}$
3) $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are the same line.
4) $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersect, but are not perpendicular.

202 Square $A B C D$ has vertices $A(-2,-3), B(4,-1)$, $C(2,5)$, and $D(-4,3)$. What is the length of a side of the square?

1) $2 \sqrt{5}$
2) $2 \sqrt{10}$
3) $4 \sqrt{5}$
4) $10 \sqrt{2}$

203 As shown in the diagram below, $\overline{C D}$ is a median of $\triangle A B C$.

Which statement is always true?

1) $\overline{A D} \cong \overline{D B}$
2) $\overline{A C} \cong \overline{A D}$
3) $\angle A C D \cong \angle C D B$
4) $\angle B C D \cong \angle A C D$

204 Line ℓ passes through the point $(5,3)$ and is parallel to line k whose equation is $5 x+y=6$. An equation of line ℓ is

1) $y=\frac{1}{5} x+2$
2) $y=-5 x+28$
3) $y=\frac{1}{5} x-2$
4) $y=-5 x-28$

205 What is the perimeter of a square whose diagonal is $3 \sqrt{2}$?

1) 18
2) 12
3) 9
4) 6

206 As shown in the diagram below, when right triangle $D A B$ is reflected over the x-axis, its image is triangle $D C B$.

Which statement justifies why $\overline{A B} \cong \overline{C B}$?

1) Distance is preserved under reflection.
2) Orientation is preserved under reflection.
3) Points on the line of reflection remain invariant.
4) Right angles remain congruent under reflection.

207 In a coordinate plane, the locus of points 5 units from the x-axis is the

1) lines $x=5$ and $x=-5$
2) lines $y=5$ and $y=-5$
3) line $x=5$, only
4) line $y=5$, only

Geometry Multiple Choice Regents Exam Questions www.jmap.org

208 The diagram below shows the construction of line m, parallel to line ℓ, through point P.

Which theorem was used to justify this construction?

1) If two lines are cut by a transversal and the alternate interior angles are congruent, the lines are parallel.
2) If two lines are cut by a transversal and the interior angles on the same side are supplementary, the lines are parallel.
3) If two lines are perpendicular to the same line, they are parallel.
4) If two lines are cut by a transversal and the corresponding angles are congruent, they are parallel.

209 What is the converse of "If an angle measures 90 degrees, then it is a right angle"?

1) If an angle is a right angle, then it measures 90 degrees.
2) An angle is a right angle if it measures 90 degrees.
3) If an angle is not a right angle, then it does not measure 90 degrees.
4) If an angle does not measure 90 degrees, then it is not a right angle.

210 What is the slope of the line perpendicular to the line represented by the equation $2 x+4 y=12$?

1) -2
2) 2
3) $-\frac{1}{2}$
4) $\frac{1}{2}$

211 Trapezoid $Q R S T$ is graphed on the set of axes below.

Under which transformation will there be no invariant points?

1) $r_{y=0}$
2) $r_{x=0}$
3) $r_{(0,0)}$
4) $r_{y=x}$

212 If $\triangle M N P \cong \triangle V W X$ and $\overline{P M}$ is the shortest side of $\triangle M N P$, what is the shortest side of $\triangle V W X$?

1) $\overline{X V}$
2) $\overline{W X}$
3) $\overline{V W}$
4) $\overline{N P}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

213 As shown in the diagram below, $\overline{F D}$ and $\overline{C B}$ intersect at point A and $\overline{E T}$ is perpendicular to both $\overline{F D}$ and $\overline{C B}$ at A.

Which statement is not true?

1) $\overline{E T}$ is perpendicular to plane $B A D$.
2) $\overline{E T}$ is perpendicular to plane $F A B$.
3) $\overline{E T}$ is perpendicular to plane $C A D$.
4) $E T$ is perpendicular to plane $B A T$.

214 In circle R shown below, diameter $\overline{D E}$ is perpendicular to chord $\overline{S T}$ at point L.

215 The diagram below shows $\triangle A B D$, with $\overrightarrow{A B C}$, $\overline{B E} \perp \overline{A D}$, and $\angle E B D \cong \angle C B D$.

If $\mathrm{m} \angle A B E=52$, what is $\mathrm{m} \angle D$?

1) 26
2) 38
3) 52
4) 64

216 As shown in the diagram of rectangle $A B C D$ below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

If $A E=x+2$ and $B D=4 x-16$, then the length of $\overline{A C}$ is

1) 6
2) 10
3) 12
4) 24

Which statement is not always true?

1) $\overline{S L} \cong \overline{T L}$
2) $R S=D R$
3) $\overline{R L} \cong \overline{L E}$
4) $(D L)(L E)=(S L)(L T)$

Geometry Multiple Choice Regents Exam Questions

 www.jmap.org217 How many points in the coordinate plane are 3 units from the origin and also equidistant from both the x-axis and the y-axis?

1) 1
2) 2
3) 8
4) 4

218 The measure of an interior angle of a regular polygon is 120°. How many sides does the polygon have?

1) 5
2) 6
3) 3
4) 4

219 Triangle $A B C$ is shown in the diagram below.

If $\overline{D E}$ joins the midpoints of $\overline{A D C}$ and $\overline{A E B}$, which statement is not true?

1) $D E=\frac{1}{2} C B$
2) $\overline{D E} \| \overline{C B}$
3) $\frac{A D}{D C}=\frac{D E}{C B}$
4) $\triangle A B C \sim \triangle A E D$

220 In the diagram of $\triangle A B C$ below, $\overline{A B}$ is extended to point D.

If $\mathrm{m} \angle C A B=x+40, \mathrm{~m} \angle A C B=3 x+10$, $\mathrm{m} \angle C B D=6 x$, what is $\mathrm{m} \angle C A B$?

1) 13
2) 25
3) 53
4) 65

221 Which set of equations represents two circles that have the same center?

1) $x^{2}+(y+4)^{2}=16$ and $(x+4)^{2}+y^{2}=16$
2) $(x+3)^{2}+(y-3)^{2}=16$ and
$(x-3)^{2}+(y+3)^{2}=25$
3) $(x-7)^{2}+(y-2)^{2}=16$ and $(x+7)^{2}+(y+2)^{2}=25$
4) $(x-2)^{2}+(y-5)^{2}=16$ and $(x-2)^{2}+(y-5)^{2}=25$

222 In $\triangle A B C, \angle A \cong \angle B$ and $\angle C$ is an obtuse angle. Which statement is true?

1) $\overline{A C} \cong \overline{A B}$ and $\overline{B C}$ is the longest side.
2) $\overline{A C} \cong \overline{B C}$ and $\overline{A B}$ is the longest side.
3) $\overline{A C} \cong \overline{A B}$ and $\overline{B C}$ is the shortest side.
4) $\overline{A C} \cong \overline{B C}$ and $\overline{A B}$ is the shortest side.

Geometry Multiple Choice Regents Exam Questions www.jmap.org

223 The equation of a line is $y=\frac{2}{3} x+5$. What is an equation of the line that is perpendicular to the given line and that passes through the point $(4,2)$?

1) $y=\frac{2}{3} x-\frac{2}{3}$
2) $y=\frac{3}{2} x-4$
3) $y=-\frac{3}{2} x+7$
4) $y=-\frac{3}{2} x+8$

224 The lateral area of a right circular cone is equal to $120 \pi \mathrm{~cm}^{2}$. If the base of the cone has a diameter of 24 cm , what is the length of the slant height, in centimeters?

1) 2.5
2) 5
3) 10
4) 15.7

225 Line segment $A B$ is a diameter of circle O whose center has coordinates $(6,8)$. What are the coordinates of point B if the coordinates of point A are $(4,2)$?

1) $(1,3)$
2) $(5,5)$
3) $(8,14)$
4) $(10,10)$

226 If line ℓ is perpendicular to distinct planes \mathscr{P} and Q, then planes P and Q

1) are parallel
2) contain line ℓ
3) are perpendicular
4) intersect, but are not perpendicular

227 In the diagram below of quadrilateral $A B C D, E$ and F are points on $\overline{A B}$ and $\overline{C D}$, respectively, $\overline{B E} \cong \overline{D F}$, and $\overline{A E} \cong \overline{C F}$.

Which conclusion can be proven?

1) $\overline{E D} \cong \overline{F B}$
2) $\overline{A B} \cong \overline{C D}$
3) $\angle A \cong \angle C$
4) $\angle A E D \cong \angle C F B$

228 In the diagram below of right triangle $A B C$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$.

If $A D=3$ and $D B=12$, what is the length of altitude $\overline{C D}$?

1) 6
2) $6 \sqrt{5}$
3) 3
4) $3 \sqrt{5}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

229 Which diagram shows the construction of a 45° angle?
1)

2)

3)

4)

230 Which equation represents circle O shown in the graph below?

1) $x^{2}+(y-2)^{2}=10$
2) $x^{2}+(y+2)^{2}=10$
3) $x^{2}+(y-2)^{2}=25$
4) $x^{2}+(y+2)^{2}=25$

231 What are the coordinates of the center and the length of the radius of the circle whose equation is $(x+1)^{2}+(y-5)^{2}=16$?

1) $(1,-5)$ and 16
2) $(-1,5)$ and 16
3) $(1,-5)$ and 4
4) $(-1,5)$ and 4

232 Which set of numbers could not represent the lengths of the sides of a right triangle?

1) $\{1,3, \sqrt{10}\}$
2) $\{2,3,4\}$
3) $\{3,4,5\}$
4) $\{8,15,17\}$

Geometry Multiple Choice Regents Exam Questions

 www.jmap.org233 Two prisms have equal heights and equal volumes. The base of one is a pentagon and the base of the other is a square. If the area of the pentagonal base is 36 square inches, how many inches are in the length of each side of the square base?

1) 6
2) 9
3) 24
4) 36

234 Chords $\overline{A B}$ and $\overline{C D}$ intersect at point E in a circle with center at O. If $A E=8, A B=20$, and $D E=16$, what is the length of $\overline{C E}$?

1) 6
2) 9
3) 10
4) 12

235 In the diagram below, $\overline{A C}$ and $\overline{B C}$ are tangent to circle O at A and B, respectively, from external point C.

If $\mathrm{m} \angle A C B=38$, what is $\mathrm{m} \angle A O B$?

1) 71
2) 104
3) 142
4) 161

236 As shown in the diagram below, a landscaper uses a cylindrical lawn roller on a lawn. The roller has a radius of 9 inches and a width of 42 inches.

To the nearest square inch, the area the roller covers in one complete rotation is

1) 2,374
2) 2,375
3) 10,682
4) 10,688

237 In the diagram of $\triangle A B C$ below, medians $\overline{A D}$ and $B E$ intersect at point F.

If $A F=6$, what is the length of $\overline{F D}$?

1) 6
2) 2
3) 3
4) 9

238 How many points are 5 units from a line and also equidistant from two points on the line?

1) 1
2) 2
3) 3
4) 0

239 Lines m and n are in plane \mathcal{A}. What is the converse of the statement "If lines m and n are parallel, then lines m and n do not intersect"?

1) If lines m and n are not parallel, then lines m and n intersect.
2) If lines m and n are not parallel, then lines m and n do not intersect
3) If lines m and n intersect, then lines m and n are not parallel.
4) If lines m and n do not intersect, then lines m and n are parallel.

240 In the diagram of circle O below, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{m} \widehat{C D}=110$.

What is $\mathrm{m} \overparen{D B}$?

1) 35
2) 55
3) 70
4) 110

241 A student wrote the following equations:

$$
\begin{aligned}
& 3 y+6=2 x \\
& 2 y-3 x=6
\end{aligned}
$$

The lines represented by these equations are

1) parallel
2) the same line
3) perpendicular
4) intersecting, but not perpendicular

242 In right triangle $A B C$ shown in the diagram below, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}, C D=12$, and $A D=3$.

What is the length of $\overline{A B}$?

1) $5 \sqrt{3}$
2) 6
3) $3 \sqrt{5}$
4) 9

243 The coordinates of point P are $(7,1)$. What are the coordinates of the image of P after $R_{90^{\circ}}$ about the origin?

1) $(1,7)$
2) $(-7,-1)$
3) $(1,-7)$
4) $(-1,7)$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

244 In the diagram below, $\overline{A C}$ and $\overline{A D}$ are tangent to circle B at points C and D, respectively, and $\overline{B C}$, $\overline{B D}$, and $\overline{B A}$ are drawn.

If $A C=12$ and $A B=15$, what is the length of $\overline{B D}$?

1) 5.5
2) 9
3) 12
4) 18

245 Which quadrilateral does not always have congruent diagonals?

1) isosceles trapezoid
2) rectangle
3) rhombus
4) square

246 What is an equation of the circle with center $(-5,4)$ and a radius of 7 ?

1) $(x-5)^{2}+(y+4)^{2}=14$
2) $(x-5)^{2}+(y+4)^{2}=49$
3) $(x+5)^{2}+(y-4)^{2}=14$
4) $(x+5)^{2}+(y-4)^{2}=49$

247 Given the statement: One is a prime number. What is the negation and the truth value of the negation?

1) One is not a prime number; true
2) One is not a prime number; false
3) One is a composite number; true
4) One is a composite number; false

248 What is the equation of circle O shown in the diagram below?

1) $(x+4)^{2}+(y-1)^{2}=3$
2) $(x-4)^{2}+(y+1)^{2}=3$
3) $(x+4)^{2}+(y-1)^{2}=9$
4) $(x-4)^{2}+(y+1)^{2}=9$

249 What is the measure of the largest exterior angle that any regular polygon can have?

1) 60°
2) 90°
3) 120°
4) 360°

Geometry Multiple Choice Regents Exam Questions

www.jmap.org
250 Plane \mathcal{A} and plane \mathscr{B} are two distinct planes that are both perpendicular to line ℓ. Which statement about planes \mathcal{A} and \mathscr{B} is true?

1) Planes \mathcal{A} and \mathscr{B} have a common edge, which forms a line.
2) Planes \mathcal{A} and \mathscr{B} are perpendicular to each other.
3) Planes \mathcal{A} and \mathscr{B} intersect each other at exactly one point.
4) Planes \mathcal{A} and \mathscr{B} are parallel to each other.

251 If distinct planes \mathbb{R} and S are both perpendicular to line ℓ, which statement must always be true?

1) Plane R is parallel to plane S.
2) Plane R is perpendicular to plane S.
3) Planes R and S and line ℓ are all parallel.
4) The intersection of planes R and S is perpendicular to line ℓ.

252 Which equation represents circle A shown in the diagram below?

1) $(x-4)^{2}+(y-1)^{2}=3$
2) $(x+4)^{2}+(y+1)^{2}=3$
3) $(x-4)^{2}+(y-1)^{2}=9$
4) $(x+4)^{2}+(y+1)^{2}=9$

253 The bases of a right triangular prism are $\triangle A B C$ and $\triangle D E F$. Angles A and D are right angles, $A B=6$, $A C=8$, and $A D=12$. What is the length of edge $\overline{B E}$?

1) 10
2) 12
3) 14
4) 16

254 In the diagram below of circle $O, \overline{P A C}$ and $\overline{P B D}$ are secants.

If $\mathrm{m} \overparen{C D}=70$ and $\mathrm{m} \overparen{A B}=20$, what is the degree measure of $\angle P$?

1) 25
2) 35
3) 45
4) 50

255 What is the difference between the sum of the measures of the interior angles of a regular pentagon and the sum of the measures of the exterior angles of a regular pentagon?

1) 36
2) 72
3) 108
4) 180

Geometry Multiple Choice Regents Exam Questions www.jmap.org

256 Consider the relationship between the two statements below.

$$
\begin{aligned}
& \text { If } \sqrt{16+9} \neq 4+3 \text {, then } 5 \neq 4+3 \\
& \text { If } \sqrt{16+9}=4+3 \text {, then } 5=4+3
\end{aligned}
$$

These statements are

1) inverses
2) converses
3) contrapositives
4) biconditionals

257 As shown in the diagram below, a right pyramid has a square base, $A B C D$, and $\overline{E F}$ is the slant height.

Which statement is not true?

1) $\overline{E A} \cong \overline{E C}$
2) $\overline{E B} \cong \overline{E F}$
3) $\triangle A E B \cong \triangle B E C$
4) $\triangle C E D$ is isosceles

258 Lines p and q are intersected by line r, as shown below.

If $\mathrm{m} \angle 1=7 x-36$ and $\mathrm{m} \angle 2=5 x+12$, for which value of x would $p \| q$?

1) 17
2) 24
3) 83
4) 97

259 Transversal $\overleftrightarrow{E F}$ intersects $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$, as shown in the diagram below.

Which statement could always be used to prove $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$?

1) $\angle 2 \cong \angle 4$
2) $\angle 7 \cong \angle 8$
3) $\angle 3$ and $\angle 6$ are supplementary
4) $\angle 1$ and $\angle 5$ are supplementary

Geometry Multiple Choice Regents Exam Questions www.jmap.org

260 In the diagram of trapezoid $A B C D$ below, $\overline{A B} \| \overline{D C}$, $\overline{A D} \cong \overline{B C}, \mathrm{~m} \angle A=4 x+20$, and $\mathrm{m} \angle C=3 x-15$.

What is $\mathrm{m} \angle D$?

1) 25
2) 35
3) 60
4) 90

261 In the diagram below, under which transformation is $\triangle A^{\prime} B^{\prime} C^{\prime}$ the image of $\triangle A B C$?

1) D_{2}
2) $r_{x \text {-xis }}$
3) $r_{y \text {-axis }}$
4) $(x, y) \rightarrow(x-2, y)$

262 Which graph represents a circle whose equation is $x^{2}+(y-1)^{2}=9 ?$
1)

3)

4)

Geometry Multiple Choice Regents Exam Questions www.jmap.org

263 In $\triangle A B C, \mathrm{~m} \angle A=3 x+1, \mathrm{~m} \angle B=4 x-17$, and $\mathrm{m} \angle C=5 x-20$. Which type of triangle is $\triangle A B C$?

1) right
2) scalene
3) isosceles
4) equilateral

264 For which measures of the sides of $\triangle A B C$ is angle B the largest angle of the triangle?

1) $A B=2, B C=6, A C=7$
2) $A B=6, B C=12, A C=8$
3) $A B=16, B C=9, A C=10$
4) $A B=18, B C=14, A C=5$

265 In $\triangle A B C, \mathrm{~m} \angle A=60, \mathrm{~m} \angle B=80$, and $\mathrm{m} \angle C=40$. Which inequality is true?

1) $A B>B C$
2) $A C>B C$
3) $A C<B A$
4) $B C<B A$

266 The midpoint of $\overline{A B}$ is $M(4,2)$. If the coordinates of A are $(6,-4)$, what are the coordinates of B ?

1) $(1,-3)$
2) $(2,8)$
3) $(5,-1)$
4) $(14,0)$

267 The diagram below shows the construction of an equilateral triangle.

Which statement justifies this construction?

1) $\angle A+\angle B+\angle C=180$
2) $\mathrm{m} \angle A=\mathrm{m} \angle B=\mathrm{m} \angle C$
3) $A B=A C=B C$
4) $A B+B C>A C$

268 How many common tangent lines can be drawn to the circles shown below?

1) 1
2) 2
3) 3
4) 4

Geometry Multiple Choice Regents Exam Questions www.jmap.org

269 Which graph represents a circle whose equation is $x^{2}+(y-2)^{2}=4$?
1)

2)

3)

270 The volume of a sphere is approximately 44.6022 cubic centimeters. What is the radius of the sphere, to the nearest tenth of a centimeter?

1) 2.2
2) 3.3
3) 4.4
4) 4.7

271 In $\triangle A B C$ shown below, L is the midpoint of $\overline{B C}, M$ is the midpoint of $\overline{A B}$, and N is the midpoint of $\overline{A C}$.

If $M N=8, M L=5$, and $N L=6$, the perimeter of trapezoid BMNC is

1) 35
2) 31
3) 28
4) 26

272 What are the coordinates of the center of a circle if the endpoints of its diameter are $A(8,-4)$ and $B(-3,2)$?

1) $(2.5,1)$
2) $(2.5,-1)$
3) $(5.5,-3)$
4) $(5.5,3)$

273 What is the equation of the circle with its center at $(-1,2)$ and that passes through the point $(1,2)$?

1) $(x+1)^{2}+(y-2)^{2}=4$
2) $(x-1)^{2}+(y+2)^{2}=4$
3) $(x+1)^{2}+(y-2)^{2}=2$
4) $(x-1)^{2}+(y+2)^{2}=2$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

274 Which graph could be used to find the solution to the following system of equations?

$$
y=(x+3)^{2}-1
$$

$$
x+y=2
$$

1)

2)

3)

4)

275 In circle O shown in the diagram below, chords $\overline{A B}$ and $\overline{C D}$ are parallel.

If $\mathrm{m} \overparen{A B}=104$ and $\mathrm{m} \widehat{C D}=168$, what is $\mathrm{m} \overparen{B D}$?

1) 38
2) 44
3) 88
4) 96

276 In a park, two straight paths intersect. The city wants to install lampposts that are both equidistant from each path and also 15 feet from the intersection of the paths. How many lampposts are needed?

1) 1
2) 2
3) 3
4) 4

277 The equation of a circle is $(x-2)^{2}+(y+5)^{2}=32$. What are the coordinates of the center of this circle and the length of its radius?

1) $(-2,5)$ and 16
2) $(2,-5)$ and 16
3) $(-2,5)$ and $4 \sqrt{2}$
4) $(2,-5)$ and $4 \sqrt{2}$

Geometry Multiple Choice Regents Exam Questions

www.jmap.org

Geometry Multiple Choice Regents Exam Questions

278 Line segment $A B$ has endpoints $A(2,-3)$ and $B(-4,6)$. What are the coordinates of the midpoint of $\overline{A B}$?

1) $(-2,3)$
2) $\left(-1,1 \frac{1}{2}\right)$
3) $(-1,3)$
4) $\left(3,4 \frac{1}{2}\right)$

279 In the diagram below of parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}, \mathrm{~m} \angle 1=45$ and $\mathrm{m} \angle D C B=120$.

What is the measure of $\angle 2$?

1) 15°
2) 30°
3) 45°
4) 60°

280 A quadrilateral whose diagonals bisect each other and are perpendicular is a

1) rhombus
2) rectangle
3) trapezoid
4) parallelogram

281 In $\triangle A B C, \mathrm{~m} \angle A=x, \mathrm{~m} \angle B=2 x+2$, and $\mathrm{m} \angle C=3 x+4$. What is the value of x ?

1) 29
2) 31
3) 59
4) 61

282 In the diagram below of regular pentagon $A B C D E$, $\overline{E B}$ is drawn.

What is the measure of $\angle A E B$?

1) 36°
2) 54°
3) 72°
4) 108°

283 The lateral faces of a regular pyramid are composed of

1) squares
2) rectangles
3) congruent right triangles
4) congruent isosceles triangles

Geometry Multiple Choice Regents Exam Questions

 www.jmap.org284 In the diagram below, the length of the legs $\overline{A C}$ and $\overline{B C}$ of right triangle $A B C$ are 6 cm and 8 cm , respectively. Altitude $\overline{C D}$ is drawn to the hypotenuse of $\triangle A B C$.

What is the length of $\overline{A D}$ to the nearest tenth of a centimeter?

1) 3.6
2) 6.0
3) 6.4
4) 4.0

285 Point P is on line m. What is the total number of planes that are perpendicular to line m and pass through point P ?

1) 1
2) 2
3) 0
4) infinite

286 A transversal intersects two lines. Which condition would always make the two lines parallel?

1) Vertical angles are congruent.
2) Alternate interior angles are congruent.
3) Corresponding angles are supplementary.
4) Same-side interior angles are complementary.

287 The diagram below shows a pennant in the shape of an isosceles triangle. The equal sides each measure 13 , the altitude is $x+7$, and the base is $2 x$.

What is the length of the base?

1) 5
2) 10
3) 12
4) 24

288 In the diagram below of $\triangle A B C$, medians $\overline{A D}, \overline{B E}$, and $\overline{C F}$ intersect at G.

If $C F=24$, what is the length of $\overline{F G}$?

1) 8
2) 10
3) 12
4) 16

Geometry Multiple Choice Regents Exam Questions www.jmap.org

289 Given $\triangle A B C$ with base $\overline{A F E D C}$, median $\overline{B F}$, altitude $\overline{B D}$, and $\overline{B E}$ bisects $\angle A B C$, which conclusion is valid?

1) $\angle F A B \cong \angle A B F$
2) $\angle A B F \cong \angle C B D$
3) $\overline{C E} \cong \overline{E A}$
4) $\overline{C F} \cong \overline{F A}$

290 A circle is represented by the equation $x^{2}+(y+3)^{2}=13$. What are the coordinates of the center of the circle and the length of the radius?

1) $(0,3)$ and 13
2) $(0,3)$ and $\sqrt{13}$
3) $(0,-3)$ and 13
4) $(0,-3)$ and $\sqrt{13}$

291 What is an equation of the line that passes through the point $(-2,5)$ and is perpendicular to the line whose equation is $y=\frac{1}{2} x+5$?

1) $y=2 x+1$
2) $y=-2 x+1$
3) $y=2 x+9$
4) $y=-2 x-9$

292 In the diagram of $\triangle A B C$ below, Jose found centroid P by constructing the three medians. He measured $\overline{C F}$ and found it to be 6 inches.

If $P F=x$, which equation can be used to find x ?

1) $x+x=6$
2) $2 x+x=6$
3) $3 x+2 x=6$
4) $x+\frac{2}{3} x=6$

293 Point A is located at (4,-7). The point is reflected in the x-axis. Its image is located at

1) $(-4,7)$
2) $(-4,-7)$
3) $(4,7)$
4) $(7,-4)$

294 In $\triangle A B C, \mathrm{~m} \angle A=95, \mathrm{~m} \angle B=50$, and $\mathrm{m} \angle C=35$. Which expression correctly relates the lengths of the sides of this triangle?

1) $A B<B C<C A$
2) $A B<A C<B C$
3) $A C<B C<A B$
4) $B C<A C<A B$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

295 What is the negation of the statement "Squares are parallelograms"?

1) Parallelograms are squares.
2) Parallelograms are not squares.
3) It is not the case that squares are parallelograms.
4) It is not the case that parallelograms are squares.

296 Line segment $A B$ is tangent to circle O at A. Which type of triangle is always formed when points A, B, and O are connected?

1) right
2) obtuse
3) scalene
4) isosceles

297 One step in a construction uses the endpoints of $\overline{A B}$ to create arcs with the same radii. The arcs intersect above and below the segment. What is the relationship of $\overline{A B}$ and the line connecting the points of intersection of these arcs?

1) collinear
2) congruent
3) parallel
4) perpendicular

298 If $\triangle A B C \sim \Delta Z X Y, \mathrm{~m} \angle A=50$, and $\mathrm{m} \angle C=30$, what is $\mathrm{m} \angle X$?

1) 30
2) 50
3) 80
4) 100

299 Which expression best describes the transformation shown in the diagram below?

1) same orientation; reflection
2) opposite orientation; reflection
3) same orientation; translation
4) opposite orientation; translation

300 In the diagram below of $\triangle A C T, \overleftrightarrow{B E} \| \overline{A T}$

If $C B=3, C A=10$, and $C E=6$, what is the length of $\overline{E T}$?

1) 5
2) 14
3) 20
4) 26

Geometry Multiple Choice Regents Exam Questions www.jmap.org

301 The equation of a circle is $(x-2)^{2}+(y+4)^{2}=4$. Which diagram is the graph of the circle?
1)

2)
3)

302 The pentagon in the diagram below is formed by five rays.

What is the degree measure of angle x ?

1) 72
2) 96
3) 108
4) 112

303 Triangle $A B C$ has vertices $A(1,3), B(0,1)$, and $C(4,0)$. Under a translation, A^{\prime}, the image point of A, is located at $(4,4)$. Under this same translation, point C^{\prime} is located at

1) $(7,1)$
2) $(5,3)$
3) $(3,2)$
4) $(1,-1)$

304 What is the negation of the statement "The Sun is shining"?

1) It is cloudy.
2) It is daytime.
3) It is not raining.
4) The Sun is not shining.

Geometry Multiple Choice Regents Exam Questions www.jmap.org

305 Which equation represents the circle whose center is $(-2,3)$ and whose radius is 5 ?

1) $(x-2)^{2}+(y+3)^{2}=5$
2) $(x+2)^{2}+(y-3)^{2}=5$
3) $(x+2)^{2}+(y-3)^{2}=25$
4) $(x-2)^{2}+(y+3)^{2}=25$

306 In a coordinate plane, how many points are both 5 units from the origin and 2 units from the x-axis?

1) 1
2) 2
3) 3
4) 4

307 Which set of numbers represents the lengths of the sides of a triangle?

1) $\{5,18,13\}$
2) $\{6,17,22\}$
3) $\{16,24,7\}$
4) $\{26,8,15\}$

308 Isosceles trapezoid $A B C D$ has diagonals $\overline{A C}$ and $B D$. If $A C=5 x+13$ and $B D=11 x-5$, what is the value of x ?

1) 28
2) $10 \frac{3}{4}$
3) 3
4) $\frac{1}{2}$

309 The lines represented by the equations $y+\frac{1}{2} x=4$
and $3 x+6 y=12$ are

1) the same line
2) parallel
3) perpendicular
4) neither parallel nor perpendicular

310 The diameter of a circle has endpoints at $(-2,3)$ and $(6,3)$. What is an equation of the circle?

1) $(x-2)^{2}+(y-3)^{2}=16$
2) $(x-2)^{2}+(y-3)^{2}=4$
3) $(x+2)^{2}+(y+3)^{2}=16$
4) $(x+2)^{2}+(y+3)^{2}=4$

311 Which equation represents a line perpendicular to the line whose equation is $2 x+3 y=12$?

1) $6 y=-4 x+12$
2) $2 y=3 x+6$
3) $2 y=-3 x+6$
4) $3 y=-2 x+12$

312 If the endpoints of $\overline{A B}$ are $A(-4,5)$ and $B(2,-5)$, what is the length of $\overline{A B}$?

1) $2 \sqrt{34}$
2) 2
3) $\sqrt{61}$
4) 8

Geometry Multiple Choice Regents Exam Questions www.jmap.org

313 Square $L M N O$ is shown in the diagram below.

What are the coordinates of the midpoint of diagonal $\overline{L N}$?

1) $\left(4 \frac{1}{2},-2 \frac{1}{2}\right)$
2) $\left(-3 \frac{1}{2}, 3 \frac{1}{2}\right)$
3) $\left(-2 \frac{1}{2}, 3 \frac{1}{2}\right)$
4) $\left(-2 \frac{1}{2}, 4 \frac{1}{2}\right)$

314 Lines j and k intersect at point P. Line m is drawn so that it is perpendicular to lines j and k at point P. Which statement is correct?

1) Lines j and k are in perpendicular planes.
2) Line m is in the same plane as lines j and k.
3) Line m is parallel to the plane containing lines j and k.
4) Line m is perpendicular to the plane containing lines j and k.

315 In an equilateral triangle, what is the difference between the sum of the exterior angles and the sum of the interior angles?

1) 180°
2) 120°
3) 90°
4) 60°

316 In $\triangle P Q R, P Q=8, Q R=12$, and $R P=13$. Which statement about the angles of $\triangle P Q R$ must be true?

1) $\mathrm{m} \angle Q>\mathrm{m} \angle P>\mathrm{m} \angle R$
2) $\mathrm{m} \angle Q>\mathrm{m} \angle R>\mathrm{m} \angle P$
3) $\mathrm{m} \angle R>\mathrm{m} \angle P>\mathrm{m} \angle Q$
4) $\mathrm{m} \angle P>\mathrm{m} \angle R>\mathrm{m} \angle Q$

317 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $C E=10, E D=6$, and $A E=4$, what is the length of $\overline{E B}$?

1) 15
2) 12
3) 6.7
4) 2.4

Geometry Multiple Choice Regents Exam Questions www.jmap.org

318 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at E.

Which relationship must be true?

1) $\triangle C A E \cong \triangle D B E$
2) $\triangle A E C \sim \triangle B E D$
3) $\angle A C B \cong \angle C B D$
4) $\overparen{C A} \cong \overparen{D B}$

319 Which geometric principle is used to justify the construction below?

1) A line perpendicular to one of two parallel lines is perpendicular to the other.
2) Two lines are perpendicular if they intersect to form congruent adjacent angles.
3) When two lines are intersected by a transversal and alternate interior angles are congruent, the lines are parallel.
4) When two lines are intersected by a transversal and the corresponding angles are congruent, the lines are parallel.

320 Given: $y=\frac{1}{4} x-3$

$$
y=x^{2}+8 x+12
$$

In which quadrant will the graphs of the given equations intersect?

1) I
2) II
3) III
4) IV

321 The diagram below shows $\overline{A B}$ and $\overline{D E}$.

Which transformation will move $\overline{A B}$ onto $\overline{D E}$ such that point D is the image of point A and point E is the image of point B ?

1) $T_{3,-3}$
2) $D \frac{1}{2}$
3) R_{90}
4) $r_{y=x}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

322 If two different lines are perpendicular to the same plane, they are

1) collinear
2) coplanar
3) congruent
4) consecutive

323 The rectangle $A B C D$ shown in the diagram below will be reflected across the x-axis.

What will not be preserved?

1) slope of $\overline{A B}$
2) parallelism of $\overline{A B}$ and $\overline{C D}$
3) length of $\overline{A B}$
4) measure of $\angle A$

324 What is an equation of the line that contains the point $(3,-1)$ and is perpendicular to the line whose equation is $y=-3 x+2$?

1) $y=-3 x+8$
2) $y=-3 x$
3) $y=\frac{1}{3} x$
4) $y=\frac{1}{3} x-2$

325 In the diagram below, under which transformation will $\Delta A^{\prime} B^{\prime} C^{\prime}$ be the image of $\triangle A B C$?

1) rotation
2) dilation
3) translation
4) glide reflection

326 How many common tangent lines can be drawn to the two externally tangent circles shown below?

1) 1
2) 2
3) 3
4) 4

327 If the surface area of a sphere is represented by 144π, what is the volume in terms of π ?

1) 36π
2) 48π
3) 216π
4) 288π

328 A right circular cylinder has a volume of 1,000 cubic inches and a height of 8 inches. What is the radius of the cylinder to the nearest tenth of an inch?

1) 6.3
2) 11.2
3) 19.8
4) 39.8

329 In plane \mathscr{P}, lines m and n intersect at point A. If line k is perpendicular to line m and line n at point A, then line k is

1) contained in plane \mathscr{P}
2) parallel to plane \mathscr{P}
3) perpendicular to plane \mathscr{P}
4) skew to plane \mathscr{P}

330 In the diagram below of circle O, chords $\overline{A E}$ and $\overline{D C}$ intersect at point B, such that $\mathrm{m} \overparen{A C}=36$ and $\mathrm{m} \overparen{D E}=20$.

What is $\mathrm{m} \angle A B C$?

1) 56
2) 36
3) 28
4) 8

331 In the diagram below, circle A and circle B are shown.

What is the total number of lines of tangency that are common to circle A and circle B ?

1) 1
2) 2
3) 3
4) 4

332 What is the slope of a line perpendicular to the line whose equation is $y=-\frac{2}{3} x-5$?

1) $-\frac{3}{2}$
2) $-\frac{2}{3}$
3) $\frac{2}{3}$
4) $\frac{3}{2}$

333 Towns A and B are 16 miles apart. How many points are 10 miles from town A and 12 miles from town B ?

1) 1
2) 2
3) 3
4) 0

334 Lines k_{1} and k_{2} intersect at point E. Line m is perpendicular to lines k_{1} and k_{2} at point E.

Which statement is always true?

1) Lines k_{1} and k_{2} are perpendicular.
2) Line m is parallel to the plane determined by lines k_{1} and k_{2}.
3) Line m is perpendicular to the plane determined by lines k_{1} and k_{2}.
4) Line m is coplanar with lines k_{1} and k_{2}.

335 What is the equation of a line that is parallel to the line whose equation is $y=x+2$?

1) $x+y=5$
2) $2 x+y=-2$
3) $y-x=-1$
4) $y-2 x=3$

336 In triangles $A B C$ and $D E F, A B=4, A C=5$, $D E=8, D F=10$, and $\angle A \cong \angle D$. Which method could be used to prove $\triangle A B C \sim \triangle D E F$?

1) AA
2) SAS
3) SSS
4) ASA

337 In the diagram below of $\triangle A B C, D$ is a point on $\overline{A B}$, $A C=7, A D=6$, and $B C=18$.

The length of $\overline{D B}$ could be

1) 5
2) 12
3) 19
4) 25

338 In the diagram below, a right circular cone has a diameter of 8 inches and a height of 12 inches.

What is the volume of the cone to the nearest cubic inch?

1) 201
2) 481
3) 603
4) 804

339 Secants $\overline{J K L}$ and $\overline{J M N}$ are drawn to circle O from an external point, J. If $J K=8, L K=4$, and $J M=6$, what is the length of $\overline{J N}$?

1) 16
2) 12
3) 10
4) 8

340 What is the solution of the following system of equations?

$$
\begin{aligned}
& y=(x+3)^{2}-4 \\
& y=2 x+5
\end{aligned}
$$

1) $(0,-4)$
2) $(-4,0)$
3) $(-4,-3)$ and $(0,5)$
4) $(-3,-4)$ and $(5,0)$

341 In the diagram below, $\overline{P S}$ is a tangent to circle O at point $S, \overline{P Q R}$ is a secant, $P S=x, P Q=3$, and $P R=x+18$.

(Not drawn to scale)
What is the length of $\overline{P S}$?

1) 6
2) 9
3) 3
4) 27

342 Point A is not contained in plane \mathscr{B}. How many lines can be drawn through point A that will be perpendicular to plane \mathscr{B} ?

1) one
2) two
3) zero
4) infinite

343 Which diagram shows the construction of an equilateral triangle?
1)

2)

3)

4)

344 A rectangular prism has a volume of $3 x^{2}+18 x+24$. Its base has a length of $x+2$ and a width of 3 . Which expression represents the height of the prism?

1) $x+4$
2) $x+2$
3) 3
4) $x^{2}+6 x+8$

345 A right circular cylinder has an altitude of 11 feet and a radius of 5 feet. What is the lateral area, in square feet, of the cylinder, to the nearest tenth?

1) 172.7
2) 172.8
3) 345.4
4) 345.6

346 In the diagram of trapezoid $A B C D$ below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E and $\triangle A B C \cong \triangle D C B$.

Which statement is true based on the given information?

1) $\overline{A C} \cong \overline{B C}$
2) $\overline{C D} \cong \overline{A D}$
3) $\angle C D E \cong \angle B A D$
4) $\angle C D B \cong \angle B A C$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

347 In the diagram of $\triangle A B C$ and $\triangle D E F$ below, $\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$, and $\angle B \cong \angle E$.

Which method can be used to prove
$\triangle A B C \cong \triangle D E F$?

1) SSS
2) SAS
3) ASA
4) HL

348 Which equation represents circle K shown in the graph below?

1) $(x+5)^{2}+(y-1)^{2}=3$
2) $(x+5)^{2}+(y-1)^{2}=9$
3) $(x-5)^{2}+(y+1)^{2}=3$
4) $(x-5)^{2}+(y+1)^{2}=9$

349 What is an equation of a circle with its center at $(-3,5)$ and a radius of 4 ?

1) $(x-3)^{2}+(y+5)^{2}=16$
2) $(x+3)^{2}+(y-5)^{2}=16$
3) $(x-3)^{2}+(y+5)^{2}=4$
4) $(x+3)^{2}+(y-5)^{2}=4$

350 What is the slope of a line perpendicular to the line whose equation is $2 y=-6 x+8$?

1) -3
2) $\frac{1}{6}$
3) $\frac{1}{3}$
4) -6

351 What is an equation for the circle shown in the graph below?

1) $x^{2}+y^{2}=2$
2) $x^{2}+y^{2}=4$
3) $x^{2}+y^{2}=8$
4) $x^{2}+y^{2}=16$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

352 On the set of axes below, Geoff drew rectangle $A B C D$. He will transform the rectangle by using the translation $(x, y) \rightarrow(x+2, y+1)$ and then will reflect the translated rectangle over the x-axis.

What will be the area of the rectangle after these transformations?

1) exactly 28 square units
2) less than 28 square units
3) greater than 28 square units
4) It cannot be determined from the information given.

353 The equation of a circle is $x^{2}+(y-7)^{2}=16$. What are the center and radius of the circle?

1) center $=(0,7)$; radius $=4$
2) center $=(0,7)$; radius $=16$
3) center $=(0,-7)$; radius $=4$
4) center $=(0,-7)$; radius $=16$

354 In isosceles trapezoid $A B C D, \overline{A B} \cong \overline{C D}$. If $B C=20, A D=36$, and $A B=17$, what is the length of the altitude of the trapezoid?

1) 10
2) 12
3) 15
4) 16

355 In the diagram below of circle $C, \mathrm{mQT}=140$, and $\mathrm{m} \angle P=40$.

What is $\mathrm{m} \overparen{R S}$?

1) 50
2) 60
3) 90
4) 110

356 Which equation represents a line parallel to the line whose equation is $2 y-5 x=10$?

1) $5 y-2 x=25$
2) $5 y+2 x=10$
3) $4 y-10 x=12$
4) $2 y+10 x=8$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

357 The endpoints of $\overline{C D}$ are $C(-2,-4)$ and $D(6,2)$. What are the coordinates of the midpoint of $\overline{C D}$?

1) $(2,3)$
2) $(2,-1)$
3) $(4,-2)$
4) $(4,3)$

358 The vertices of $\triangle A B C$ are $A(-1,-2), B(-1,2)$ and $C(6,0)$. Which conclusion can be made about the angles of $\triangle A B C$?

1) $\mathrm{m} \angle A=\mathrm{m} \angle B$
2) $\mathrm{m} \angle A=\mathrm{m} \angle C$
3) $\mathrm{m} \angle A C B=90$
4) $\mathrm{m} \angle A B C=60$

359 In the diagram below, line k is perpendicular to plane \mathscr{P} at point T.

Which statement is true?

1) Any point in plane \mathscr{P} also will be on line k.
2) Only one line in plane \mathscr{P} will intersect line k.
3) All planes that intersect plane \mathscr{P} will pass through T.
4) Any plane containing line k is perpendicular to plane \mathscr{P}.

360 In the diagram below, $\triangle A B C$ is inscribed in circle P. The distances from the center of circle P to each side of the triangle are shown.

Which statement about the sides of the triangle is true?

1) $A B>A C>B C$
2) $A B<A C$ and $A C>B C$
3) $A C>A B>B C$
4) $A C=A B$ and $A B>B C$

361 A transformation of a polygon that always preserves both length and orientation is

1) dilation
2) translation
3) line reflection
4) glide reflection

Geometry Multiple Choice Regents Exam Questions
www.jmap.org
362 In the diagram below, tangent $\overline{A B}$ and secant $\overline{A C D}$ are drawn to circle O from an external point A, $A B=8$, and $A C=4$.

What is the length of $\overline{C D}$?

1) 16
2) 13
3) 12
4) 10

363 What is the contrapositive of the statement, "If I am tall, then I will bump my head"?

1) If I bump my head, then I am tall.
2) If I do not bump my head, then I am tall.
3) If I am tall, then I will not bump my head.
4) If I do not bump my head, then I am not tall.

364 If the diagonals of a quadrilateral do not bisect each other, then the quadrilateral could be a

1) rectangle
2) rhombus
3) square
4) trapezoid

365 The diagram below shows the construction of the center of the circle circumscribed about $\triangle A B C$.

This construction represents how to find the intersection of

1) the angle bisectors of $\triangle A B C$
2) the medians to the sides of $\triangle A B C$
3) the altitudes to the sides of $\triangle A B C$
4) the perpendicular bisectors of the sides of $\triangle A B C$

366 Two triangles are similar, and the ratio of each pair of corresponding sides is $2: 1$. Which statement regarding the two triangles is not true?

1) Their areas have a ratio of $4: 1$.
2) Their altitudes have a ratio of $2: 1$.
3) Their perimeters have a ratio of $2: 1$.
4) Their corresponding angles have a ratio of $2: 1$.

Geometry Multiple Choice Regents Exam Questions www.jmap.org

367 In the diagram below of trapezoid RSUT, $\overline{R S} \| \overline{T U}$, X is the midpoint of $\overline{R T}$, and V is the midpoint of $\overline{S U}$.

If $R S=30$ and $X V=44$, what is the length of $\overline{T U}$?

1) 37
2) 58
3) 74
4) 118

368 The coordinates of the vertices of parallelogram $A B C D$ are $A(-3,2), B(-2,-1), C(4,1)$, and $D(3,4)$. The slopes of which line segments could be calculated to show that $A B C D$ is a rectangle?

1) $\overline{A B}$ and $\overline{D C}$
2) $\overline{A B}$ and $\overline{B C}$
3) $\overline{A D}$ and $\overline{B C}$
4) $\overline{A C}$ and $\overline{B D}$

369 What is the slope of a line perpendicular to the line whose equation is $y=3 x+4$?

1) $\frac{1}{3}$
2) $-\frac{1}{3}$
3) 3
4) -3

370 Which expression represents the volume, in cubic centimeters, of the cylinder represented in the diagram below?

1) 162π
2) 324π
3) 972π
4) $3,888 \pi$

371 In the diagram of $\triangle A B C$ below, $\overline{A B} \cong \overline{A C}$. The measure of $\angle B$ is 40°.

What is the measure of $\angle A$?

1) 40°
2) 50°
3) 70°
4) 100°

Geometry Multiple Choice Regents Exam Questions www.jmap.org

372 Side $\overline{P Q}$ of $\triangle P Q R$ is extended through Q to point T. Which statement is not always true?

1) $\mathrm{m} \angle R Q T>\mathrm{m} \angle R$
2) $\mathrm{m} \angle R Q T>\mathrm{m} \angle P$
3) $\mathrm{m} \angle R Q T=\mathrm{m} \angle P+\mathrm{m} \angle R$
4) $\mathrm{m} \angle R Q T>\mathrm{m} \angle P Q R$

373 In the diagram below, the vertices of $\triangle D E F$ are the midpoints of the sides of equilateral triangle $A B C$, and the perimeter of $\triangle A B C$ is 36 cm .

What is the length, in centimeters, of $\overline{E F}$?

1) 6
2) 12
3) 18
4) 4

374 What is the equation of a line that passes through the point $(-3,-11)$ and is parallel to the line whose equation is $2 x-y=4$?

1) $y=2 x+5$
2) $y=2 x-5$
3) $y=\frac{1}{2} x+\frac{25}{2}$
4) $y=-\frac{1}{2} x-\frac{25}{2}$

375 Tangents $\overline{P A}$ and $\overline{P B}$ are drawn to circle O from an external point, P, and radii $\overline{O A}$ and $\overline{O B}$ are drawn. If $\mathrm{m} \angle A P B=40$, what is the measure of $\angle A O B$?

1) 140°
2) 100°
3) 70°
4) 50°

376 The diagram below shows the construction of the bisector of $\angle A B C$.

Which statement is not true?

1) $\mathrm{m} \angle E B F=\frac{1}{2} \mathrm{~m} \angle A B C$
2) $\mathrm{m} \angle D B F=\frac{1}{2} \mathrm{~m} \angle A B C$
3) $\mathrm{m} \angle E B F=\mathrm{m} \angle A B C$
4) $\mathrm{m} \angle D B F=\mathrm{m} \angle E B F$

377 What is an equation of the line that passes through the point $(7,3)$ and is parallel to the line $4 x+2 y=10$?

1) $y=\frac{1}{2} x-\frac{1}{2}$
2) $y=-\frac{1}{2} x+\frac{13}{2}$
3) $y=2 x-11$
4) $y=-2 x+17$

378 In the diagram below, $\triangle A B C$ is shown with $\overline{A C}$ extended through point D.

If $\mathrm{m} \angle B C D=6 x+2, \mathrm{~m} \angle B A C=3 x+15$, and $\mathrm{m} \angle A B C=2 x-1$, what is the value of x ?

1) 12
2) $14 \frac{10}{11}$
3) 16
4) $18 \frac{1}{9}$

379 A polygon is transformed according to the rule: $(x, y) \rightarrow(x+2, y)$. Every point of the polygon moves two units in which direction?

1) $u p$
2) down
3) left
4) right

380 Two lines are represented by the equations $-\frac{1}{2} y=6 x+10$ and $y=m x$. For which value of m will the lines be parallel?

1) -12
2) -3
3) 3
4) 12

381 The diagonal $\overline{A C}$ is drawn in parallelogram $A B C D$. Which method can not be used to prove that $\triangle A B C \cong \triangle C D A$?

1) SSS
2) SAS
3) SSA
4) ASA

382 In the diagram below, $\overline{S Q}$ and $\overline{P R}$ intersect at $T, \overline{P Q}$ is drawn, and $\overline{P S} \| \overline{Q R}$.

What technique can be used to prove that $\Delta P S T \sim \Delta R Q T$?

1) SAS
2) SSS
3) $A S A$
4) AA

Geometry Multiple Choice Regents Exam Questions www.jmap.org

383 The diagram below shows the construction of a line through point P perpendicular to line m.

Which statement is demonstrated by this construction?

1) If a line is parallel to a line that is perpendicular to a third line, then the line is also perpendicular to the third line.
2) The set of points equidistant from the endpoints of a line segment is the perpendicular bisector of the segment.
3) Two lines are perpendicular if they are equidistant from a given point.
4) Two lines are perpendicular if they intersect to form a vertical line.

384 Which transformation is not always an isometry?

1) rotation
2) dilation
3) reflection
4) translation

385 In the diagram below of $\triangle A D B, \mathrm{~m} \angle B D A=90$, $A D=5 \sqrt{2}$, and $A B=2 \sqrt{15}$.

What is the length of $\overline{B D}$?

1) $\sqrt{10}$
2) $\sqrt{20}$
3) $\sqrt{50}$
4) $\sqrt{110}$

386 The diagram below illustrates the construction of $\overleftrightarrow{P S}$ parallel to $\overleftrightarrow{R Q}$ through point P.

Which statement justifies this construction?

1) $\mathrm{m} \angle 1=\mathrm{m} \angle 2$
2) $\mathrm{m} \angle 1=\mathrm{m} \angle 3$
3) $\overline{P R} \cong \overline{R Q}$
4) $\overline{P S} \cong \overline{R Q}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

387 In which triangle do the three altitudes intersect outside the triangle?

1) a right triangle
2) an acute triangle
3) an obtuse triangle
4) an equilateral triangle

388 Which transformation produces a figure similar but not congruent to the original figure?

1) $T_{1,3}$
2) $D_{\frac{1}{2}}$
3) R_{90} 。
4) $r_{y=x}$

389 Which transformation can map the letter S onto itself?

1) glide reflection
2) translation
3) line reflection
4) rotation

390 In isosceles triangle $A B C, A B=B C$. Which statement will always be true?

1) $\mathrm{m} \angle B=\mathrm{m} \angle A$
2) $\mathrm{m} \angle A>\mathrm{m} \angle B$
3) $\mathrm{m} \angle A=\mathrm{m} \angle C$
4) $\mathrm{m} \angle C<m \angle B$

391 In the diagram of circle O below, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{m} \widehat{A C}=30$.

What is $m \widehat{C D}$?

1) 150
2) 120
3) 100
4) 60

392 In the diagram below, tangent $\overline{P A}$ and secant $\overline{P B C}$ are drawn to circle O from external point P.

If $P B=4$ and $B C=5$, what is the length of $\overline{P A}$?

1) 20
2) 9
3) 8
4) 6

Geometry Multiple Choice Regents Exam Questions www.jmap.org

393 Which graph represents a circle with the equation $(x-5)^{2}+(y+1)^{2}=9$?
1)

2)

3)

394 The figure in the diagram below is a triangular prism.

Which statement must be true?

1) $\overline{D E} \cong \overline{A B}$
2) $\overline{A D} \cong \overline{B C}$
3) $\overline{A D} \| \overline{C E}$
4) $\overline{D E} \| \overline{B C}$

395 In the diagram below of $\triangle A C T, D$ is the midpoint of $\overline{A C}, O$ is the midpoint of $\overline{A T}$, and G is the midpoint of $\overline{C T}$.

If $A C=10, A T=18$, and $C T=22$, what is the perimeter of parallelogram $C D O G$?

1) 21
2) 25
3) 32
4) 40

Geometry Multiple Choice Regents Exam Questions www.jmap.org

396 What is the converse of the statement "If Bob does his homework, then George gets candy"?

1) If George gets candy, then Bob does his homework.
2) Bob does his homework if and only if George gets candy.
3) If George does not get candy, then Bob does not do his homework.
4) If Bob does not do his homework, then George does not get candy.

397 Based on the diagram below, which statement is true?

1) $a \| b$
2) $a \| c$
3) $b \| c$
4) $d \| e$

398 Juliann plans on drawing $\triangle A B C$, where the measure of $\angle A$ can range from 50° to 60° and the measure of $\angle B$ can range from 90° to 100°. Given these conditions, what is the correct range of measures possible for $\angle C$?

1) 20° to 40°
2) 30° to 50°
3) 80° to 90°
4) 120° to 130°

399 Given the equations: $y=x^{2}-6 x+10$

$$
y+x=4
$$

What is the solution to the given system of equations?

1) $(2,3)$
2) $(3,2)$
3) $(2,2)$ and $(1,3)$
4) $(2,2)$ and $(3,1)$

400 What is the length of the line segment with endpoints $(-6,4)$ and $(2,-5)$?

1) $\sqrt{13}$
2) $\sqrt{17}$
3) $\sqrt{72}$
4) $\sqrt{145}$

401 Given $\triangle A B C \sim \triangle D E F$ such that $\frac{A B}{D E}=\frac{3}{2}$. Which statement is not true?

1) $\frac{B C}{E F}=\frac{3}{2}$
2) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=\frac{3}{2}$
3) $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}=\frac{9}{4}$
4) $\frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}=\frac{3}{2}$

402 In which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?

1) triangle
2) hexagon
3) octagon
4) quadrilateral

403 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at $E, \mathrm{~m} \overparen{A C}=87$, and $\mathrm{m} \overparen{B D}=35$.

What is the degree measure of $\angle C E A$?

1) 87
2) 61
3) 43.5
4) 26

404 A support beam between the floor and ceiling of a house forms a 90° angle with the floor. The builder wants to make sure that the floor and ceiling are parallel. Which angle should the support beam form with the ceiling?

1) 45°
2) 60°
3) 90°
4) 180°

405 What are the center and radius of a circle whose equation is $(x-A)^{2}+(y-B)^{2}=C$?

1) center $=(A, B)$; radius $=C$
2) center $=(-A,-B)$; radius $=C$
3) center $=(A, B)$; radius $=\sqrt{C}$
4) center $=(-A,-B)$; radius $=\sqrt{C}$

406 In the diagram below of circle O, chord $\overline{A B} \|$ chord $\overline{C D}$, and chord $\overline{C D} \|$ chord $\overline{E F}$.

Which statement must be true?

1) $\overparen{C E} \cong \overparen{D F}$
2) $\overparen{A C} \cong \overparen{D F}$
3) $\overparen{A C} \cong \overparen{C E}$
4) $\overparen{E F} \cong \overparen{C D}$

407 In the diagram below of $\triangle A G E$ and $\triangle O L D$, $\angle G A E \cong \angle L O D$, and $\overline{A E} \cong \overline{O D}$.

To prove that $\triangle A G E$ and $\triangle O L D$ are congruent by SAS, what other information is needed?

1) $\overline{G E} \cong \overline{L D}$
2) $\overline{A G} \cong \overline{O L}$
3) $\angle A G E \cong \angle O L D$
4) $\angle A E G \cong \angle O D L$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

408 What are the center and the radius of the circle whose equation is $(x-3)^{2}+(y+3)^{2}=36$

1) center $=(3,-3)$; radius $=6$
2) center $=(-3,3)$; radius $=6$
3) center $=(3,-3)$; radius $=36$
4) center $=(-3,3)$; radius $=36$

409 Based on the construction below, which statement must be true?

1) $\mathrm{m} \angle A B D=\frac{1}{2} \mathrm{~m} \angle C B D$
2) $\mathrm{m} \angle A B D=\mathrm{m} \angle C B D$
3) $\mathrm{m} \angle A B D=\mathrm{m} \angle A B C$
4) $\mathrm{m} \angle C B D=\frac{1}{2} \mathrm{~m} \angle A B D$

410 If a line segment has endpoints $A(3 x+5,3 y)$ and $B(x-1,-y)$, what are the coordinates of the midpoint of $\overline{A B}$?

1) $(x+3,2 y)$
2) $(2 x+2, y)$
3) $(2 x+3, y)$
4) $(4 x+4,2 y)$

411 In the diagram below of $\triangle A B C, \overline{C D}$ is the bisector of $\angle B C A, \overline{A E}$ is the bisector of $\angle C A B$, and $\overline{B G}$ is drawn.

Which statement must be true?

1) $D G=E G$
2) $A G=B G$
3) $\angle A E B \cong \angle A E C$
4) $\angle D B G \cong \angle E B G$

412 What is the distance between the points $(-3,2)$ and $(1,0)$?

1) $2 \sqrt{2}$
2) $2 \sqrt{3}$
3) $5 \sqrt{2}$
4) $2 \sqrt{5}$

413 In three-dimensional space, two planes are parallel and a third plane intersects both of the parallel planes. The intersection of the planes is a

1) plane
2) point
3) pair of parallel lines
4) pair of intersecting lines

Geometry Multiple Choice Regents Exam Questions www.jmap.org

414 In the diagram below of parallelogram STUV, $S V=x+3, V U=2 x-1$, and $T U=4 x-3$.

What is the length of $\overline{S V}$?

1) 5
2) 2
3) 7
4) 4

415 Line k is drawn so that it is perpendicular to two distinct planes, P and R. What must be true about planes P and R ?

1) Planes P and R are skew.
2) Planes P and R are parallel.
3) Planes P and R are perpendicular.
4) Plane P intersects plane R but is not perpendicular to plane R.

416 The lines $3 y+1=6 x+4$ and $2 y+1=x-9$ are

1) parallel
2) perpendicular
3) the same line
4) neither parallel nor perpendicular

417 In the diagram of circle O below, chords $\overline{A B}$ and $\overline{C D}$ are parallel, and $\overline{B D}$ is a diameter of the circle.

If $\mathrm{m} \overparen{A D}=60$, what is $\mathrm{m} \angle C D B$?

1) 20
2) 30
3) 60
4) 120

418 In the diagram below of circle O, secant $\overline{A B}$ intersects circle O at D, secant $\overline{A O C}$ intersects circle O at $E, A E=4, A B=12$, and $D B=6$.

What is the length of $\overline{O C}$?

1) 4.5
2) 7
3) 9
4) 14

419 Through a given point, P, on a plane, how many lines can be drawn that are perpendicular to that plane?

1) 1
2) 2
3) more than 2
4) none

420 Which statement is logically equivalent to "If it is warm, then I go swimming"

1) If I go swimming, then it is warm.
2) If it is warm, then I do not go swimming.
3) If I do not go swimming, then it is not warm.
4) If it is not warm, then I do not go swimming.

422 In the diagram of circle O below, chord $\overline{A B}$ intersects chord $\overline{C D}$ at $E, D E=2 x+8, E C=3$, $A E=4 x-3$, and $E B=4$.

What is the value of x ?

1) 1
2) 3.6
3) 5
4) 10.25

423 In the diagram below, which transformation was used to map $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) dilation
2) rotation
3) reflection
4) glide reflection

Geometry Multiple Choice Regents Exam Questions www.jmap.org

424 Which geometric principle is used in the construction shown below?

1) The intersection of the angle bisectors of a triangle is the center of the inscribed circle.
2) The intersection of the angle bisectors of a triangle is the center of the circumscribed circle.
3) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the inscribed circle.
4) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the circumscribed circle.

425 What is the perimeter of a rhombus whose diagonals are 16 and 30 ?

1) 92
2) 68
3) 60
4) 17

427 The diagram below shows the construction of the perpendicular bisector of $\overline{A B}$.

Which statement is not true?

1) $A C=C B$
2) $C B=\frac{1}{2} A B$
3) $A C=2 A B$
4) $A C+C B=A B$

428 In $\triangle A B C, A B=7, B C=8$, and $A C=9$. Which list has the angles of $\triangle A B C$ in order from smallest to largest?

1) $\angle A, \angle B, \angle C$
2) $\angle B, \angle A, \angle C$
3) $\angle C, \angle B, \angle A$
4) $\angle C, \angle A, \angle B$

426 What is the measure of an interior angle of a regular octagon?

1) 45°
2) 60°
3) 120°
4) 135°

Geometry Multiple Choice Regents Exam Questions www.jmap.org

429 In the diagram below, circle O has a radius of 5, and $C E=2$. Diameter $\overline{A C}$ is perpendicular to chord $\overline{B D}$ at E.

What is the length of $\overline{B D}$?

1) 12
2) 10
3) 8
4) 4

430 The endpoints of $\overline{A B}$ are $A(3,2)$ and $B(7,1)$. If $\overline{A^{\prime \prime} B^{\prime \prime}}$ is the result of the transformation of $\overline{A B}$ under $D_{2}{ }^{\circ} T_{-4,3}$ what are the coordinates of $A^{\prime \prime}$ and B "?

1) $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$
2) $A^{\prime \prime}(-1,5)$ and $B^{\prime \prime}(3,4)$
3) $A^{\prime \prime}(2,7)$ and $B^{\prime \prime}(10,5)$
4) $A^{\prime \prime}(14,-2)$ and $B^{\prime \prime}(22,-4)$

431 What is the image of point $A(4,2)$ after the composition of transformations defined by $R_{90^{\circ}} \circ r_{y=x}$?

1) $(-4,2)$
2) $(4,-2)$
3) $(-4,-2)$
4) $(2,-4)$

432 What is the negation of the statement "I am not going to eat ice cream"?

1) I like ice cream.
2) I am going to eat ice cream.
3) If I eat ice cream, then I like ice cream.
4) If I don't like ice cream, then I don't eat ice cream.
$433 \Delta A B C$ is similar to $\triangle \underline{D E F}$. The ratio of the length of $\overline{A B}$ to the length of $\overline{D E}$ is 3:1. Which ratio is also equal to $3: 1$?
5) $\frac{m \angle A}{m \angle D}$
6) $\frac{m \angle B}{m \angle F}$
7) $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}$
8) $\frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}$

434 What is the slope of a line perpendicular to the line whose equation is $5 x+3 y=8$?

1) $\frac{5}{3}$
2) $\frac{3}{5}$
3) $-\frac{3}{5}$
4) $-\frac{5}{3}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

Which two statements identify corresponding congruent parts for these triangles?

1) $\overline{A B} \cong \overline{X Y}$ and $\angle C \cong \angle Y$
2) $\overline{A B} \cong \overline{Y Z}$ and $\angle C \cong \angle X$
3) $\overline{B C} \cong \overline{X Y}$ and $\angle A \cong \angle Y$
4) $\overline{B C} \cong \overline{Y Z}$ and $\angle A \cong \angle X$

436 In the diagram below of $\triangle P R T, Q$ is a point on $\overline{P R}$, S is a point on $\overline{T R}, \overline{Q S}$ is drawn, and $\angle R P T \cong \angle R S Q$.

Which reason justifies the conclusion that
$\Delta P R T \sim \Delta S R Q$?

1) AA
2) ASA
3) SAS
4) SSS

437 Which graph could be used to find the solution to the following system of equations?
1)

2)

Geometry Multiple Choice Regents Exam Questions www.jmap.org

438 What is the slope of a line that is perpendicular to the line whose equation is $3 x+4 y=12$?

1) $\frac{3}{4}$
2) $-\frac{3}{4}$
3) $\frac{4}{3}$
4) $-\frac{4}{3}$

439 What is the length, to the nearest tenth, of the line segment joining the points $(-4,2)$ and $(146,52)$?

1) 141.4
2) 150.5
3) 151.9
4) 158.1

440 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$.

If $A B=36$ and $A C=12$, what is the length of $\overline{A D}$?

1) 32
2) 6
3) 3
4) 4

441 After a composition of transformations, the coordinates $A(4,2), B(4,6)$, and $C(2,6)$ become $A^{\prime \prime}(-2,-1), B^{\prime \prime}(-2,-3)$, and $C^{\prime \prime}(-1,-3)$, as shown on the set of axes below.

Which composition of transformations was used?

1) $R_{180^{\circ}} \circ D_{2}$
2) $R_{90^{\circ}} \circ D_{2}$
3) $D_{\frac{1}{2}}^{\circ} R_{180^{\circ}}$
4) $D_{\frac{1}{2}}^{\circ} R_{90^{\circ}}$

442 In $\triangle A B C, \overline{A B} \cong \overline{B C}$. An altitude is drawn from B to $\overline{A C}$ and intersects $\overline{A C}$ at D. Which conclusion is not always true?

1) $\angle A B D \cong \angle C B D$
2) $\angle B D A \cong \angle B D C$
3) $\overline{A D} \cong \overline{B D}$
4) $\overline{A D} \cong \overline{D C}$

Geometry Multiple Choice Regents Exam Questions
www.jmap.org
443 What is the inverse of the statement "If two triangles are not similar, their corresponding angles are not congruent"?

1) If two triangles are similar, their corresponding angles are not congruent.
2) If corresponding angles of two triangles are not congruent, the triangles are not similar.
3) If two triangles are similar, their corresponding angles are congruent.
4) If corresponding angles of two triangles are congruent, the triangles are similar.

444 Which illustration shows the correct construction of an angle bisector?
1)

2)

445 Which transformation of the line $x=3$ results in an image that is perpendicular to the given line?

1) $r_{x \text {-xis }}$
2) $r_{y \text {-axis }}$
3) $r_{y=x}$
4) $r_{x=1}$

446 Given the system of equations: $y=x^{2}-4 x$

$$
x=4
$$

The number of points of intersection is

1) 1
2) 2
3) 3
4) 0

447 In the diagram of $\triangle A B C$ and $\triangle E D C$ below, $\overline{A E}$ and $\overline{B D}$ intersect at C, and $\angle C A B \cong \angle C E D$.

Which method can be used to show that $\triangle A B C$ must be similar to $\triangle E D C$?

1) SAS
2) AA
3) SSS
4) HL

448 In $\triangle A B C$, point D is on $\overline{A B}$, and point E is on $\overline{B C}$ such that $\overline{D E} \| \overline{A C}$. If $D B=2, D A=7$, and $D E=3$, what is the length of $\overline{A C}$?

1) 8
2) 9
3) 10.5
4) 13.5

Geometry 2 Point Regents Exam Questions

449 In $\triangle R S T, \mathrm{~m} \angle R S T=46$ and $\overline{R S} \cong \overline{S T}$. Find $\mathrm{m} \angle S T R$.

450 Using a compass and straightedge, construct a line perpendicular to $\overline{A B}$ through point P. [Leave all construction marks.]

451 The coordinates of two vertices of square $A B C D$ are $A(2,1)$ and $B(4,4)$. Determine the slope of side $\overline{B C}$.

452 The endpoints of $\overline{A B}$ are $A(3,-4)$ and $B(7,2)$.
Determine and state the length of $\overline{A B}$ in simplest radical form.

453 Given the true statement, "The medians of a triangle are concurrent," write the negation of the statement and give the truth value for the negation.

454 In the diagram below of $\triangle A C D, B$ is a point on $\overline{A C}$ such that $\triangle A D B$ is an equilateral triangle, and $\triangle D B C$ is an isosceles triangle with $\overline{D B} \cong \overline{B C}$. Find $\mathrm{m} \angle C$.

455 The cylindrical tank shown in the diagram below is to be painted. The tank is open at the top, and the bottom does not need to be painted. Only the outside needs to be painted. Each can of paint covers 600 square feet. How many cans of paint must be purchased to complete the job?

456 The diagram below shows isosceles trapezoid $A B C D$ with $\overline{A B} \| \overline{D C}$ and $\overline{A D} \cong \overline{B C}$. If $\mathrm{m} \angle B A D=2 x$ and $\mathrm{m} \angle B C D=3 x+5$, find $\mathrm{m} \angle B A D$.

457 Write an equation of the line that is the perpendicular bisector of the line segment having endpoints $(3,-1)$ and $(3,5)$. [The use of the grid below is optional]

458 Find, in degrees, the measures of both an interior angle and an exterior angle of a regular pentagon.

459 In the diagram below of $\triangle T E M$, medians $\overline{T B}, \overline{E C}$, and $\overline{M A}$ intersect at D, and $T B=9$. Find the length of $\overline{T D}$.

460 Write an equation of the circle graphed in the diagram below.

461 In circle O, diameter $R S$ has endpoints $R(3 a, 2 b-1)$ and $S(a-6,4 b+5)$. Find the coordinates of point O, in terms of a and b. Express your answer in simplest form.

462 In the diagram below of isosceles trapezoid $D E F G$, $\overline{D E} \| \overline{G F}, D E=4 x-2, E F=3 x+2, F G=5 x-3$, and $G D=2 x+5$. Find the value of x.

463 Triangle $A B C$ has vertices $A(-2,2), B(-1,-3)$, and $C(4,0)$. Find the coordinates of the vertices of $\Delta A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after the transformation $r_{\mathrm{x} \text {-xxis }}$. [The use of the grid is optional.]

464 In the diagram below of $\triangle A B C, \overline{D E}$ is a midsegment of $\triangle A B C, D E=7, A B=10$, and $B C=13$. Find the perimeter of $\triangle A B C$.

465 Two lines, $\overleftrightarrow{A B}$ and $\overleftrightarrow{C R D}$, are parallel and 10 inches apart. Sketch the locus of all points that are equidistant from $\overleftrightarrow{A B}$ and $\overleftrightarrow{C R D}$ and 7 inches from point R. Label with an \mathbf{X} each point that satisfies both conditions.

466 The base of a pyramid is a rectangle with a width of 6 cm and a length of 8 cm . Find, in centimeters, the height of the pyramid if the volume is $288 \mathrm{~cm}^{3}$.

467 In the diagram of $\triangle A B C$ below, $A B=10, B C=14$, and $A C=16$. Find the perimeter of the triangle formed by connecting the midpoints of the sides of $\triangle A B C$.

468 The endpoints of $\overline{P Q}$ are $P(-3,1)$ and $Q(4,25)$.
Find the length of $\overline{P Q}$.

469 In the diagram below of $\triangle A C D, E$ is a point on $\overline{A D}$ and B is a point on $\overline{A C}$, such that $\overline{E B} \| \overline{D C}$. If $A E=3, E D=6$, and $D C=15$, find the length of EB.

470 Triangle TAP has coordinates $T(-1,4), A(2,4)$, and $P(2,0)$. On the set of axes below, graph and label $\Delta T^{\prime} A^{\prime} P^{\prime}$, the image of $\Delta T A P$ after the translation $(x, y) \rightarrow(x-5, y-1)$.

471 In the diagram below of circle O, diameter $\overline{A B}$ is perpendicular to chord $\overline{C D}$ at E. If $A O=10$ and $B E=4$, find the length of $\overline{C E}$.

Geometry 2 Point Regents Exam Questions
www.jmap.org
472 In the diagram below, trapezoid $A B C D$, with bases $\overline{A B}$ and $\overline{D C}$, is inscribed in circle O, with diameter $\overline{D C}$. If $\mathrm{m} \overparen{A B}=80$, find $\mathrm{m} \overparen{B C}$.

473 On the ray drawn below, using a compass and straightedge, construct an equilateral triangle with a vertex at R. The length of a side of the triangle must be equal to a length of the diagonal of rectangle $A B C D$.

474 In the diagram below, car A is parked 7 miles from car B. Sketch the points that are 4 miles from car A and sketch the points that are 4 miles from car B. Label with an \mathbf{X} all points that satisfy both conditions.

475 In the diagram below of $\triangle H Q P$, side $\overline{H P}$ is extended through P to $T, \mathrm{~m} \angle Q P T=6 x+20$, $\mathrm{m} \angle H Q P=x+40$, and $\mathrm{m} \angle P H Q=4 x-5$. Find $\mathrm{m} \angle Q P T$.

(Not drawn to scale)

R

476 Triangle $A B C$ has vertices $A(6,6), B(9,0)$, and $C(3,-3)$. State and label the coordinates of $\Delta A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a dilation of $D \frac{1}{3}$.

477 Write the negation of the statement " 2 is a prime number," and determine the truth value of the negation.

478 In the diagram below, $\ell \| m$ and $\overline{Q R \perp S T}$ at R.

If $\mathrm{m} \angle 1=63$, find $\mathrm{m} \angle 2$.

479 In the diagram below of circle O, chord $\overline{A B}$ bisects chord $C D$ at E. If $A E=8$ and $B E=9$, find the length of $\overline{C E}$ in simplest radical form.

480 On the diagram of $\triangle A B C$ shown below, use a compass and straightedge to construct the perpendicular bisector of $\overline{A C}$. [Leave all construction marks.]

481 A pentagon is drawn on the set of axes below. If the pentagon is reflected over the y-axis, determine if this transformation is an isometry. Justify your answer. [The use of the set of axes is optional.]

482 A tree, T, is 6 meters from a row of corn, c, as represented in the diagram below. A farmer wants to place a scarecrow 2 meters from the row of corn and also 5 meters from the tree. Sketch both loci. Indicate, with an \mathbf{X}, all possible locations for the scarecrow.

483 Determine whether the two lines represented by the equations $y=2 x+3$ and $2 y+x=6$ are parallel, perpendicular, or neither. Justify your response.

484 A circle has the equation $(x-3)^{2}+(y+4)^{2}=10$. Find the coordinates of the center of the circle and the length of the circle's radius.

485 Using a compass and straightedge, on the diagram below of $\overleftrightarrow{R S}$, construct an equilateral triangle with $\overline{R S}$ as one side. [Leave all construction marks.]

486 Using a compass and straightedge, construct the bisector of $\angle C B A$. [Leave all construction marks.]

487 On the set of axes below, graph the locus of points that are 4 units from the line $x=3$ and the locus of points that are 5 units from the point $(0,2)$. Label with an \mathbf{X} all points that satisfy both conditions.

On the diagram below, use a compass and straightedge to construct the bisector of $\angle X Y Z$. [Leave all construction marks.]

489 The coordinates of the vertices of $\Delta R S T$ are $R(-2,3), S(4,4)$, and $T(2,-2)$. Triangle $R^{\prime} S^{\prime} T^{\prime}$ is the image of $\triangle R S T$ after a rotation of 90° about the origin. State the coordinates of the vertices of $\Delta R^{\prime} S^{\prime} T^{\prime}$. [The use of the set of axes below is optional.]

490 In the diagram below of circle $C, \overline{Q R}$ is a diameter, and $Q(1,8)$ and $C(3.5,2)$ are points on a coordinate plane. Find and state the coordinates of point R.

491 Write an equation of the line that passes through the point $(6,-5)$ and is parallel to the line whose equation is $2 x-3 y=11$.

492 The degree measures of the angles of $\triangle A B C$ are represented by $x, 3 x$, and $5 x-54$. Find the value of x.

493 A regular pyramid with a square base is shown in the diagram below.

A side, s, of the base of the pyramid is 12 meters, and the height, h, is 42 meters. What is the volume of the pyramid in cubic meters?

494
Find the slope of a line perpendicular to the line whose equation is $2 y-6 x=4$.

495 In the diagram below, point M is located on $\overleftrightarrow{A B}$. Sketch the locus of points that are 1 unit from $\overleftrightarrow{A B}$ and the locus of points 2 units from point M. Label with an \mathbf{X} all points that satisfy both conditions.

496 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ intersects $\overline{A B}$ at D. If $A D=3$ and $D B=4$, find the length of $\overline{C D}$ in simplest radical form.

497
Using a compass and straightedge, construct the angle bisector of $\angle A B C$ shown below. [Leave all construction marks.]

498 Using a compass and straightedge, and $\overline{A B}$ below, construct an equilateral triangle with all sides congruent to $\overline{A B}$. [Leave all construction marks.]

499 Triangle $A B C$ has vertices at $A(3,0), B(9,-5)$, and $C(7,-8)$. Find the length of $\overline{A C}$ in simplest radical form.

500 Determine, in degrees, the measure of each interior angle of a regular octagon.

501 In the diagram below, $\triangle A B C \sim \Delta E F G$, $\mathrm{m} \angle C=4 x+30$, and $\mathrm{m} \angle G=5 x+10$. Determine the value of x.

502 In the diagram below of $\triangle A B C, D$ is a point on $\overline{A B}$, E is a point on $\overline{B C}, \overline{A C} \| \overline{D E}, C E=25$ inches, $A D=18$ inches, and $D B=12$ inches. Find, to the nearest tenth of an inch, the length of $\overline{E B}$.

503 State whether the lines represented by the equations $y=\frac{1}{2} x-1$ and $y+4=-\frac{1}{2}(x-2)$ are parallel, perpendicular, or neither. Explain your answer.

504 On the diagram below, use a compass and straightedge to construct the bisector of $\angle A B C$. [Leave all construction marks.]

505 On the set of axes below, graph the locus of points 4 units from (0,1) and the locus of points 3 units from the origin. Label with an \mathbf{X} any points that satisfy both conditions.

506 The Parkside Packing Company needs a rectangular shipping box. The box must have a length of 11 inches and a width of 8 inches. Find, to the nearest tenth of an inch, the minimum height of the box such that the volume is at least 800 cubic inches.

507 The graph below shows the locus of points equidistant from the x-axis and y-axis. On the same set of axes, graph the locus of points 3 units from the line $x=0$. Label with an \mathbf{X} all points that satisfy both conditions.

508 The volume of a cylinder is $12,566.4 \mathrm{~cm}^{3}$. The height of the cylinder is 8 cm . Find the radius of the cylinder to the nearest tenth of a centimeter.

509 A cylinder has a height of 7 cm and a base with a diameter of 10 cm . Determine the volume, in cubic centimeters, of the cylinder in terms of π.

Geometry 2 Point Regents Exam Questions www.jmap.org

510 The vertices of $\triangle A B C$ are $A(3,2), B(6,1)$, and $C(4,6)$. Identify and graph a transformation of $\triangle A B C$ such that its image, $\Delta A^{\prime} B^{\prime} C^{\prime}$, results in $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$.

511 A right circular cone has a base with a radius of 15 cm , a vertical height of 20 cm , and a slant height of 25 cm . Find, in terms of' π, the number of square centimeters in the lateral area of the cone.

512 Find, in simplest radical form, the length of the line segment with endpoints whose coordinates are $(-1,4)$ and $(3,-2)$.

513 Two lines are represented by the equations $x+2 y=4$ and $4 y-2 x=12$. Determine whether these lines are parallel, perpendicular, or neither. Justify your answer.

514 Write an equation for circle O shown on the graph below.

515 Tim is going to paint a wooden sphere that has a diameter of 12 inches. Find the surface area of the sphere, to the nearest square inch.

516 The coordinates of the endpoints of $\overline{F G}$ are $(-4,3)$ and (2,5). Find the length of $\overline{F G}$ in simplest radical form.

517 In right $\triangle D E F, \mathrm{~m} \angle D=90$ and $\mathrm{m} \angle F$ is 12 degrees less than twice $\mathrm{m} \angle E$. Find $\mathrm{m} \angle E$.

518 Write an equation of a circle whose center is $(-3,2)$ and whose diameter is 10 .

519 After the transformation $r_{y=x}$, the image of $\triangle A B C$ is $\Delta A^{\prime} B^{\prime} C^{\prime}$. If $A B=2 x+13$ and $A^{\prime} B^{\prime}=9 x-8$, find the value of x.

520 Triangle $X Y Z$, shown in the diagram below, is reflected over the line $x=2$. State the coordinates of $\Delta X^{\prime} Y^{\prime} Z^{\prime}$, the image of $\Delta X Y Z$.

521 Using a compass and straightedge, construct a line that passes through point P and is perpendicular to line m. [Leave all construction marks.]
\qquad

522 Find an equation of the line passing through the point $(5,4)$ and parallel to the line whose equation is $2 x+y=3$.

523 Using a compass and straightedge, construct a line perpendicular to line ℓ through point P. [Leave all construction marks.]

524 In the diagram below of $\triangle A B C$ with side $\overline{A C}$ extended through $D, \mathrm{~m} \angle A=37$ and $\mathrm{m} \angle B C D=117$. Which side of $\triangle A B C$ is the longest side? Justify your answer.

(Not drawn to scale)

525 On the set of axes below, graph the locus of points 4 units from the x-axis and equidistant from the points whose coordinates are $(-2,0)$ and $(8,0)$. Mark with an \mathbf{X} all points that satisfy both conditions.

A right circular cylinder has a height of 7 inches and the base has a diameter of 6 inches. Determine the lateral area, in square inches, of the cylinder in terms of π.

527 Tim has a rectangular prism with a length of 10 centimeters, a width of 2 centimeters, and an unknown height. He needs to build another rectangular prism with a length of 5 centimeters and the same height as the original prism. The volume of the two prisms will be the same. Find the width, in centimeters, of the new prism.

528 On the line segment below, use a compass and straightedge to construct equilateral triangle $A B C$. [Leave all construction marks.]

529 Triangle $A B C$ has vertices $A(3,3), B(7,9)$, and $C(11,3)$. Determine the point of intersection of the medians, and state its coordinates. [The use of the set of axes below is optional.]

530 In the diagram below, two parallel lines intersect circle O at points A, B, C, and D, with $\mathrm{m} \overparen{A B}=x+20$ and $\mathrm{m} \overparen{D C}=2 x-20$. Find $\mathrm{m} \overparen{A B}$.

531 Two intersecting lines are shown in the diagram below. Sketch the locus of points that are equidistant from the two lines. Sketch the locus of points that are a given distance, d, from the point of intersection of the given lines. State the number of points that satisfy both conditions.

532 Given: Two is an even integer or three is an even integer.
Determine the truth value of this disjunction. Justify your answer.

533 Using a compass and straightedge, construct the bisector of $\angle M J H$. [Leave all construction marks.]

534 Using a compass and straightedge, construct the bisector of the angle shown below. [Leave all construction marks.]

535 In the diagram below, circles A and B are tangent at point C and $\overline{A B}$ is drawn. Sketch all common tangent lines.

536 The diagram below shows $\triangle A B C$, with $\overline{A E B}$, $A D C$, and $\angle A C B \cong \angle A E D$. Prove that $\triangle A B C$ is similar to $\triangle A D E$.

537 The diameter of a sphere is 5 inches. Determine and state the surface area of the sphere, to the nearest hundredth of a square inch.

538 Using a compass and straightedge, construct the perpendicular bisector of $\overline{A B}$. [Leave all construction marks.]

539 A sphere has a diameter of 18 meters. Find the volume of the sphere, in cubic meters, in terms of π.

540 Write a statement that is logically equivalent to the statement "If two sides of a triangle are congruent, the angles opposite those sides are congruent." Identify the new statement as the converse, inverse, or contrapositive of the original statement.

541 In $\triangle A B C$, the measure of angle A is fifteen less than twice the measure of angle B. The measure of angle C equals the sum of the measures of angle A and angle B. Determine the measure of angle B.

542 The coordinates of the vertices of $\triangle A B C$ are $A(1,2), B(-4,3)$, and $C(-3,-5)$. State the coordinates of $\Delta A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a rotation of 90° about the origin. [The use of the set of axes below is optional.]

543 A right prism has a square base with an area of 12 square meters. The volume of the prism is 84 cubic meters. Determine and state the height of the prism, in meters.

544 The length of $\overline{A B}$ is 3 inches. On the diagram below, sketch the points that are equidistant from A and B and sketch the points that are 2 inches from A. Label with an \mathbf{X} all points that satisfy both conditions.

Geometry 4 Point Regents Exam Questions www.jmap.org

Geometry 4 Point Regents Exam Questions

545 In the diagram below, $\triangle A B C \sim \triangle D E F, D E=4$, $A B=x, A C=x+2$, and $D F=x+6$. Determine the length of $A B$. [Only an algebraic solution can receive full credit.]

546 Solve the following system of equations graphically.

$$
\begin{gathered}
2 x^{2}-4 x=y+1 \\
x+y=1
\end{gathered}
$$

547 Triangle $A B C$ has coordinates $A(2,-2), B(2,1)$, and $C(4,-2)$. Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ under $T_{5,-2}$. On the set of axes below, graph and label $\triangle A B C$ and its image, $\triangle A^{\prime} B^{\prime} C^{\prime}$. Determine the relationship between the area of $\triangle A B C$ and the area of $\Delta A^{\prime} B^{\prime} C^{\prime}$. Justify your response.

548 In circle O shown below, chords $\overline{A B}$ and $\overline{C D}$ and radius $\overline{O A}$ are drawn, such that $\overline{A B} \cong \overline{C D}$,
$\overline{O E} \perp \overline{A B}, \overline{O F} \perp \overline{C D}, O F=16, C F=y+10$, and $C D=4 y-20$.

Determine the length of $\overline{D F}$. Determine the length of $\overline{O A}$.

Geometry 4 Point Regents Exam Questions www.jmap.org

549 Given: $\triangle A B C, \overline{B D}$ bisects $\angle A B C, \overline{B D} \perp \overline{A C}$
Prove: $\overline{A B} \cong \overline{C B}$

550 The coordinates of the vertices of $\triangle A B C A(1,3)$, $B(-2,2)$ and $C(0,-2)$. On the grid below, graph and label $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the result of the composite transformation $D_{2} \circ T_{3,-2}$. State the coordinates of $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$.

551 The coordinates of trapezoid $A B C D$ are $A(-4,5)$, $B(1,5), C(1,2)$, and $D(-6,2)$. Trapezoid $A " B " C " D$ " is the image after the composition $r_{x-\text { axis }}{ }^{\circ} r_{y=x}$ is performed on trapezoid $A B C D$. State the coordinates of trapezoid $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$. [The use of the set of axes below is optional.]

552 In the diagram below, circles X and Y have two tangents drawn to them from external point T. The points of tangency are C, A, S, and E. The ratio of $T A$ to $A C$ is $1: 3$. If $T S=24$, find the length of $\overline{S E}$.

(Not drawn to scale)

553 Triangle $H K L$ has vertices $H(-7,2), K(3,-4)$, and $L(5,4)$. The midpoint of $H L$ is M and the midpoint of $\overline{L K}$ is N. Determine and state the coordinates of points M and N. Justify the statement: $\overline{M N}$ is parallel to $\overline{H K}$. [The use of the set of axes below is optional.]

554 As shown in the diagram below, the diagonals of parallelogram $Q R S T$ intersect at E. If $Q E=x^{2}+6 x$, $S E=x+14$, and $T E=6 x-1$, determine $T E$ algebraically.

555 Write an equation of the perpendicular bisector of the line segment whose endpoints are $(-1,1)$ and $(7,-5)$. [The use of the grid below is optional]

556 On the grid below, graph the points that are equidistant from both the x and y axes and the points that are 5 units from the origin. Label with an \mathbf{X} all points that satisfy both conditions.

On the set of coordinate axes below, graph the locus of points that are equidistant from the lines $y=6$ and $y=2$ and also graph the locus of points that are 3 units from the y-axis. State the coordinates of all points that satisfy both conditions.

In the diagram below, $\triangle R S T$ is a $3-4-5$ right triangle. The altitude, h, to the hypotenuse has been drawn. Determine the length of h.

559 A city is planning to build a new park. The park must be equidistant from school A at $(3,3)$ and school B at $(3,-5)$. The park also must be exactly 5 miles from the center of town, which is located at the origin on the coordinate graph. Each unit on the graph represents 1 mile. On the set of axes below, sketch the compound loci and label with an \mathbf{X} all possible locations for the new park.

560 If $\triangle R S T \sim \triangle A B C, \mathrm{~m} \angle A=x^{2}-8 x, \mathrm{~m} \angle C=4 x-5$, and $\mathrm{m} \angle R=5 x+30$, find $\mathrm{m} \angle C$. [Only an algebraic solution can receive full credit.]

561 In the diagram below of $\triangle A D E, B$ is a point on $\overline{A E}$ and C is a point on $\overline{A D}$ such that $\overline{B C} \| \overline{E D}$, $A C=x-3, B E=20, A B=16$, and $A D=2 x+2$. Find the length of $\overline{A C}$.

562 In right triangle $A B C$ below, $\overline{C D}$ is the altitude to hypotenuse $\overline{A B}$. If $C D=6$ and the ratio of $A D$ to $A B$ is $1: 5$, determine and state the length of $\overline{B D}$. [Only an algebraic solution can receive full credit.]

563 The coordinates of the vertices of $\triangle A B C$ are $A(-6,5), B(-4,8)$, and $C(1,6)$. State and label the coordinates of the vertices of $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $\triangle A B C$ after the composition of transformations $T_{(-4,5)}{ }^{\circ} r_{y \text {-xis }}$. The use of the set of axes below is optional.]

564 Quadrilateral MATH has coordinates $M(-6,-3)$, $A(-1,-3), T(-2,-1)$, and $H(-4,-1)$. The image of quadrilateral MATH after the composition $r_{x \text {-xis }}{ }^{\circ} T_{7,5}$ is quadrilateral $M " A " T^{\prime \prime} H^{\prime \prime}$. State and label the coordinates of $M^{\prime \prime} A^{\prime \prime} T^{\prime \prime} H^{\prime \prime}$. [The use of the set of axes below is optional.]

565 Given: Quadrilateral $A B C D$ with $\overline{A B} \cong \overline{C D}$, $\overline{A D} \cong \overline{B C}$, and diagonal $\overline{B D}$ is drawn Prove: $\angle B D C \cong \angle A B D$

566 In $\triangle A B C, \mathrm{~m} \angle A=x^{2}+12, \mathrm{~m} \angle B=11 x+5$, and $\mathrm{m} \angle C=13 x-17$. Determine the longest side of $\triangle A B C$.

567 A paint can is in the shape of a right circular cylinder. The volume of the paint can is 600π cubic inches and its altitude is 12 inches. Find the radius, in inches, of the base of the paint can. Express the answer in simplest radical form. Find, to the nearest tenth of a square inch, the lateral area of the paint can.

568 Triangle $D E G$ has the coordinates $D(1,1), E(5,1)$, and $G(5,4)$. Triangle $D E G$ is rotated 90° about the origin to form $\Delta D^{\prime} E^{\prime} G^{\prime}$. On the grid below, graph and label $\triangle D E G$ and $\Delta D^{\prime} E^{\prime} G^{\prime}$. State the coordinates of the vertices D^{\prime}, E^{\prime}, and G^{\prime}. Justify that this transformation preserves distance.

Trapezoid $T R A P$, with median $\overline{M Q}$, is shown in the diagram below. Solve algebraically for x and y.

570 Find an equation of the line passing through the point $(6,5)$ and perpendicular to the line whose equation is $2 y+3 x=6$.

571 On the set of axes below, sketch the points that are 5 units from the origin and sketch the points that are 2 units from the line $y=3$. Label with an \mathbf{X} all points that satisfy both conditions.

572 In the diagram below, $\overline{B F C E}, \overline{A B} \perp \overline{B E}, \overline{D E} \perp \overline{B E}$, and $\angle B F D \cong \angle E C A$. Prove that $\triangle A B C \sim \triangle D E F$.

573 In the diagram below, tangent $\overline{M L}$ and secant $\overline{M N K}$ are drawn to circle O. The ratio $\mathrm{m} \overparen{L N}: \mathrm{m} \widetilde{N K}: \mathrm{m} \overparen{K L}$ is 3:4:5. Find $\mathrm{m} \angle L M K$.

574 The coordinates of the vertices of parallelogram SWAN are $S(2,-2), W(-2,-4), A(-4,6)$, and $N(0,8)$.
State and label the coordinates of parallelogram $S^{\prime \prime} W^{\prime \prime} A " N$ ", the image of SWAN after the transformation $T_{4,-2}{ }^{\circ} D_{\frac{1}{2}}$. [The use of the set of axes below is optional.]

575 In the diagram below of circle O, chords $\overline{R T}$ and $\overline{Q S}$ intersect at M. Secant $\overline{P T R}$ and tangent $\overline{P S}$ are drawn to circle O. The length of $\overline{R M}$ is two more than the length of $\overline{T M}, Q M=2, S M=12$, and $P T=8$.

Find the length of $\overline{R T}$. Find the length of $\overline{P S}$.

576 As shown on the set of axes below, $\triangle G H S$ has vertices $G(3,1), H(5,3)$, and $S(1,4)$. Graph and state the coordinates of $\Delta G^{\prime \prime} H^{\prime \prime} S^{\prime \prime}$, the image of $\Delta G H S$ after the transformation $T_{-3,1}{ }^{\circ} D_{2}$.

577 The coordinates of the vertices of parallelogram $A B C D$ are $A(-2,2), B(3,5), C(4,2)$, and $D(-1,-1)$.
State the coordinates of the vertices of parallelogram $A " B " C " D$ " that result from the transformation $r_{y-\text { axis }}{ }^{\circ} T_{2,-3}$. [The use of the set of axes below is optional.]

578 Given: $\overline{A D}$ bisects $\overline{B C}$ at E.

$$
\begin{aligned}
& \overline{A B} \perp \overline{B C} \\
& \overline{D C} \perp \overline{B C}
\end{aligned}
$$

Prove: $\overline{A B} \cong \overline{D C}$

579 A right circular cylinder with a height of 5 cm has a base with a diameter of 6 cm . Find the lateral area of the cylinder to the nearest hundredth of a square centimeter. Find the volume of the cylinder to the nearest hundredth of a cubic centimeter.

580 On the set of axes below, solve the following system of equations graphically and state the coordinates of all points in the solution.

$$
\begin{gathered}
(x+3)^{2}+(y-2)^{2}=25 \\
2 y+4=-x
\end{gathered}
$$

581 In the diagram of $\triangle B C D$ shown below, $\overline{B A}$ is drawn from vertex B to point A on $\overline{D C}$, such that $\overline{B C} \cong \overline{B A}$.

In $\triangle D A B, \mathrm{~m} \angle D=x, \mathrm{~m} \angle D A B=5 x-30$, and $\mathrm{m} \angle D B A=3 x-60$. In $\triangle A B C, A B=6 y-8$ and $B C=4 y-2$. [Only algebraic solutions can receive full credit.] Find $m \angle D$. Find $m \angle B A C$. Find the length of $\overline{B C}$. Find the length of $\overline{D C}$.

Geometry 4 Point Regents Exam Questions

 www.jmap.org582 The vertices of $\triangle R S T$ are $R(-6,5), S(-7,-2)$, and $T(1,4)$. The image of $\Delta R S T$ after the composition $T_{-2,3}{ }^{\circ} r_{y=x}$ is $\Delta R " S " T "$. State the coordinates of $\Delta R " S " T$ ". [The use of the set of axes below is optional.]

583 In the diagram below of quadrilateral $A B C D$ with diagonal $\overline{B D}, \mathrm{~m} \angle A=93, \mathrm{~m} \angle A D B=43$, $\mathrm{m} \angle C=3 x+5, \mathrm{~m} \angle B D C=x+19$, and $\mathrm{m} \angle D B C=2 x+6$. Determine if $\overline{A B}$ is parallel to $\overline{D C}$. Explain your reasoning.

584 Given: JKLM is a parallelogram.
$\overline{J M} \cong \overline{L N}$
$\angle L M N \cong \angle L N M$
Prove: JKLM is a rhombus.

585 Triangle $A B C$ has vertices $A(5,1), B(1,4)$ and $C(1,1)$. State and label the coordinates of the vertices of $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $\triangle A B C$, following the composite transformation $T_{1,-1} \circ D_{2}$. [The use of the set of axes below is optional.]

Geometry 4 Point Regents Exam Questions

 www.jmap.org586 Write an equation of the circle whose diameter $\overline{A B}$ has endpoints $A(-4,2)$ and $B(4,-4)$. [The use of the grid below is optional.]

587 On the set of axes below, graph and label $\triangle D E F$ with vertices at $D(-4,-4), E(-2,2)$, and $F(8,-2)$. If G is the midpoint of $E F$ and H is the midpoint of $D F$, state the coordinates of G and H and label each point on your graph. Explain why $\overline{G H} \| \overline{D E}$.

588 In the diagram below of $\Delta G J K, H$ is a point on $\overline{G J}$, $\overline{H J} \cong \overline{J K}, \mathrm{~m} \angle G=28$, and $\mathrm{m} \angle G J K=70$.
Determine whether $\triangle G H K$ is an isosceles triangle and justify your answer.

In $\Delta K L M, \mathrm{~m} \angle K=36$ and $K M=5$. The transformation D_{2} is performed on $\Delta K L M$ to form $\Delta K^{\prime} L^{\prime} M^{\prime}$. Find $\mathrm{m} \angle K^{\prime}$. Justify your answer. Find the length of $\overline{K^{\prime} M^{\prime}}$. Justify your answer.

Triangle $A B C$ has coordinates $A(-6,2), B(-3,6)$, and $C(5,0)$. Find the perimeter of the triangle. Express your answer in simplest radical form. [The use of the grid below is optional.]

Geometry 4 Point Regents Exam Questions
www.jmap.org
591 On the set of axes below, graph the locus of points that are four units from the point $(2,1)$. On the same set of axes, graph the locus of points that are two units from the line $x=4$. State the coordinates of all points that satisfy both conditions.

592 In the diagram below of circle O, chords $\overline{D F}, \overline{D E}$, $\overline{F G}$, and $\overline{E G}$ are drawn such that $\mathrm{m} \overparen{D F}: \mathrm{m} \widehat{F E}: \mathrm{m} \widehat{E G}: \mathrm{m} \widehat{G D}=5: 2: 1: 7$. Identify one pair of inscribed angles that are congruent to each other and give their measure.

Geometry 6 Point Regents Exam Questions www.jmap.org

Geometry 6 Point Regents Exam Questions

593 Chords $\overline{A B}$ and $\overline{C D}$ intersect at E in circle O, as shown in the diagram below. Secant $\overline{F D A}$ and tangent $\overline{F B}$ are drawn to circle O from external point F and chord $\overline{A C}$ is drawn. The $\mathrm{m} \widehat{D A}=56$, $\mathrm{m} \overparen{D B}=112$, and the ratio of $\mathrm{m} \overparen{A C}: \mathrm{m} \overparen{C B}=3: 1$.

Determine $\mathrm{m} \angle C E B$. Determine $\mathrm{m} \angle F$. Determine $\mathrm{m} \angle D A C$.

In the diagram below, quadrilateral $S T A R$ is a rhombus with diagonals $\overline{S A}$ and $\overline{T R}$ intersecting at E. $S T=3 x+30, S R=8 x-5, S E=3 z, T E=5 z+5$, $A E=4 z-8, \mathrm{~m} \angle R T A=5 y-2$, and $\mathrm{m} \angle T A S=9 y+8$. Find $S R, R T$, and $\mathrm{m} \angle T A S$.

595 In the diagram below of quadrilateral $A B C D$, $\overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$. Line segments $A C$, $D B$, and $F G$ intersect at E.
Prove: $\triangle A E F \cong \triangle C E G$

596 Given: Quadrilateral $A B C D$, diagonal $\overline{A F E C}$, $\overline{A E} \cong \overline{F C}, \overline{B F} \perp \overline{A C}, \overline{D E} \perp \overline{A C}, \angle 1 \cong \angle 2$ Prove: $A B C D$ is a parallelogram.

597 In the diagram of $\triangle M A H$ below, $\overline{M H} \cong \overline{A H}$ and medians $\overline{A B}$ and $\overline{M T}$ are drawn.
Prove: $\angle M B A \cong \angle A T M$

Geometry 6 Point Regents Exam Questions www.jmap.org

598 In the diagram below, quadrilateral $A B C D$ is inscribed in circle $O, \overline{A B} \| \overline{D C}$, and diagonals $\overline{A C}$ and $\overline{B D}$ are drawn. Prove that $\triangle A C D \cong \triangle B D C$.

Given: Quadrilateral $A B C D$ has vertices $A(-5,6)$, $B(6,6), C(8,-3)$, and $D(-3,-3)$.
Prove: Quadrilateral $A B C D$ is a parallelogram but is neither a rhombus nor a rectangle. [The use of the grid below is optional.]

600 The diagram below shows rectangle $A B C D$ with points E and F on side $\overline{A B}$. Segments $C E$ and $D F$ intersect at G, and $\angle A D G \cong \angle B C G$. Prove: $\overline{A E} \cong \overline{B F}$

601 In the diagram below, $\overline{P A}$ and $\overline{P B}$ are tangent to circle $O, \overline{O A}$ and $\overline{O B}$ are radii, and $\overline{O P}$ intersects the circle at C. Prove: $\angle A O P \cong \angle B O P$

602 Given: $\triangle A B C$ and $\triangle E D C, C$ is the midpoint of $\overline{B D}$ and $\overline{A E}$
Prove: $\overline{A B} \| \overline{D E}$

603 On the set of axes below, solve the following system of equations graphically for all values of x and y.

$$
\begin{gathered}
y=(x-2)^{2}+4 \\
4 x+2 y=14
\end{gathered}
$$

604 Given: $\triangle A B C$ with vertices $A(-6,-2), B(2,8)$, and $C(6,-2) . \overline{A B}$ has midpoint $D, \overline{B C}$ has midpoint E, and $\overline{A C}$ has midpoint F.
Prove: $A D E F$ is a parallelogram
$A D E F$ is not a rhombus
[The use of the grid is optional.]

605 In the diagram of circle O below, diameter $\overline{R S}$, chord $\overline{A S}$, tangent $\overrightarrow{T S}$, and secant $\overline{T A R}$ are drawn.

Complete the following proof to show $(R S)^{2}=R A \cdot R T$

Statements	Reasons
L. circle O, diameter $\overline{B S}$, chord $\overline{A S}$, tangent $\overrightarrow{T S}$, and secant $\overline{T A R}$	1. Given
2. $\overline{R S} \perp T \bar{S}$	2.
3. $\angle R S T$ is a right angle	3. 1 lines form right angles
4. $\angle R A S$ is a right angle	
5. $\angle R S T \equiv \angle R A S$	5.
6. $\angle R \equiv \angle R$	6. Reflexive property
7. $\triangle R S T \sim \triangle R A S$	
8. $\frac{R S}{R A}=\frac{R T}{R S}$	8.
9. $(R S)^{2}=R A \cdot R T$	9.

Geometry 6 Point Regents Exam Questions www.jmap.org

606 Quadrilateral MATH has coordinates $M(1,1)$, $A(-2,5), T(3,5)$, and $H(6,1)$. Prove that quadrilateral MATH is a rhombus and prove that it is not a square. [The use of the grid is optional.]

607 Quadrilateral $A B C D$ with vertices $A(-7,4)$, $B(-3,6), C(3,0)$, and $D(1,-8)$ is graphed on the set of axes below. Quadrilateral $M N P Q$ is formed by joining M, N, P, and Q, the midpoints of $\overline{A B}, \overline{B C}$, $\overline{C D}$, and $\overline{A D}$, respectively. Prove that quadrilateral $M N P Q$ is a parallelogram. Prove that quadrilateral $M N P Q$ is not a rhombus.

Geometry 6 Point Regents Exam Questions
www.jmap.org
608 On the set of axes below, solve the system of equations graphically and state the coordinates of all points in the solution.

$$
\begin{gathered}
y=(x-2)^{2}-3 \\
2 y+16=4 x
\end{gathered}
$$

Geometry Multiple Choice Regents Exam Questions

Answer Section

1 ANS: 4
PTS: 2
REF: 061114ge
STA: G.G. 73
TOP: Equations of Circles
2 ANS: 3
$(n-2) 180=(5-2) 180=540$

PTS: 2 REF: 011223ge STA: G.G. 36 TOP: Interior and Exterior Angles of Polygons
3 ANS: 4
$\overline{A B}$ is a vertical line, so its perpendicular bisector is a horizontal line through the midpoint of $\overline{A B}$, which is $(0,3)$.

PTS: 2 REF: 011225ge STA: G.G. 68 TOP: Perpendicular Bisector
4 ANS: 4
$\mathrm{m} \angle A=80$
PTS: 2
REF: 011115ge
STA: G.G. 34
TOP: Angle Side Relationship
5 ANS: 3
$7 x=5 x+30$
$2 x=30$
$x=15$

PTS: 2 REF: 081109ge STA: G.G. 35 TOP: Parallel Lines and Transversals
6 ANS: 1
$\frac{40-24}{2}=8 . \quad \sqrt{10^{2}-8^{2}}=6$.

PTS: 2 REF: 061204ge STA: G.G. 40 TOP: Trapezoids
7 ANS: 4
$x^{2}-6 x+2 x-3=9 x+27$
$x^{2}-4 x-3=9 x+27$
$x^{2}-13 x-30=0$
$(x-15)(x+2)=0$
$x=15,-2$

PTS: 2
REF: 061225ge
STA: G.G. 32
TOP: Exterior Angle Theorem
8 ANS: 3
$\sqrt{5^{2}+12^{2}}=13$

PTS: 2
REF: 061116ge
STA: G.G. 39
TOP: Special Parallelograms

9	ANS: 4	PTS: 2	REF: 081216ge
TOP: Similarity	KEY: basic		
10			
	ANS: 2		
$3 x+x+20+x+20$	$=180$		
	$5 x$	$=40$	
x	$=28$		

PTS: 2 REF: 081222ge STA: G.G. 31 TOP: Isosceles Triangle Theorem
11 ANS: 1
PTS: 2
REF: 011102ge STA: G.G. 55
TOP: Properties of Transformations
12 ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot\left(\frac{6}{2}\right)^{3} \approx 36 \pi$
PTS: 2 REF: 081215ge STA: G.G. 16 TOP: Volume and Surface Area
13 ANS: 2
The slope of a line in standard form is $\frac{-A}{B}$, so the slope of this line is $\frac{-4}{3}$. A parallel line would also have a slope
of $\frac{-4}{3}$. Since the answers are in standard form, use the point-slope formula. $y-2=-\frac{4}{3}(x+5)$

$$
\begin{aligned}
3 y-6 & =-4 x-20 \\
4 x+3 y & =-14
\end{aligned}
$$

PTS: 2
REF: 061123ge
STA: G.G. 65
REF: 011202ge
TOP: Parallel and Perpendicular Lines
14 ANS: 3
PTS: 2
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
15 ANS: 2
$6 x+42=18 x-12$
$54=12 x$

$$
x=\frac{54}{12}=4.5
$$

PTS: 2
REF: 011201ge
16 ANS: 3
PTS: 2
STA: G.G. 35
REF: 061122ge
TOP: Parallel Lines and Transversals STA: G.G. 56
TOP: Identifying Transformations
17 ANS: 4

$$
\begin{aligned}
4(x+4) & =8^{2} \\
4 x+16 & =64 \\
4 x & =48 \\
x & =12
\end{aligned}
$$

PTS: 2
REF: 061117ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant

18 ANS: 2 PTS: 2
REF: 081226ge
STA: G.G. 69
TOP: Triangles in the Coordinate Plane
19 ANS: 1
PTS: 2
REF: 011112ge STA: G.G. 39
TOP: Special Parallelograms
20 ANS: 2

$$
A C=B D
$$

$A C-B C=B D-B C$
$A B=C D$

PTS: 2
21 ANS: 1
REF: 061206ge
TOP: Equations of Circles
22 ANS: 3

PTS: 2
REF: 011101ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two tangents
23 ANS: 3 PTS: 2
TOP: Special Parallelograms
24 ANS: 3
$y=m x+b$
$-1=2(2)+b$
$-5=b$

PTS: 2
25 ANS: 4
REF: 011224ge
PTS: 2
TOP: Segments Intercepted by Circle
REF. 011208ge
KEY: two tangents
26 ANS: 2
TOP: Tangents
PTS: 2
REF: 081214ge
KEY: point of tangency
27 ANS: 2
PTS: 2
REF: 011206ge
STA: G.G. 32
TOP: Exterior Angle Theorem
28 ANS: 1
$x^{2}=7(16-7)$
$x^{2}=63$
$x=\sqrt{9} \sqrt{7}$
$x=3 \sqrt{7}$

PTS: 2
REF: 061128ge
STA: G.G. 47
TOP: Similarity
KEY: altitude

29 ANS: 3 PTS: 2 REF: 081104ge STA: G.G. 55
TOP: Properties of Transformations
30 ANS: 3
The slope of $9 x-3 y=27$ is $m=\frac{-A}{B}=\frac{-9}{-3}=3$, which is the opposite reciprocal of $-\frac{1}{3}$.
PTS: 2
REF: 081225ge
STA: G.G. 62
31 ANS: 3
PTS: 2
REF: 011110ge
TOP: Parallel and Perpendicular Lines
KEY: Centroid, Orthocenter, Incenter and Circumcenter
32 ANS: 4
PTS: 2
REF: 061103ge
STA: G.G. 60
TOP: Identifying Transformations
33 ANS: 2

$$
\begin{aligned}
m=\frac{-A}{B}=\frac{-4}{2}=-2 \quad & y \\
& =m x+b \\
2 & =-2(2)+b \\
6 & =b
\end{aligned}
$$

PTS: 2
REF: 081112ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
34 ANS: 1
Parallel lines intercept congruent arcs.

PTS: 2
REF: 061211ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
38 ANS: 3

PTS: 2
39 ANS: 4
REF: 081118ge
STA: G.G. 70
REF: 081224ge
TOP: Quadratic-Linear Systems
TOP: Centroid, Orthocenter, Incenter and Circumcenter

40 ANS: 1

$$
\begin{aligned}
A B & =C D \\
A B+B C & =C D+B C \\
A C & =B D
\end{aligned}
$$

PTS: 2 REF: 081207ge

STA: G.G. 27
REF: 081202ge
REF: 061125ge

TOP: Triangle Proofs
STA: G.G. 55
STA: G.G. 39

42 ANS: $1 \quad$ PTS: 2
TOP: Special Parallelograms
43 ANS: 2
$\frac{4 x+10}{2}=2 x+5$
PTS: 2
REF: 011103ge
STA: G.G. 42
REF: 061210ge
TOP: Midsegments
44 ANS: 3
PTS: 2
TOP: Equations of Circles
45 ANS: 1

$$
\begin{array}{rlrl}
1 & =\frac{-4+x}{2} . & 5 & =\frac{3+y}{2} . \\
-4+x & =2 & 3+y & =10 \\
x & =6 & y & =7
\end{array}
$$

PTS: 2 REF: 081115ge STA: G.G. 66 TOP: Midpoint
46 ANS: 1
$3 x+5+4 x-15+2 x+10=180 . \mathrm{m} \angle D=3(20)+5=65 . \mathrm{m} \angle E=4(20)-15=65$.

$$
\begin{aligned}
9 x & =180 \\
x & =20
\end{aligned}
$$

PTS: 2
47 ANS: 4
REF: 061119ge
STA: G.G. 30
REF: 061213ge
TOP: Interior and Exterior Angles of Triangles
TOP: Planes
48 ANS: 4
Parallel lines intercept congruent arcs.
PTS: 2
REF: 081201ge
49 ANS: 3
PTS: 2
TOP: Special Parallelograms
50 ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot\left(\frac{15}{2}\right)^{3} \approx 1767.1$
PTS: 2
REF: 061207ge
STA: G.G. 16
TOP: Volume and Surface Area

51 ANS: 2
$m=\frac{-A}{B}=\frac{-20}{-2}=10 . m_{\perp}=-\frac{1}{10}$
PTS: 2 REF: 061219ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
52 ANS: 4
The slope of $3 x+5 y=4$ is $m=\frac{-A}{B}=\frac{-3}{5} . m_{\perp}=\frac{5}{3}$.
PTS: 2 REF: 061127ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
53 ANS: 1
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+3+5 x-9}{2}=2 x+2$.

$$
\begin{aligned}
6 x-6 & =4 x+4 \\
2 x & =10 \\
x & =5
\end{aligned}
$$

PTS: 2
REF: 081221ge
STA: G.G. 40
TOP: Trapezoids
54 ANS: 3
$\frac{7 x}{4}=\frac{7}{x} .7(2)=14$
$7 x^{2}=28$
$x=2$
PTS: 2
REF: 061120ge
STA: G.G. 45
TOP: Similarity
KEY: basic
55 ANS: 2
$M_{x}=\frac{7+(-3)}{2}=2 . M_{Y}=\frac{-1+3}{2}=1$.
PTS: 2
56 ANS: 3
REF: 011106ge
STA: G.G. 66
REF: 061102ge
TOP: Midpoint
RE. 061102ge STA: G.G. 29
TOP: Triangle Congruency
57 ANS: 3
$\frac{180-70}{2}=55$
PTS: 2
REF: 061205ge
STA: G.G. 52 TOP: Chords
58 ANS: 3

$$
\begin{aligned}
x+2 x+15 & =5 x+15 \quad 2(5)+15=25 \\
3 x+15 & =5 x+5 \\
10 & =2 x \\
5 & =x
\end{aligned}
$$

PTS: 2 REF: 011127ge STA: G.G. 32 TOP: Exterior Angle Theorem

PTS: 2	REF: 011114ge	STA: G.G.65	TOP: Parallel and Perpendicular Lines
ANS: 3	PTS: 2	REF: 081111ge	STA: G.G. 32

 TOP: Exterior Angle Theorem
 65 ANS: 2
$(n-2) 180=(6-2) 180=720 . \frac{720}{6}=120$.
PTS: 2
66 ANS: 2
REF: 081125ge
STA: G.G. 37
TOP: Volume
67 ANS: 1
PTS: 2
REF: 011215ge
TOP: Interior and Exterior Angles of Polygons STA: G.G. 12

PTS: 2
REF: 081116ge
STA: G.G. 7
TOP: Planes
68 ANS: 3

. Opposite sides of a parallelogram are congruent and the diagonals of a parallelogram
bisect each other.
PTS: 2 REF: 061222ge STA: G.G. 28 TOP: Triangle Congruency
69 ANS: 2
PTS: 2
REF: 061227ge
STA: G.G. 56
TOP: Identifying Transformations
70 ANS: 2
The slope of $x+2 y=3$ is $m=\frac{-A}{B}=\frac{-1}{2} . m_{\perp}=2$.
PTS: 2
REF: 081122ge
STA: G.G. 62
REF: 081120ge
TOP: Parallel and Perpendicular Lines
71 ANS: 2
PTS: 2
STA: G.G. 8
TOP: Planes

72 ANS: 1
$m=\left(\frac{8+0}{2}, \frac{2+6}{2}\right)=(4,4) m=\frac{6-2}{0-8}=\frac{4}{-8}=-\frac{1}{2} \quad m_{\perp}=2 \quad y=m x+b$

$$
\begin{aligned}
& 4=2(4)+b \\
& -4=b
\end{aligned}
$$

PTS: 2 REF: 081126ge STA: G.G. 68 TOP: Perpendicular Bisector
73 ANS: 4
$m=\frac{-A}{B}=\frac{-3}{2} . \quad y=m x+b$

$$
\begin{aligned}
-1 & =\left(\frac{-3}{2}\right)(2)+b \\
-1 & =-3+b \\
2 & =b
\end{aligned}
$$

PTS: 2
74 ANS: 1
TOP: Constructions
75 ANS: 2
TOP: Properties of Transformations
76 ANS: $3 \quad$ PTS: 2
TOP: Equations of Circles
77 ANS: 2
TOP: Constructions
78 ANS: 4
PTS: 2
TOP: Constructions
79 ANS: $2 \quad$ PTS: 2
TOP: Exterior Angle Theorem
80 ANS: 4

$$
\begin{array}{rlrl}
-5 & =\frac{-3+x}{2} . & 2 & =\frac{6+y}{2} \\
-10 & =-3+x & 4 & =6+y \\
-7 & =x & -2 & =y
\end{array}
$$

PTS: 2
REF: 081203ge
STA: G.G. 66
TOP: Midpoint
81 ANS: 2
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 15=540 \pi$
PTS: 2
REF: 011117ge
STA: G.G. 14
TOP: Volume and Lateral Area
82 ANS: 3
$\frac{3}{8+3+4} \times 180=36$
PTS: 2 REF: 011210ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles

83 ANS: 3

$$
\begin{aligned}
180(n-2) & =n\left(180-\frac{180(n-2)}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
$$

PTS: 2
REF: 081223ge
STA: G.G. 36
84 ANS: 2
PTS: 2
REF: 081212ge
TOP: Equations of Circles
85 ANS: 3
PTS: 2
REF: 011104ge
TOP: Interior and Exterior Angles of Polygons
STA: G.G. 72

TOP: Parallelograms
86 ANS: 4 PTS: 2
REF: 011212ge
TOP: Equations of Circles
87 ANS: $3 \quad$ PTS: 2
TOP: Quadrilateral Proofs
88 ANS: 4
$\frac{5}{2+3+5} \times 180=90$
PTS: 2
89 ANS: 3
REF: 081119ge
TOP: Similarity Proofs
90 ANS: 3
PTS: 2
STA: G.G. 30
REF: 011209ge
TOP: Interior and Exterior Angles of Triangles STA: G.G. 44
$\frac{8}{2}=\frac{12}{x}$.

$8 x=24$
$x=3$
PTS: 2
REF: 061216ge
STA: G.G. 46
91 ANS: 4
PTS: 2
REF: 011222ge
TOP: Angle Side Relationship
92 ANS: 4
$\sqrt{6^{2}-2^{2}}=\sqrt{32}=\sqrt{16} \sqrt{2}=4 \sqrt{2}$
PTS: 2
REF: 081124ge
STA: G.G. 49
93 ANS: 1
PTS: 2
REF: 061214ge
TOP: Centroid, Orthocenter, Incenter and Circumcenter
94 ANS: 3
PTS: 2
REF: 061224ge
STA: G.G. 45
TOP: Similarity KEY: basic

95 ANS: 3

PTS: 2
REF: 011112ge
STA: G.G. 49
TOP: Chords
96 ANS: 2
$7 x=5 x+30$
$2 x=30$
$x=15$
PTS: 2
REF: 061106ge
STA: G.G. 35
TOP: Parallel Lines and Transversals
97 ANS: 4

PTS: 2
REF: 081114ge STA: G.G. 28
TOP: Triangle Congruency
98 ANS: 1
The diagonals of a parallelogram intersect at their midpoints. $M_{\overline{A C}}\left(\frac{1+3}{2}, \frac{5+(-1)}{2}\right)=(2,2)$

PTS: 2
99 ANS: 4
PTS: 2
TOP: Interior and Exterior Angles of Triangles
100
PTS: 2
REF: 061126ge
REF: 011217ge
STA: G.G. 69
REF: 081206ge
gles
TOP: Properties of Transformations

ANS: 3 PTS: 2
TOP: Parallel and Perpendicular Lines

102 ANS: 3
$\frac{5}{7}=\frac{10}{x}$
$5 x=70$
$x=14$
PTS: 2 REF: 081103ge STA: G.G. 46 TOP: Side Splitter Theorem
103 ANS: 1
PTS: 2
REF: 061108ge
STA: G.G. 9
TOP: Planes
104 ANS: 3
$x^{2}+7^{2}=(x+1)^{2} \quad x+1=25$
$x^{2}+49=x^{2}+2 x+1$
$48=2 x$
$24=x$
PTS: 2
REF: 081127ge
STA: G.G. 48
TOP: Pythagorean Theorem
105 ANS: 3
$4 x+14+8 x+10=180$

$$
\begin{aligned}
12 x & =156 \\
x & =13
\end{aligned}
$$

PTS: 2 REF: 081213ge STA: G.G. 35 TOP: Parallel Lines and Transversals
106 ANS: 4
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 081220ge STA: G.G. 43 TOP: Centroid
107 ANS: 4
$d=\sqrt{(-5-3)^{2}+(4-(-6))^{2}}=\sqrt{64+100}=\sqrt{164}=\sqrt{4} \sqrt{41}=2 \sqrt{41}$
PTS: 2 REF: 011121ge STA: G.G. 67 TOP: Distance
KEY: general
108 ANS: 2
The diagonals of a rhombus are perpendicular. $180-(90+12)=78$
PTS: 2 REF: 011204ge STA: G.G. 39 TOP: Special Parallelograms

109
ANS: 2
$d=\sqrt{(-1-7)^{2}+(9-4)^{2}}=\sqrt{64+25}=\sqrt{89}$
PTS: 2
REF: 061109ge
STA: G.G. 67

REF: 011124ge
KEY: inscribed

111 ANS: $1 \quad$ PTS: 2
TOP: Triangle Congruency
112 ANS: 4
$x \cdot 4 x=6^{2} . P Q=4 x+x=5 x=5(3)=15$
$4 x^{2}=36$
$x=3$
PTS: 2 REF: 011227ge STA: G.G. 47 TOP: Similarity
KEY: leg
113 ANS: 3
$(3,-2) \rightarrow(2,3) \rightarrow(8,12)$
PTS: 2
REF: 011126ge
STA: G.G. 54
TOP: Compositions of Transformations
KEY: basic
114 ANS: 4
PTS: 2
REF: 011216ge
STA: G.G. 29
TOP: Triangle Congruency
115 ANS: 3
$d=\sqrt{(-1-4)^{2}+(0-(-3))^{2}}=\sqrt{25+9}=\sqrt{34}$
PTS: 2
REF: 061217ge
STA: G.G. 67

REF: 061203ge
STA: G.G. 9
REF: 081204ge STA: G.G. 59
117
KEY: general
116
ANS: 4
PTS: 2
PTS: 2

REF: 011122ge STA: G.G. 28

TOP: Properties of Transformations
118 ANS: 1

PTS: 2
119 ANS: 1
TOP: Negations
120 ANS: 2
TOP: Locus
121 ANS: 2
TOP: Properties of Transformations

122

$$
\begin{aligned}
m_{\perp}=-\frac{1}{3} \cdot \quad y & =m x+b \\
6 & =-\frac{1}{3}(-9)+b \\
6 & =3+b \\
3 & =b
\end{aligned}
$$

$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: 061215ge } & \text { STA: G.G. } 64 & \text { TOP: Parallel and Perpendicular Lines } \\ \text { ANS: } 1 & \text { PTS: } 2 & \text { REF: 061223ge } & \text { STA: G.G. } 73\end{array}$
TOP: Equations of Circles
124 ANS: 3
The slope of $2 y=x+2$ is $\frac{1}{2}$, which is the opposite reciprocal of $-2 . \quad 3=-2(4)+b$

$$
11=b
$$

PTS: 2
REF: 081228ge
STA: G.G. 64
TOP: Parallel and Perpendicular Lines
ANS: 4
$6^{2}=x(x+5)$
$36=x^{2}+5 x$
$0=x^{2}+5 x-36$
$0=(x+9)(x-4)$
$x=4$

PTS: 2
REF: 011123ge
STA: G.G. 47
TOP: Similarity
KEY: leg
126
ANS: 4

$$
\begin{array}{rlrl}
x+6 y & =12 & 3(x-2) & =-y-4 \\
6 y & =-x+12 & -3(x-2) & =y+4 \\
y & =-\frac{1}{6} x+2 & m & =-3 \\
m & =-\frac{1}{6} &
\end{array}
$$

PTS: 2
REF: 011119ge
STA: G.G. 63
TOP: Parallel and Perpendicular Lines

PTS: 2
REF: 081219ge
STA: G.G. 34
TOP: Angle Side Relationship

128 ANS: 3
TOP: Volume
129 ANS: 3
PTS: 2
PTS: 2
TOP: Graphing Circles
130 ANS: 4 PTS: 2
TOP: Isosceles Triangle Theorem
131 ANS: 1

$$
\begin{aligned}
m=\frac{3}{2} \quad y & =m x+b \\
2 & =\frac{3}{2}(1)+b \\
\frac{1}{2} & =b
\end{aligned}
$$

PTS: 2
REF: 081217ge
STA: G.G. 65
ANS: 3
$d=\sqrt{(1-9)^{2}+(-4-2)^{2}}=\sqrt{64+36}=\sqrt{100}=10$
PTS: 2
REF: 081107ge
STA: G.G. 67
TOP: Distance
KEY: general
133 ANS: 1
$7 x+4=2(2 x+5) . P M=2(2)+5=9$
$7 x+4=4 x+10$
$3 x=6$
$x=2$
PTS: 2
134 ANS: 1
TOP: Constructions
135 ANS: 3
TOP: Midsegments
136 ANS: 1
TOP: Planes
137 ANS: 1
$d=\sqrt{(4-1)^{2}+(7-11)^{2}}=\sqrt{9+16}=\sqrt{25}=5$
PTS: 2
KEY: general
138
ANS: 3
REF: 011205ge
STA: G.G. 67
PTS: 2
REF: 061111ge
STA: G.G. 38
TOP: Parallelograms
139 ANS: 1
PTS: 2
REF: 061104ge
STA: G.G. 43
TOP: Centroid
140 ANS: 2
TOP: Negations

PTS: 2
REF: 011128ge STA: G.G. 2
REF: 011226ge
STA: G.G. 43
REF: 011207ge
REF: 081227ge

TOP: Centroid
STA: G.G. 20
STA: G.G. 42

SA. G.G. 2

141	ANS: 2	PTS: 2	REF: 081108ge	STA: G.G. 54
	TOP: Reflections	KEY: basic		
142	ANS: 1	PTS: 2	REF: 061113ge	STA: G.G. 63

TOP: Parallel and Perpendicular Lines
143 ANS: 3
$8^{2}+24^{2} \neq 25^{2}$
PTS: 2
REF: 011111ge
STA: G.G. 48
REF: 011125ge
TOP: Pythagorean Theorem
144 ANS: 2
PTS: 2
STA: G.G. 74

REF: 061208ge
STA: G.G. 19
145 ANS: $2 \quad$ PTS: 2
-
REF: 011109ge STA: G.G. 9
146 ANS: $2 \quad$ PTS: 2
TOP: Planes
147 ANS: 4
$\sqrt{25^{2}-\left(\frac{26-12}{2}\right)^{2}}=24$
PTS: 2
REF: 011219ge
STA: G.G. 40
TOP: Trapezoids
148 ANS: 4
$\sqrt{25^{2}-7^{2}}=24$
PTS: 2
REF: 081105ge
STA: G.G. 50
TOP: Tangents
KEY: point of tangency
149 ANS: 3
$-5+3=-2 \quad 2+-4=-2$
PTS: 2 REF: 011107ge
STA: G.G. 54
REF: 081209ge
TOP: Translations
150 ANS: 3
PTS: 2
TOP: Equations of Circles
151 ANS: 2

$$
\begin{aligned}
\frac{50+x}{2} & =34 \\
50+x & =68 \\
x & =18
\end{aligned}
$$

PTS: 2
REF: 011214ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle
152 ANS: 2
PTS: 2
TOP: Triangles in the Coordinate Plane
153
TOP: Interior and Exterior Angles of Polygons

154 ANS: 4
$20+8+10+6=44$.

PTS: 2
155 ANS: 4
REF: 061211ge
STA: G.G. 42
TOP: Compound Statements
156 ANS: 4
PTS: 2
TOP: Planes
157 ANS: 1
PTS: 2
REF: 081101ge
KEY: conjunction
REF: 061118ge
STA: G.G. 1

TOP: Special Parallelograms
158 ANS: $3 \quad$ PTS: 2
TOP: Planes
159 ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 3^{3}=36 \pi$

PTS: 2
REF: 061112ge
STA: G.G. 16
TOP: Volume and Surface Area
160 ANS: 2
$5-3=2,5+3=8$
PTS: 2
REF: 011228ge
STA: G.G. 33
TOP: Triangle Inequality Theorem
161 ANS: 2

$\sqrt{17^{2}-15^{2}}=8.17-8=9$

	PTS: 2
162	ANS: 1
	TOP: Planes
163	ANS:

REF: 061221ge STA: G.G. 49
PTS: 2
PTS: 2
REF: 011218ge
TOP: Chords
STA: G.G. 3
REF: 081205ge STA: G.G. 17
TOP: Constructions
164 ANS: 2

PTS: 2
REF: 011203ge
STA: G.G. 73
TOP: Equations of Circles
165 ANS: 4

PTS: 2
REF: 011118ge
STA: G.G. 25
TOP: Compound Statements
KEY: general

ANS: 1
PTS: 2
REF: 011221ge
STA: G.G. 10
TOP: Solids
167 ANS: 3
PTS: 2
REF: 011105ge STA: G.G. 10
TOP: Solids
168 ANS: 3
As originally administered, this question read, "Which fact is not sufficient to show that planes \mathbb{R} and S are perpendicular?" The State Education Department stated that since a correct solution was not provided for Question 11, all students shall be awarded credit for this question.

PTS: 2 REF: 081211ge STA: G.G. 5 TOP: Planes

Geometry Multiple Choice Regents Exam Questions

Answer Section

169
ANS: 2
PTS: 2
TOP: Constructions
170 ANS: 2
PTS: 2
TOP: Arcs Determined by Angles
171 ANS: 2
$x^{2}-2=x$
$x^{2}-x-2=0$
$(x-2)(x+1)=0$

$$
x=2,-1
$$

PTS: 2
172 ANS: 4
TOP: Chords
173 ANS: 3
PTS:
TOP: Equations of Circles
174 ANS: 2
$\mathrm{m} \angle A B C=55$, so $\mathrm{m} \angle A C R=60+55=115$

PTS: 2
REF: 011414ge
STA: G.G. 32
TOP: Exterior Angle Theorem
175 ANS: 3

$$
\begin{aligned}
25 \times 9 \times 12 & =15^{2} h \\
2700 & =15^{2} h \\
12 & =h
\end{aligned}
$$

PTS: 2
REF: 061323ge
STA: G.G. 11
TOP: Volume
176 ANS: 2
Perimeter of $\triangle D E F$ is $5+8+11=24 . \frac{5}{24}=\frac{x}{60}$

$$
\begin{aligned}
24 x & =300 \\
x & =12.5
\end{aligned}
$$

PTS: 2
REF: 011307ge STA: G.G. 45
KEY: perimeter and area
ANS: 2
$\sqrt{17^{2}-15^{2}}=\sqrt{289-225}=\sqrt{64}=8$

PTS: 2 REF: 011424ge STA: G.G. 49 TOP: Chords

178 ANS: 1
$2 x+x=12 . \overline{B D}=2(4)=8$
$3 x=12$
$x=4$
PTS: 2 REF: 011408ge STA: G.G. 43 TOP: Centroid
179 ANS: 1
PTS: 2
REF: 011405ge
STA: G.G. 59
TOP: Properties of Transformations
180 ANS: 3
PTS: 2
REF: 081309ge
STA: G.G. 29
TOP: Triangle Congruency
181 ANS: 3
$3 x-15=2(6)$
$3 x=27$
$x=9$

PTS: 2
REF: 061311ge
STA: G.G. 42
REF: 061310ge
TOP: Midsegments
ANS: 1
PTS: 2
STA: G.G. 2
TOP: Planes
183 ANS: 3
PTS: 2
REF: 061306ge
STA: G.G. 71
TOP: Equations of Circles
184
ANS: 2
PTS: 2
REF: 081301ge
STA: G.G. 24
TOP: Statements
185 ANS: 3
midpoint: $\left(\frac{6+8}{2}, \frac{8+4}{2}\right)=(7,6)$. slope: $\frac{8-4}{6-8}=\frac{4}{-2}=-2 ; m_{\perp}=\frac{1}{2} . \quad 6=\frac{1}{2}(7)+b$

$$
\begin{aligned}
& \frac{12}{2}=\frac{7}{2}+b \\
& \frac{5}{12}=b
\end{aligned}
$$

PTS: 2
REF: 081327ge STA: G.G. 68
TOP: Perpendicular Bisector
186 ANS: 3
$2 y=3 x-4 . \quad 1=\frac{3}{2}(6)+b$
$y=\frac{3}{2} x-2 \quad 1=9+b$
$-8=b$
PTS: 2 REF: 061316ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
187 ANS: 4
Distance is preserved after a rotation.
PTS: 2 REF: 081304ge STA: G.G. 55 TOP: Properties of Transformations
188 ANS: 4
PTS: 2
REF: 011426ge
STA: G.G. 73
TOP: Equations of Circles

189 ANS: 3
PTS: 2
REF: 081320ge
STA: G.G. 42
TOP: Midsegments
190 ANS: 4
$(x, y) \rightarrow(-x,-y)$
PTS: 2 REF: 061304ge STA: G.G. 54 TOP: Rotations
191 ANS: 2

$$
\begin{aligned}
(x-4)^{2}-2 & =-2 x+6 . \quad y=-2(4)+6=-2 \\
x^{2}-8 x+16-2 & =-2 x+6 \quad y=-2(2)+6=2 \\
x^{2}-6 x+8 & =0 \\
(x-4)(x-2) & =0 \\
x & =4,2
\end{aligned}
$$

PTS: 2
192 ANS: 4
TOP: Solids
193 ANS: 3
$\frac{15}{18}=\frac{5}{6}$
PTS: 2
REF: 081317ge
STA: G.G. 45
KEY: perimeter and area
194 ANS: 3
$m=\frac{-A}{B}=\frac{-3}{-2}=\frac{3}{2}$
PTS: 2 REF: 011324ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
195 ANS: 2
Isosceles or not, $\triangle R S V$ and $\Delta R S T$ have a common base, and since $\overline{R S}$ and $\overline{V T}$ are bases, congruent altitudes.
PTS: 2 REF: 061301ge STA: G.G. 40 TOP: Trapezoids
196 ANS: 1
PTS: 2
REF: 011412ge STA: G.G. 28
TOP: Triangle Congruency
197 ANS: 3
$x^{2}+5^{2}=25$

$$
x=0
$$

PTS: 2 REF: 011312ge STA: G.G. 70 TOP: Quadratic-Linear Systems
198 ANS: 3
$A B=8-4=4 . B C=\sqrt{(-2-(-5))^{2}+(8-6)^{2}}=\sqrt{13} \cdot A C=\sqrt{(-2-(-5))^{2}+(4-6)^{2}}=\sqrt{13}$
PTS: 2 REF: 011328ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane

199 ANS: 3
$x^{2}=2(2+10)$
$x^{2}=24$
$x=\sqrt{24}=\sqrt{4} \sqrt{6}=2 \sqrt{6}$
PTS: 2 REF: 081326ge STA: G.G. 47 TOP: Similarity
KEY: leg
200 ANS: 2
(1) is true because of vertical angles. (3) and (4) are true because СРСТС.

PTS: 2 REF: 061302ge STA: G.G. 29 TOP: Triangle Congruency
201 ANS: 4
$m_{A B}^{\leftrightarrow}=\frac{6-3}{7-5}=\frac{3}{2} \cdot m_{C D}^{\overleftrightarrow{~}}=\frac{4-0}{6-9}=\frac{4}{-3}$
PTS: 2
ANS: 2
$\sqrt{(-2-4)^{2}+(-3-(-1))^{2}}=\sqrt{40}=\sqrt{4} \sqrt{10}=2 \sqrt{10}$

PTS: 2
203 ANS: 1
TOP: Statements
204 ANS: 2

$$
\begin{aligned}
m=\frac{-A}{B}=\frac{-5}{1}=-5 \quad y & =m x+b \\
3 & =-5(5)+b \\
28 & =b
\end{aligned}
$$

PTS: 2
REF: 011410ge
STA: G.G. 65
ANS: 2
$s^{2}+s^{2}=(3 \sqrt{2})^{2}$

$$
2 s^{2}=18
$$

$$
s^{2}=9
$$

$$
s=3
$$

PTS: 2 REF: 011420ge
206 ANS: 1
PTS: 2
TOP: Properties of Transformations
207
ANS: 2
PTS: 2
PTS: 2
ANS: 1 PTS: 2
STA: G.G. 39
REF: 061307ge
REF: 081316ge
REF: 081313ge
REF: 061314ge
TOP: Locus
208 ANS: 4
ST
TOP: Constructions
209

REF: 061318ge STA: G.G. 63
TOP: Parallel and Perpendicular Lines

REF: 011313ge STA: G.G. 69
PTS: 2 REF: 011303ge
TOP: Quadrilaterals in the Coordinate Plane STA: G.G. 24

TOP: Converse and Biconditional

210 ANS: 2
The slope of $2 x+4 y=12$ is $m=\frac{-A}{B}=\frac{-2}{4}=-\frac{1}{2} . m_{\perp}=2$.

PTS: 2
211 ANS: 3
REF: 011310ge
PTS: 2
TOP: Identifying Transformations
212 ANS: 1
TOP: Triangle Congruency
213 ANS: $4 \quad$ PTS: 2
TOP: Planes
214 ANS: 3
TOP: Chords
215 ANS: 1
$\frac{180-52}{2}=64.180-(90+64)=26$
PTS: 2
REF: 011314ge
STA: G.G. 30
216 ANS: 4
$2 x-8=x+2 . A E=10+2=12 . A C=2(A E)=2(12)=24$

$$
x=10
$$

PTS: 2
217 ANS: 4
REF: 011327ge
STA: G.G. 39
TOP: Locus
218 ANS: 2
$\frac{(n-2) 180}{n}=120$.
$180 n-360=120 n$

$$
60 n=360
$$

PTS: 2
219 ANS: 3
TOP: Midsegments
$6 x=x+40+3 x+10 . \mathrm{m} \angle C A B=25+40=65$

PTS: 2
REF: 081310ge
STA: G.G. 32
221 ANS: 4
PTS: 2
PTS: 2

$$
n=6
$$

220 ANS: 4
$6 x=4 x+50$
$2 x=50$
$x=25$

TOP: Equations of Circles
REF: 011407ge

TOP: Parallel and Perpendicular Lines
STA: G.G. 56

REF: 011301ge
REF: 011315ge
REF: 011322ge
STA: G.G. 49

TOP: Interior and Exterior Angles of Triangles

TOP: Special Parallelograms
STA: G.G. 23

222 ANS: 2
TOP: Angle Side Relationship
223 ANS: 4
$m=\frac{2}{3} \quad .2=-\frac{3}{2}(4)+b$
$m_{\perp}=-\frac{3}{2} \quad \begin{aligned} & 2=-6+b \\ & 8=b\end{aligned}$
PTS: 2 REF: 011319ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
224 ANS: 3
$120 \pi=\pi(12)(l)$

$$
10=1
$$

PTS: 2 REF: 081314ge STA: G.G. 15 TOP: Volume and Lateral Area
225 ANS: 3
$6=\frac{4+x}{2} . \quad 8=\frac{2+y}{2}$.
$4+x=12 \quad 2+y=16$
$x=8 \quad y=14$
PTS: 2 REF: 011305ge
STA: G.G. 66 TOP: Midpoint
226 ANS: 1
PTS: 2
TOP: Planes
227
ANS: 2 PTS: 2
TOP: Quadrilateral Proofs
228 ANS: 1
$x^{2}=3 \times 12$
$x=6$
PTS: 2
REF: 011308ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
229 ANS: 3
PTS: 2
REF: 011402ge STA: G.G. 17
TOP: Constructions
230 ANS: 4
PTS: 2
TOP: Equations of Circles
231 ANS: 4 PTS: 2
TOP: Equations of Circles
232 ANS: 2
$2^{2}+3^{2} \neq 4^{2}$
PTS: 2 REF: 011316ge STA: G.G. 48 TOP: Pythagorean Theorem
233 ANS: 1
If two prisms have equal heights and volume, the area of their bases is equal.
PTS: 2
REF: 081321ge
STA: G.G. 11
TOP: Volume

234 ANS: 1
$8 \times 12=16 x$

$$
6=x
$$

PTS: 2 REF: 081328ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two chords
235 ANS: 3
$180-38=142$
PTS: 2
REF: 011419ge STA: G.G. 50 TOP: Tangents
KEY: two tangents
236 ANS: 2
$18 \pi \cdot 42 \approx 2375$
PTS: 2 REF: 011418ge STA: G.G. 14 TOP: Volume and Lateral Area
237 ANS: 3
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2
238 ANS: 2
TOP: Locus
239 ANS: 4
PTS: 2
REF: 081318ge STA: G.G. 26
TOP: Converse and Biconditional
240 ANS: 1
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A C}=\mathrm{m} \overparen{B D} \cdot \frac{180-110}{2}=35$.
PTS: 2 REF: 081302ge STA: G.G. 52 TOP: Chords
241 ANS: 4

$$
\begin{array}{rlrl}
3 y+6 & =2 x & 2 y-3 x & =6 \\
3 y & =2 x-6 & 2 y & =3 x+6 \\
y & =\frac{2}{3} x-2 & y & =\frac{3}{2} x+3 \\
m & =\frac{2}{3} & m & =\frac{3}{2}
\end{array}
$$

PTS: 2 REF: 081315ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
242 ANS: 3
$x^{2}=3 \times 12 . \sqrt{6^{2}+3^{2}}=\sqrt{45}=\sqrt{9} \sqrt{5}=3 \sqrt{5}$
$x=6$

PTS: 2
KEY: altitude
243
ANS: 4

REF: 061327ge
STA: G.G. 47
TOP: Similarity

TOP: Rotations

244 ANS: 2
$\sqrt{15^{2}-12^{2}}=9$
PTS: 2 REF: 081325ge STA: G.G. 50 TOP: Tangents
KEY: point of tangency
245 ANS: $3 \quad$ PTS: 2
REF: 011425ge STA: G.G. 39
TOP: Special Parallelograms
246 ANS: 4 PTS: 2
REF: 081305ge STA: G.G. 71
TOP: Equations of Circles
247 ANS: 1
PTS: 2
REF: 081303ge STA: G.G. 24
TOP: Negations
248 ANS: 3
PTS: 2
REF: 081312ge STA: G.G. 72
TOP: Equations of Circles
249 ANS: 3
The regular polygon with the smallest interior angle is an equilateral triangle, with $60^{\circ} .180^{\circ}-60^{\circ}=120^{\circ}$
PTS: 2 REF: 011417ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
250 ANS: 4
PTS: 2 REF: 011306ge
TOP: Planes
251 ANS: 1
252 ANS: 4 PTS: 2
253 ANS: 2 PTS:
TOP: Solids
254 ANS: 1
$\frac{70-20}{2}=25$
PTS: 2 REF: 011325ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: outside circle
255 ANS: 4
$(n-2) 180-n\left(\frac{(n-2) 180}{n}\right)=180 n-360-180 n+180 n-360=180 n-720$.
180(5) $-720=180$
PTS: 2 REF: 081322ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
256 ANS: 1
PTS: 2
REF: 011320ge
STA: G.G. 26
TOP: Conditional Statements
257 ANS: 2
PTS: 2
REF: 061315ge STA: G.G. 13
TOP: Solids

258
ANS: 1
$7 x-36+5 x+12=180$

$$
12 x-24=180
$$

$$
\begin{aligned}
12 x & =204 \\
x & =17
\end{aligned}
$$

PTS: 2
259 ANS: 3
ANS: 3 PTS: 2
TOP: Parallel Lines and Transversals
260 ANS: 3
$2(4 x+20)+2(3 x-15)=360 . \angle D=3(25)-15=60$

$$
8 x+40+6 x-30=360
$$

$$
14 x+10=360
$$

$$
14 x=350
$$

$$
x=25
$$

PTS: 2
264 ANS: 1
TOP: Angle Side Relationship
265 ANS: 2
PTS: 2
TOP: Angle Side Relationship
266 ANS: 2

$$
\begin{array}{rlrl}
\frac{6+x}{2} & =4 . & \frac{-4+y}{2} & =2 \\
x & =2 & y & =8
\end{array}
$$

PTS: 2
267 ANS: 3
TOP: Constructions
268 ANS: 4
TOP: Tangents

REF: 011401ge
PTS: 2

PTS: 2
KEY: common tangency

STA: G.G. 30
REF: 011416ge

REF: 061321ge
STA: G.G. 34
STA: G.G. 34

TOP: Interior and Exterior Angles of Triangles
TOP: Trapezoids
STA: G.G. 56

STA: G.G. 74

STA: G.G. 35
REF: 061320ge

TOP: Parallel Lines and Transversals STA: G.G. 35

ANS: 1 PTS: 2
REF: 081324ge
STA: G.G. 74
TOP: Graphing Circles
270 ANS: 1

$$
V=\frac{4}{3} \pi r^{3}
$$

$44.6022=\frac{4}{3} \pi r^{3}$
$10.648 \approx r^{3}$
$2.2 \approx r$
PTS: 2
REF: 061317ge
STA: G.G. 16
TOP: Volume and Surface Area
271 ANS: 1

PTS: 2 REF: 011413ge STA: G.G. 42 TOP: Midsegments
272 ANS: 2
$M_{x}=\frac{8+(-3)}{2}=2.5 . M_{Y}=\frac{-4+2}{2}=-1$.
PTS: 2
REF: 061312ge
STA: G.G. 66
REF: 011423ge
REF: 061313ge
TOP: Midpoint
273 ANS: 1
PTS: 2
TOP: Equations of Circles
274 ANS: $2 \quad$ PTS: 2
TOP: Quadratic-Linear Systems
275 ANS: 2
Parallel chords intercept congruent arcs. $\frac{360-(104+168)}{2}=44$
PTS: 2
REF: 011302ge
STA: G.G. 52
PTS: 2
REF: 061303ge
TOP: Chords
ANS: 4
STA: G.G. 22
TOP: Locus
277 ANS: 4

PTS: 2
REF: 011318ge
STA: G.G. 73
TOP: Equations of Circles

Geometry Multiple Choice Regents Exam Questions

Answer Section

278 ANS: 2
$M_{x}=\frac{2+(-4)}{2}=-1 . M_{Y}=\frac{-3+6}{2}=\frac{3}{2}$.
PTS: 2 REF: fall0813ge STA: G.G. 66 TOP: Midpoint
KEY: general
279 ANS: 1
$\angle D C B$ and $\angle A D C$ are supplementary adjacent angles of a parallelogram. $180-120=60 . \angle 2=60-45=15$.
PTS: 2 REF: 080907ge
STA: G.G. 38
REF: 080918ge
TOP: Parallelograms
280 ANS: 1
PTS: 2
TOP: Special Quadrilaterals
281 ANS: 1
$x+2 x+2+3 x+4=180$

$$
\begin{aligned}
6 x+6 & =180 \\
x & =29
\end{aligned}
$$

PTS: 2
REF: 011002ge
STA: G.G. 30
282 ANS: 1
$\angle A=\frac{(n-2) 180}{n}=\frac{(5-2) 180}{5}=108 \angle A E B=\frac{180-108}{2}=36$
PTS: 2
REF: 081022ge
STA: G.G. 37
283 ANS: 4
PTS: 2
REF: 060904ge
TOP: Interior and Exterior Angles of Polygons
TOP: Solids
284 ANS: 1
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$

$$
3.6=x
$$

PTS: 2
KEY: leg
285 ANS: 1
TOP: Planes
286 ANS: 2
REF: 060915ge
STA: G.G. 47
TOP: Similarity

TOP: Parallel Lines and Transversals

287
ANS: 2

$$
\begin{aligned}
x^{2}+(x+7)^{2} & =13^{2} \\
x^{2}+x^{2}+7 x+7 x+49 & =169 \\
2 x^{2}+14 x-120 & =0 \\
x^{2}+7 x-60 & =0 \\
(x+12)(x-5) & =0 \\
x & =5 \\
2 x & =10
\end{aligned}
$$

PTS: 2 REF: 061024ge STA: G.G. 48 TOP: Pythagorean Theorem
288 ANS: 1
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.

$$
\begin{aligned}
\overline{G C} & =2 \overline{F G} \\
\overline{G C}+\overline{F G} & =24 \\
2 \overline{F G}+\overline{F G} & =24 \\
3 \overline{F G} & =24 \\
\overline{F G} & =8
\end{aligned}
$$

PTS: 2
REF: 081018ge
STA: G.G. 43
TOP: Centroid
289 ANS: 4
Median $\overline{B F}$ bisects $\overline{A C}$ so that $\overline{C F} \cong \overline{F A}$.
PTS: 2 REF: fall0810ge STA: G.G. 24 TOP: Statements
290
ANS: 4
TOP: Eq
PTS: 2
REF: 060922ge
STA: G.G. 73
TOP: Equations of Circles
291 ANS: 2
The slope of $y=\frac{1}{2} x+5$ is $\frac{1}{2}$. The slope of a perpendicular line is $-2 . y=m x+b$

$$
\begin{aligned}
& 5=(-2)(-2)+b \\
& b=1
\end{aligned}
$$

PTS: 2 REF: 060907ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
292 ANS: 2
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 060914ge STA: G.G. 43 TOP: Centroid
293 ANS: 3
PTS: 2
KEY: basic
TOP: Reflections
ANS: 2
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2
REF: 060911ge
STA: G.G. 34
TOP: Angle Side Relationship

295 ANS: 3
TOP: Negations
296 ANS: 1
TOP: Tangents
297 ANS: 4 TOP: Constructions
298 ANS: 4
$180-(50+30)=100$
PTS: 2 REF: 081006ge STA: G.G. 45 TOP: Similarity
KEY: basic
299 ANS: 2
PTS: 2
TOP: Properties of Transformations
300 ANS: 2
$\frac{3}{7}=\frac{6}{x}$
$3 x=42$
$x=14$

PTS: 2
301 ANS: 2
REF: 081027ge
STA: G.G. 46
REF: 011020ge
TOP: Graphing Circles
302 ANS: 3

. The sum of the interior angles of a pentagon is $(5-2) 180=540$.
PTS: 2 REF: 011023ge STA: G.G. 36 TOP: Interior and Exterior Angles of Polygons
303 ANS: 1
$(x, y) \rightarrow(x+3, y+1)$
PTS: 2
304 ANS: 4
TOP: Negations
305
TOP: Equations of Circles
306 ANS: 4 PTS: 2
TOP: Locus
307 ANS: 2
$6+17>22$
PTS: 2 REF: 080916ge STA: G.G. 33 TOP: Triangle Inequality Theorem

308
ANS: 3
The diagonals of an isosceles trapezoid are congruent. $5 x+3=11 x-5$.

$$
\begin{aligned}
6 x & =18 \\
x & =3
\end{aligned}
$$

PTS: 2 REF: fall0801ge STA: G.G. 40 TOP: Trapezoids
309 ANS: 2
$y+\frac{1}{2} x=4 \quad 3 x+6 y=12$
$\begin{array}{rlrl}y=-\frac{1}{2} x+4 & 6 y & =-3 x+12 \\ 1 & y & =-\frac{3}{6} x+2\end{array}$
$m=-\frac{1}{2}$

$$
y=-\frac{1}{2} x+2
$$

PTS: 2 REF: 081014ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
310 ANS: 1
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{3+3}{2}=3$. The center is (2,3). $d=\sqrt{(-2-6)^{2}+(3-3)^{2}}=\sqrt{64+0}=8$. If the diameter is 8 , the radius is 4 and $r^{2}=16$.

PTS: 2 REF: fall0820ge STA: G.G. 71 TOP: Equations of Circles
311 ANS: 2
The slope of $2 x+3 y=12$ is $-\frac{A}{B}=-\frac{2}{3}$. The slope of a perpendicular line is $\frac{3}{2}$. Rewritten in slope intercept form,
(2) becomes $y=\frac{3}{2} x+3$.

PTS: 2 REF: 060926ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
312 ANS: 1
$d=\sqrt{(-4-2)^{2}+(5-(-5))^{2}}=\sqrt{36+100}=\sqrt{136}=\sqrt{4} \cdot \sqrt{34}=2 \sqrt{34}$.
PTS: 2 REF: 080919ge STA: G.G. 67 TOP: Distance
KEY: general
313 ANS: 4
$M_{x}=\frac{-6+1}{2}=-\frac{5}{2} . M_{y}=\frac{1+8}{2}=\frac{9}{2}$.
PTS: 2
REF: 060919ge
STA: G.G. 66
TOP: Midpoint
KEY: graph
314 ANS: 4
PTS: 2
REF: 011012ge
STA: G.G. 1
TOP: Planes

315 ANS: 1
In an equilateral triangle, each interior angle is 60° and each exterior angle is $120^{\circ}\left(180^{\circ}-120^{\circ}\right)$. The sum of the three interior angles is 180° and the sum of the three exterior angles is 360°.

PTS: 2
316 ANS: 1
REF: 060909ge
PTS: 2
TOP: Angle Side Relationship
317 ANS: 1

PTS: 2
REF: 081017ge
KEY: two chords
318 ANS: 2

PTS: 2
KEY: inscribed
319 ANS: 4
TOP: Constructions
320 ANS: 3

PTS: 2
321

REF: 061026GE

PTS: 2

ANS: 4
REF: 061011ge

STA: G.G. 51

REF: 011009ge

TOP: Arcs Determined by Angles
STA: G.G. 19

TOP: Interior and Exterior Angles of Triangles STA: G.G. 34

STA: G.G. 30
REF: 061010ge

STA: G.G. 53
TOP: Segments Intercepted by Circle

STA: G.G. 70
TOP: Identifying Transformations

322 ANS: 2 PTS: 2 REF: 080927ge STA: G.G. 4
323 ANS: 1
PTS: 2
REF: 061005ge STA: G.G. 55
TOP: Properties of Transformations
324 ANS: 4
The slope of $y=-3 x+2$ is -3 . The perpendicular slope is $\frac{1}{3} \cdot-1=\frac{1}{3}(3)+b$

$$
\begin{aligned}
-1 & =1+b \\
b & =-2
\end{aligned}
$$

PTS: 2
REF: 011018ge STA: G.G. 64
ANS: 1
PTS: 2
REF: 060903ge
TOP: Parallel and Perpendicular Lines
TOP: Identifying Transformations
326 ANS: 3 PTS: 2 REF: 080928ge STA: G.G. 50
TOP: Tangents KEY: common tangency
327 ANS: 4

$$
\begin{aligned}
\mathrm{SA} & =4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 6^{3}=288 \pi \\
144 \pi & =4 \pi r^{2} \\
36 & =r^{2} \\
6 & =r
\end{aligned}
$$

PTS: 2
REF: 081020ge
STA: G.G. 16
TOP: Surface Area
ANS: 1

$$
V=\pi r^{2} h
$$

$$
1000=\pi r^{2} \cdot 8
$$

$$
r^{2}=\frac{1000}{8 \pi}
$$

$$
r \approx 6.3
$$

PTS: 2
ANS: 3
TOP: Planes
330 ANS: 3
$\frac{36+20}{2}=28$
PTS: 2
KEY: inside circle
331
ANS: 4
TOP: Tangents
REF: 080926ge
STA: G.G. 14
TOP: Volume and Lateral Area
PTS: 2
REF: 061017ge
STA: G.G. 1

REF: 061019ge
STA: G.G. 51
TOP: Arcs Determined by Angles

PTS: 2
REF: fall0824ge
STA: G.G. 50

332 ANS: 4
The slope of $y=-\frac{2}{3} x-5$ is $-\frac{2}{3}$. Perpendicular lines have slope that are opposite reciprocals.
PTS: 2 REF: 080917ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
333 ANS: 2
PTS: 2
REF: 011011ge
STA: G.G. 22
TOP: Locus
334 ANS: 3
PTS: 2
REF: fall0816ge
STA: G.G. 1
TOP: Planes
335 ANS: 3
The slope of $y=x+2$ is 1 . The slope of $y-x=-1$ is $\frac{-A}{B}=\frac{-(-1)}{1}=1$.
PTS: 2 REF: 080909ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
336 ANS: 2
PTS: 2
REF: 061324ge
STA: G.G. 44
TOP: Similarity Proofs
337 ANS: 2
$7+18>6+12$
PTS: 2 REF: fall0819ge STA: G.G. 33 TOP: Triangle Inequality Theorem
ANS: 1
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \cdot 4^{2} \cdot 12 \approx 201$
PTS: 2 REF: 060921ge STA: G.G. 15 TOP: Volume
339 ANS: 1
$12(8)=x(6)$
$96=6 x$
$16=x$
PTS: 2 REF: 061328ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two secants
340 ANS: 3

$$
\begin{aligned}
(x+3)^{2}-4 & =2 x+5 \\
x^{2}+6 x+9-4 & =2 x+5 \\
x^{2}+4 x & =0 \\
x(x+4) & =0 \\
x & =0,-4
\end{aligned}
$$

PTS: 2
REF: 081004ge STA: G.G. 70
TOP: Quadratic-Linear Systems

341 ANS: 2

$$
x^{2}=3(x+18)
$$

$x^{2}-3 x-54=0$
$(x-9)(x+6)=0$

$$
x=9
$$

PTS: 2
REF: fall0817ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
342 ANS: 1
PTS: 2
REF: 081008ge
STA: G.G. 3
TOP: Planes
343 ANS: 1
PTS: 2
REF: 061012ge STA: G.G. 20
TOP: Constructions
344 ANS: 1
$3 x^{2}+18 x+24$
$3\left(x^{2}+6 x+8\right)$
$3(x+4)(x+2)$
PTS: 2 REF: fall0815ge STA: G.G. 12 TOP: Volume
345 ANS: 4
$L=2 \pi r h=2 \pi \cdot 5 \cdot 11 \approx 345.6$
PTS: 2
REF: 061006ge
STA: G.G. 14
REF: 080905ge
TOP: Volume and Lateral Area
ANS: 4
PTS: 2
TOP: Triangle Congruency
347 ANS: 3

PTS: 2
REF: 060902ge
STA: G.G. 28
REF: 080921ge
TOP: Triangle Congruency
348 ANS: 2
PTS: 2
TOP: Equations of Circles
349 ANS: 2
PTS: 2
REF: 060910ge
STA: G.G. 72

TOP: Equations of Circles
350 ANS: 3
$2 y=-6 x+8$ Perpendicular lines have slope the opposite and reciprocal of each other.
$y=-3 x+4$
$m=-3$
$m_{\perp}=\frac{1}{3}$
PTS: 2 REF: 081024ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines

351 ANS: 4
The radius is 4. $r^{2}=16$.
PTS: 2 REF: 061014ge STA: G.G. 72 TOP: Equations of Circles
352 ANS: 1
Translations and reflections do not affect distance.
PTS: 2 REF: 080908ge STA: G.G. 61
TOP: Analytical Representations of Transformations
353 ANS: 1 PTS: 2 REF: 081009ge STA: G.G. 73
TOP: Equations of Circles
354 ANS: 3

PTS: 2 REF: 061016ge STA: G.G. 40 TOP: Trapezoids
355 ANS: 2
$\frac{140-\overline{R S}}{2}=40$
$140-\overline{R S}=80$
$\overline{R S}=60$
PTS: 2 REF: 081025ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: outside circle
356 ANS: 3
$m=\frac{-A}{B}=\frac{5}{2} . m=\frac{-A}{B}=\frac{10}{4}=\frac{5}{2}$
PTS: 2 REF: 011014ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
357 ANS: 2
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{-4+2}{2}=-1$
PTS: 2 REF: 080910ge STA: G.G. 66 TOP: Midpoint
KEY: general
ANS: 1
Since $\overline{A C} \cong \overline{B C}, \mathrm{~m} \angle A=\mathrm{m} \angle B$ under the Isosceles Triangle Theorem.
PTS: 2 REF: fall0809ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane
ANS: 4
TOP: Planes
PTS: 2 REF: 080914ge
STA: G.G. 7

360 ANS: 1
The closer a chord is to the center of a circle, the longer the chord.
PTS: 2 REF: 011005ge STA: G.G. 49 TOP: Chords
361 ANS: 2 PTS: 2 REF: 081015ge STA: G.G. 56
TOP: Identifying Transformations
362 ANS: 3
$4(x+4)=8^{2}$
$4 x+16=64$
$x=12$
PTS: 2 REF: 060916ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: tangent and secant
363
ANS: 4 PTS: 2
TOP: Conditional Statements
364 ANS: 4 PTS: 2 REF: 061008ge STA: G.G. 40
TOP: Trapezoids
365
TOP: Centroid, Orthocenter, Incenter and Circumcenter
366 ANS: 4
Corresponding angles of similar triangles are congruent.
PTS: 2 REF: fall0826ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
367 ANS: 2
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+30}{2}=44$.

$$
\begin{aligned}
x+30 & =88 \\
x & =58
\end{aligned}
$$

PTS: 2 REF: 011001ge STA: G.G. 40 TOP: Trapezoids
368 ANS: 2
Adjacent sides of a rectangle are perpendicular and have opposite and reciprocal slopes.
PTS: 2 REF: 061028ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
369 ANS: 2
PTS: 2 REF: 061022ge
STA: G.G. 62
TOP: Parallel and Perpendicular Lines
370 ANS: 3
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 27=972 \pi$
PTS: 2 REF: 011027ge STA: G.G. 14 TOP: Volume and Lateral Area
371 ANS: 4
$180-(40+40)=100$
PTS: 2 REF: 080903ge STA: G.G. 31 TOP: Isosceles Triangle Theorem

372 ANS: 4
(4) is not true if $\angle P Q R$ is obtuse.

PTS: 2 REF: 060924ge STA: G.G. 32 TOP: Exterior Angle Theorem
373 ANS: 1

PTS: 2
REF: 081003ge
STA: G.G. 42
TOP: Midsegments
374 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-2}{-1}=2$. A parallel line would also have a slope of 2. Since the answers are in slope intercept form, find the y-intercept: $\quad y=m x+b$

$$
\begin{aligned}
-11 & =2(-3)+b \\
-5 & =b
\end{aligned}
$$

PTS: 2
ANS: 1
TOP: Tangents
ANS: 3
TOP: Constructions

REF: fall0812ge STA: G.G. 65
PTS: 2 REF: 081012ge
KEY: two tangents
PTS: 2 REF: 080902ge
REF: 080902ge STA: G.G. 17
ANS: 4
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-4}{2}=-2$. A parallel line would also have a slope of -2 . Since the answers are in slope intercept form, find the y-intercept:

$$
\begin{aligned}
y & =m x+b \\
3 & =-2(7)+b \\
17 & =b
\end{aligned}
$$

PTS: 2
REF: 081010ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines

378 ANS: 1

PTS: 2
REF: 011021ge
STA: G.G. 32
379 ANS: 4
PTS: 2
REF: fall0818ge
TOP: Analytical Representations of Transformations
380 ANS: 1
$-2\left(-\frac{1}{2} y=6 x+10\right)$

$$
y=-12 x-20
$$

PTS: 2
381 ANS: 3
REF: 061027ge
STA: G.G. 63
TOP: Triangle Congruency
382 ANS: $4 \quad$ PTS: 2
TOP: Similarity Proofs
383 ANS: 2
TOP: Constructions
384 ANS: 2 PTS: 2
TOP: Identifying Transformations
385 ANS: 1
$a^{2}+(5 \sqrt{2})^{2}=(2 \sqrt{15})^{2}$
$a^{2}+(25 \times 2)=4 \times 15$
$a^{2}+50=60$

$$
\begin{aligned}
a^{2} & =10 \\
a & =\sqrt{10}
\end{aligned}
$$

	PTS: 2	REF: 011016ge	STA: G.G. 48	TOP: Pythagorean Theorem	
386	ANS: 1	PTS: 2	REF: fall0807ge	STA:	G.G. 19
	TOP: Constructions				
387	ANS: 3	PTS: 2	REF: fall0825ge	STA: G.G. 21	
	TOP: Centroid, Orthocenter, Incenter and Circumcenter				

388 ANS: 2
A dilation affects distance, not angle measure.
PTS: 2 REF: 080906ge STA: G.G. 60 TOP: Identifying Transformations
389 ANS: 4
PTS: 2
REF: 061015ge
TOP: Identifying Transformations
390 ANS: $3 \quad$ PTS: 2
REF: 061004ge
STA: G.G. 56

TOP: Isosceles Triangle Theorem
391 ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A C}=\mathrm{m} \overparen{B D}=30.180-30-30=120$.
PTS: 2
REF: 080904ge
STA: G.G. 52
TOP: Chords
392 ANS: 4
$x^{2}=(4+5) \times 4$
$x^{2}=36$
$x=6$
PTS: 2 REF: 011008ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: tangent and secant
393 ANS: $1 \quad$ PTS: 2
TOP: Graphing Circles
394 ANS: 3
The lateral edges of a prism are parallel.
PTS: 2 REF: fall0808ge STA: G.G. 10 TOP: Solids
395 ANS: 3

$\begin{array}{llll}\text { PTS: } 2 & \text { REF: 080920ge } & \text { STA: G.G. } 42 & \text { TOP: Midsegments } \\ \text { ANS: } 1 & \text { PTS: } 2 & \text { REF: 061009ge } & \text { STA: G.G. } 26\end{array}$
TOP: Converse and Biconditional
397 ANS: 4
The marked 60° angle and the angle above it are on the same straight line and supplementary. This unmarked supplementary angle is 120°. Because the unmarked 120° angle and the marked 120° angle are alternate exterior angles and congruent, $d \| e$.

PTS: 2 REF: 080901ge STA: G.G. 35 TOP: Parallel Lines and Transversals

ANS: 1
If $\angle A$ is at minimum $\left(50^{\circ}\right)$ and $\angle B$ is at minimum $\left(90^{\circ}\right), \angle C$ is at maximum of $40^{\circ}\left(180^{\circ}-\left(50^{\circ}+90^{\circ}\right)\right.$). If $\angle A$ is at maximum $\left(60^{\circ}\right)$ and $\angle B$ is at maximum $\left(100^{\circ}\right), \angle C$ is at minimum of $20^{\circ}\left(180^{\circ}-\left(60^{\circ}+100^{\circ}\right)\right.$).

PTS: 2 REF: 060901ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
399 ANS: 4
$y+x=4 . x^{2}-6 x+10=-x+4 . y+x=4 . y+2=4$

$y=-x+4 \quad x^{2}-5 x+6=0 \quad y+3=4 \quad y=2$

$$
(x-3)(x-2)=0 \quad y=1
$$

$$
x=3 \text { or } 2
$$

PTS: 2 REF: 080912ge STA: G.G. 70 TOP: Quadratic-Linear Systems
400 ANS: 4
$d=\sqrt{(-6-2)^{2}+(4-(-5))^{2}}=\sqrt{64+81}=\sqrt{145}$
PTS: 2
REF: 081013ge STA: G.G. 67
TOP: Distance
KEY: general
401 ANS: 2
Because the triangles are similar, $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=1$
PTS: 2
REF: 011022ge
STA: G.G. 45
TOP: Similarity
KEY: perimeter and area
402
ANS: 4
sum of interior $\angle \mathrm{s}=$ sum of exterior $\angle \mathrm{s}$

$$
\begin{aligned}
(n-2) 180 & =n\left(180-\frac{(n-2) 180}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
$$

PTS: 2
REF: 081016ge
STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons
ANS: 2
$\frac{87+35}{2}=\frac{122}{2}=61$
PTS: 2
REF: 011015ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle

PTS: 2
REF: 081002ge
STA: G.G. 9
TOP: Planes
405 ANS: 3
PTS: 2
REF: fall0814ge
STA: G.G. 73
TOP: Equations of Circles
406 ANS: 1
Parallel lines intercept congruent arcs.
PTS: 2
REF: 061001ge
STA: G.G. 52 TOP: Chords
407 ANS: 2

PTS: 2
408 ANS: 1
REF: 081007ge
STA: G.G. 28
PTS: 2
TOP: Equations of Circles
409 ANS: 2
PTS: 2
REF: 080911ge
TOP: Triangle Congruency
STA: G.G. 73
REF: 011004ge
STA: G.G. 17
TOP: Constructions
410 ANS: 2
$M_{x}=\frac{3 x+5+x-1}{2}=\frac{4 x+4}{2}=2 x+2 . M_{Y}=\frac{3 y+(-y)}{2}=\frac{2 y}{2}=y$.

PTS: 2 REF: 081019ge STA: G.G. 66 TOP: Midpoint
KEY: general
411 ANS: 4
$\overline{B G}$ is also an angle bisector since it intersects the concurrence of $\overline{C D}$ and $\overline{A E}$
PTS: 2 REF: 061025ge STA: G.G. 21
KEY: Centroid, Orthocenter, Incenter and Circumcenter
412 ANS: 4
$d=\sqrt{(-3-1)^{2}+(2-0)^{2}}=\sqrt{16+4}=\sqrt{20}=\sqrt{4} \cdot \sqrt{5}=2 \sqrt{5}$
PTS: 2 REF: 011017ge STA: G.G. 67 TOP: Distance
KEY: general
413 ANS: 3 PTS: 2 REF: 060928ge STA: G.G. 8
TOP: Planes
414 ANS: 1
Opposite sides of a parallelogram are congruent. $4 x-3=x+3 . S V=(2)+3=5$.

$$
\begin{aligned}
3 x & =6 \\
x & =2
\end{aligned}
$$

PTS: 2 REF: 011013ge STA: G.G. 38 TOP: Parallelograms

415 ANS: 2 PTS: 2 REF: fall0806ge STA: G.G. 9
TOP: Planes
416 ANS: 4
$3 y+1=6 x+4.2 y+1=x-9$

$$
\begin{array}{rlrl}
3 y & =6 x+3 & 2 y & =x-10 \\
y & =2 x+1 & y & =\frac{1}{2} x-5
\end{array}
$$

PTS: 2
REF: fall0822ge STA: G.G. 63
TOP: Parallel and Perpendicular Lines
417 ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A D}=\mathrm{m} \overparen{B C}=60 . \mathrm{m} \angle C D B=\frac{1}{2} \mathrm{~m} \overparen{B C}=30$.

PTS: 2 REF: 060906ge STA: G.G. 52 TOP: Chords
418 ANS: 2
$(d+4) 4=12(6)$
$4 d+16=72$
$d=14$
$r=7$
PTS: 2 REF: 061023ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two secants
419 ANS: 1
PTS: 2
REF: 011024ge
STA: G.G. 3
TOP: Planes
420 ANS: 3
PTS: 2
REF: 081026ge STA: G.G. 26
TOP: Contrapositive
421 ANS: 4
PTS: 2
REF: 061003ge
STA: G.G. 10
TOP: Solids
422 ANS: 2
$4(4 x-3)=3(2 x+8)$
$16 x-12=6 x+24$

$$
\begin{aligned}
10 x & =36 \\
x & =3.6
\end{aligned}
$$

PTS: 2 REF: 080923ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two chords
423
ANS: 4
PTS: 2
REF: 080915ge
STA: G.G. 56
TOP: Identifying Transformations
424 ANS: 1
PTS: 2
REF: 081028ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
425 ANS: 2
$\sqrt{8^{2}+15^{2}}=17$
PTS: 2
REF: 061326ge
STA: G.G. 39
TOP: Special Parallelograms

426
ANS: 4
$(n-2) 180=(8-2) 180=1080 . \frac{1080}{8}=135$.
PTS: 2 REF: fall0827ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
427 ANS: 3
PTS: 2
REF: fall0804ge
STA: G.G. 18
TOP: Constructions
428 ANS: 4
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 081011ge STA: G.G. 34 TOP: Angle Side Relationship
429 ANS: 3
Because $\overline{O C}$ is a radius, its length is 5. Since $C E=2 O E=3 . \Delta E D O$ is a 3-4-5 triangle. If $E D=4, B D=8$.
PTS: 2 REF: fall0811ge STA: G.G. 49 TOP: Chords
430 ANS: 1
After the translation, the coordinates are $A^{\prime}(-1,5)$ and $B^{\prime}(3,4)$. After the dilation, the coordinates are $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$.

PTS: 2 REF: fall0823ge STA: G.G. 58 TOP: Compositions of Transformations
431 ANS: 1
$A^{\prime}(2,4)$
PTS: 2
REF: 011023ge
STA: G.G. 54
TOP: Compositions of Transformations
KEY: basic
432 ANS: 2
PTS: 2
REF: 061002ge
STA: G.G. 24
TOP: Negations
433 ANS: 4
TOP: Similarity
434 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$ so the slope of this line is $-\frac{5}{3}$ Perpendicular lines have slope that are the opposite and reciprocal of each other.

PTS: 2
REF: fall0828ge STA: G.G. 62
TOP: Parallel and Perpendicular Lines
435 ANS: 4

PTS: 2
REF: 081001ge
STA: G.G. 29 TOP: Triangle Congruency
436 ANS: 1
$\Delta P R T$ and $\triangle S R Q$ share $\angle R$ and it is given that $\angle R P T \cong \angle R S Q$.
PTS: 2 REF: fall0821ge STA: G.G. 44 TOP: Similarity Proofs

437 ANS: 3

PTS: 2 REF: fall0805ge STA: G.G. 70 TOP: Quadratic-Linear Systems
438 ANS: 3
$m=\frac{-A}{B}=-\frac{3}{4}$
PTS: 2 REF: 011025ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
439 ANS: 4
$d=\sqrt{(146-(-4))^{2}+(52-2)^{2}}=\sqrt{25,000} \approx 158.1$
PTS: 2 REF: 061021ge STA: G.G. 67 TOP: Distance
KEY: general
440 ANS: 4
Let $\overline{A D}=x . \quad 36 x=12^{2}$

$$
x=4
$$

PTS: 2
KEY: leg
441 ANS: 3
REF: 080922ge
STA: G.G. 47
TOP: Similarity

TOP: Identifying Transformations
442 ANS: 3
PTS: 2
TOP: Isosceles Triangle Theorem
443 ANS: 3 PTS: 2
TOP: Conditional Statements
444 ANS: 3
PTS: 2
REF: 060908ge
STA: G.G. 60

TOP: Constructions
445 ANS: 3
PTS: 2
REF: 011007ge STA: G.G. 31
REF: 011028ge STA: G.G. 26
REF: 060925ge STA: G.G. 17

TOP: Properties of Transformations
446 ANS: 1
$y=x^{2}-4 x=(4)^{2}-4(4)=0 .(4,0)$ is the only intersection.
PTS: 2 REF: 060923ge STA: G.G. 70 TOP: Quadratic-Linear Systems

447 ANS: 2
$\angle A C B$ and $\angle E C D$ are congruent vertical angles and $\angle C A B \cong \angle C E D$.
PTS: 2 REF: 060917ge STA: G.G. 44 TOP: Similarity Proofs
448 ANS: 4
$\Delta A B C \sim \triangle D B E . \frac{\overline{A B}}{\overline{D B}}=\frac{\overline{A C}}{\overline{D E}}$
$\frac{9}{2}=\frac{x}{3}$
$x=13.5$
PTS: 2 REF: 060927ge STA: G.G. 46 TOP: Side Splitter Theorem

Geometry 2 Point Regents Exam Questions

Answer Section

449 ANS:
67. $\frac{180-46}{2}=67$

PTS: 2
REF: 011029ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
ANS:

PTS: 2 REF: 081233ge STA: G.G. 19 TOP: Constructions
ANS:
$m_{\overline{A B}}=\frac{4-1}{4-2}=\frac{3}{2} \cdot m_{B C}=-\frac{2}{3}$

PTS: 4 REF: 061334ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
452 ANS:
$\sqrt{(3-7)^{2}+(-4-2)^{2}}=\sqrt{16+36}=\sqrt{52}=\sqrt{4} \sqrt{13}=2 \sqrt{13}$.

PTS: 2
REF: 011431ge
STA: G.G. 67
TOP: Distance
453 ANS:
The medians of a triangle are not concurrent. False.
PTS: 2
REF: 061129ge STA: G.G. 24
TOP: Negations

454 ANS:
30.

PTS: 2 REF: 011129ge STA: G.G. 31 TOP: Isosceles Triangle Theorem
455 ANS:
$L=2 \pi r h=2 \pi \cdot 12 \cdot 22 \approx 1659 . \frac{1659}{600} \approx 2.8 .3$ cans are needed.
PTS: 2
REF: 061233ge
STA: G.G. 14
TOP: Volume and Lateral Area
456 ANS:
70. $3 x+5+3 x+5+2 x+2 x=180$

$$
\begin{aligned}
10 x+10 & =360 \\
10 x & =350 \\
x & =35 \\
2 x & =70
\end{aligned}
$$

PTS: 2
REF: 081029ge
STA: G.G. 40
TOP: Trapezoids
457 ANS:
$M=\left(\frac{3+3}{2}, \frac{-1+5}{2}\right)=(3,2) . y=2$.
PTS: 2 REF: 011334ge STA: G.G. 68 TOP: Perpendicular Bisector
458 ANS:
$(5-2) 180=540 . \frac{540}{5}=108$ interior. $180-108=72$ exterior
PTS: 2 REF: 011131ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons 459 ANS:
6. The centroid divides each median into segments whose lengths are in the ratio $2: 1 . \overline{T D}=6$ and $\overline{D B}=3$

PTS: 2
REF: 011034ge
STA: G.G. 43
TOP: Centroid
460 ANS:
$(x-5)^{2}+(y+4)^{2}=36$
PTS: 2
REF: 081132ge
STA: G.G. 72
TOP: Equations of Circles

461 ANS:
$(2 a-3,3 b+2) .\left(\frac{3 a+a-6}{2}, \frac{2 b-1+4 b+5}{2}\right)=\left(\frac{4 a-6}{2}, \frac{6 b+4}{2}\right)=(2 a-3,3 b+2)$
PTS: 2 REF: 061134ge STA: G.G. 66 TOP: Midpoint
462 ANS:
3. The non-parallel sides of an isosceles trapezoid are congruent. $2 x+5=3 x+2$

$$
x=3
$$

PTS: 2 REF: 080929ge STA: G.G. 40 TOP: Trapezoids
463 ANS:

PTS: 2
REF: 011130ge
STA: G.G. 54
TOP: Reflections
KEY: grids
464 ANS:
37. Since $\overline{D E}$ is a midsegment, $A C=14.10+13+14=37$

PTS: 2 REF: 061030ge STA: G.G. 42 TOP: Midsegments
465 ANS:

PTS: 2
REF: 061033ge
STA: G.G. 22
TOP: Locus

466 ANS:
18. $V=\frac{1}{3} B h=\frac{1}{3} l w h$

$$
288=\frac{1}{3} \cdot 8 \cdot 6 \cdot h
$$

$$
288=16 h
$$

$$
18=h
$$

PTS: 2
REF: 061034ge
STA: G.G. 13
TOP: Volume
ANS:
20. The sides of the triangle formed by connecting the midpoints are half the sides of the original triangle.
$5+7+8=20$.

PTS: 2 REF: 060929ge STA: G.G. 42 TOP: Midsegments
ANS:
25. $d=\sqrt{(-3-4)^{2}+(1-25)^{2}}=\sqrt{49+576}=\sqrt{625}=25$.

PTS: 2
REF: fall0831ge STA: G.G. 67
TOP: Distance
KEY: general
ANS:
5. $\frac{3}{x}=\frac{6+3}{15}$
$9 x=45$
$x=5$
PTS: 2
REF: 011033ge
STA: G.G. 46
TOP: Side Splitter Theorem
470 ANS:

$$
T^{\prime}(-6,3), A^{\prime}(-3,3), P^{\prime}(-3,-1)
$$

PTS: 2
REF: 061229ge
STA: G.G. 54
TOP: Translations

471 ANS:
$E O=6 . C E=\sqrt{10^{2}-6^{2}}=8$
PTS: 2 REF: 011234ge STA: G.G. 49 TOP: Chords
472 ANS:
$\frac{180-80}{2}=50$
PTS: 2
REF: 081129ge
STA: G.G. 52
TOP: Chords
473 ANS:

PTS: 2
REF: 061332ge
STA: G.G. 20
TOP: Constructions
474 ANS:

PTS: 2
REF: 081033ge
STA: G.G. 22
TOP: Locus
475 ANS:
110. $6 x+20=x+40+4 x-5$

$$
\begin{aligned}
6 x+20 & =5 x+35 \\
x & =15 \\
6((15)+20 & =110
\end{aligned}
$$

PTS: 2
REF: 081031ge
STA: G.G. 32
TOP: Exterior Angle Theorem
476 ANS:
$A^{\prime}(2,2), B^{\prime}(3,0), C(1,-1)$
PTS: 2
REF: 081329ge
STA: G.G. 58
TOP: Dilations

477 ANS:

2 is not a prime number, false.
PTS: 2 REF: 081229ge STA: G.G. 24 TOP: Negations
478 ANS:
$180-(90+63)=27$
PTS: 2
REF: 061230ge
STA: G.G. 35
TOP: Parallel Lines and Transversals
479 ANS:
$x^{2}=9 \cdot 8$
$x=\sqrt{72}$
$x=\sqrt{36} \sqrt{2}$
$x=6 \sqrt{2}$
PTS: 2
KEY: two chords
480 ANS:

PTS: 2
REF: 081130ge
STA: G.G. 18
ANS:
Yes. A reflection is an isometry.
PTS: 2
REF: 061132ge
STA: G.G. 55
TOP: Properties of Transformations 482 ANS:

PTS: 2
REF: 011434ge
STA: G.G. 22
TOP: Locus

483 ANS:
The slope of $y=2 x+3$ is 2 . The slope of $2 y+x=6$ is $\frac{-A}{B}=\frac{-1}{2}$. Since the slopes are opposite reciprocals, the lines are perpendicular.

PTS: 2 REF: 011231ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
484 ANS:
center: $(3,-4)$; radius: $\sqrt{10}$
PTS: 2
REF: 081333ge
STA: G.G. 73
TOP: Equations of Circles
485
ANS:

PTS: 2
REF: 061130ge
STA: G.G. 20
TOP: Constructions
486 ANS:

PTS: 2
REF: 061232ge
STA: G.G. 17
TOP: Constructions

487 ANS:

PTS: 2
REF: 061234ge
STA: G.G. 23
TOP: Locus
488 ANS:

PTS: 2
REF: 011233ge
STA: G.G. 17
TOP: Constructions
489 ANS:
$R^{\prime}(-3,-2), S^{\prime}(-4,4)$, and $T^{\prime}(2,2)$.
PTS: 2
REF: 011232ge
STA: G.G. 54
TOP: Rotations
490 ANS:
$(6,-4) . \quad C_{x}=\frac{Q_{x}+R_{x}}{2} . C_{y}=\frac{Q_{y}+R_{y}}{2}$.

$$
\begin{array}{rlrl}
3.5 & =\frac{1+R_{x}}{2} & 2 & =\frac{8+R_{y}}{2} \\
7 & =1+R_{x} & 4 & =8+R_{y} \\
6 & =R_{x} & -4 & =R_{y}
\end{array}
$$

PTS: 2
REF: 011031ge
STA: G.G. 66
TOP: Midpoint
KEY: graph
ANS:
$y=\frac{2}{3} x-9$. The slope of $2 x-3 y=11$ is $-\frac{A}{B}=\frac{-2}{-3}=\frac{2}{3} .-5=\left(\frac{2}{3}\right)(6)+b$

$$
\begin{aligned}
-5 & =4+b \\
b & =-9
\end{aligned}
$$

PTS: 2
REF: 080931ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines

492 ANS:
26. $x+3 x+5 x-54=180$

$$
\begin{aligned}
9 x & =234 \\
x & =26
\end{aligned}
$$

PTS: 2
REF: 080933ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
493 ANS:
2016. $V=\frac{1}{3} B h=\frac{1}{3} s^{2} h=\frac{1}{3} 12^{2} \cdot 42=2016$

PTS: 2
REF: 080930ge
STA: G.G. 13
TOP: Volume
494 ANS:
$m=\frac{-A}{B}=\frac{6}{2}=3 . m_{\perp}=-\frac{1}{3}$.
PTS: 2
REF: 011134ge
STA: G.G. 62
TOP: Parallel and Perpendicular Lines
495 ANS:

PTS: 2
REF: 011230ge
STA: G.G. 22
TOP: Locus
496 ANS:
$2 \sqrt{3} . x^{2}=3 \cdot 4$

$$
x=\sqrt{12}=2 \sqrt{3}
$$

PTS: 2
REF: fall0829ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
497 ANS:

PTS: 2
REF: 080932ge
STA: G.G. 17
TOP: Constructions

498
ANS:

PTS: 2 REF: 011032ge STA: G.G. 20 TOP: Constructions
499
ANS:
$\sqrt{(7-3)^{2}+(-8-0)^{2}}=\sqrt{16+64}=\sqrt{80}=4 \sqrt{5}$
PTS: 2 REF: 061331ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane
500 ANS:
$(n-2) 180=(8-2) 180=1080 . \frac{1080}{8}=135$.
PTS: 2 REF: 061330ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons 501 ANS:
20. $5 x+10=4 x+30$

$$
x=20
$$

PTS: 2
REF: 060934ge
STA: G.G. 45
TOP: Similarity
KEY: basic
502 ANS:
16.7. $\frac{x}{25}=\frac{12}{18}$

$$
\begin{aligned}
18 x & =300 \\
x & \approx 16.7
\end{aligned}
$$

PTS: 2 REF: 061133ge STA: G.G. 46 TOP: Side Splitter Theorem
503 ANS:
Neither. The slope of $y=\frac{1}{2} x-1$ is $\frac{1}{2}$. The slope of $y+4=-\frac{1}{2}(x-2)$ is $-\frac{1}{2}$. The slopes are neither the same nor opposite reciprocals.

PTS: 2 REF: 011433ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines

PTS: 2
REF: 011133ge
STA: G.G. 17
TOP: Constructions

505 ANS:

PTS: 2
REF: 011331ge
STA: G.G. 23
TOP: Locus
506
ANS:
9.1. (11)(8) $h=800$

$$
h \approx 9.1
$$

PTS: 2
507 ANS:

PTS: 2
REF: 081234ge
STA: G.G. 23
TOP: Locus
508 ANS:
22.4. $\quad V=\pi r^{2} h$

$$
12566.4=\pi r^{2} \cdot 8
$$

$$
r^{2}=\frac{12566.4}{8 \pi}
$$

$$
r \approx 22.4
$$

PTS: 2
REF: fall0833ge
STA: G.G. 14
TOP: Volume and Lateral Area
509 ANS:
$V=\pi r^{2} h=\pi(5)^{2} \cdot 7=175 \pi$
PTS: 2
REF: 081231ge
STA: G.G. 14
TOP: Volume and Lateral Area

510 ANS:

PTS: 2
REF: fall0830ge
STA: G.G. 55 TOP: Properties of Transformations
511 ANS:
$375 \pi L=\pi r l=\pi(15)(25)=375 \pi$
PTS: 2 REF: 081030ge STA: G.G. 15 TOP: Lateral Area
512 ANS:
$\sqrt{(-1-3)^{2}+(4-(-2))^{2}}=\sqrt{16+36}=\sqrt{52}=\sqrt{4} \sqrt{13}=2 \sqrt{13}$
PTS: 2 REF: 081331ge STA: G.G. 67 TOP: Distance
513 ANS:
The slope of $x+2 y=4$ is $m=\frac{-A}{B}=\frac{-1}{2}$. The slope of $4 y-2 x=12$ is $\frac{-A}{B}=\frac{2}{4}=\frac{1}{2}$. Since the slopes are neither equal nor opposite reciprocals, the lines are neither parallel nor perpendicular.

PTS: 2 REF: 061231ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
514 ANS:
$(x+1)^{2}+(y-2)^{2}=36$
PTS: 2 REF: 081034ge STA: G.G. 72 TOP: Equations of Circles
515 ANS:
452. $S A=4 \pi r^{2}=4 \pi \cdot 6^{2}=144 \pi \approx 452$

PTS: 2 REF: 061029ge STA: G.G. 16 TOP: Volume and Surface Area
516 ANS:
$\sqrt{(-4-2)^{2}+(3-5)^{2}}=\sqrt{36+4}=\sqrt{40}=\sqrt{4} \sqrt{10}=2 \sqrt{10}$.
PTS: 2 REF: 081232ge STA: G.G. 67 TOP: Distance

517 ANS:
34. $2 x-12+x+90=180$

$$
\begin{aligned}
3 x+78 & =90 \\
3 x & =102 \\
x & =34
\end{aligned}
$$

PTS: 2
REF: 061031ge STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
518 ANS:
If $r=5$, then $r^{2}=25 .(x+3)^{2}+(y-2)^{2}=25$
PTS: 2
REF: 011332ge
STA: G.G. 71
TOP: Equations of Circles
519 ANS:
Distance is preserved after the reflection. $2 x+13=9 x-8$

$$
\begin{aligned}
21 & =7 x \\
3 & =x
\end{aligned}
$$

PTS: 2
REF: 011329ge
STA: G.G. 55
TOP: Properties of Transformations
520 ANS:

PTS: 2
REF: 061032ge
STA: G.G. 54
TOP: Reflections
KEY: grids

521 ANS:

χ
PTS: 2
REF: 060930ge
STA: G.G. 19 TOP: Constructions
522 ANS:
$y=-2 x+14$. The slope of $2 x+y=3$ is $\frac{-A}{B}=\frac{-2}{1}=-2 . \quad y=m x+b \quad$.

$$
\begin{aligned}
& 4=(-2)(5)+b \\
& b=14
\end{aligned}
$$

PTS: 2 REF: 060931ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
523 ANS:

PTS: 2 REF: 011333ge STA: G.G. 19 TOP: Constructions
524 ANS:
$\overline{A C} . \mathrm{m} \angle B C A=63$ and $\mathrm{m} \angle A B C=80 . \overline{A C}$ is the longest side as it is opposite the largest angle.
PTS: 2 REF: 080934ge STA: G.G. 34 TOP: Angle Side Relationship
525 ANS:

PTS: 2
REF: 061333ge
STA: G.G. 23
TOP: Locus

526 ANS:
$L=2 \pi r h=2 \pi \cdot 3 \cdot 7=42 \pi$
PTS: 2 REF: 061329ge STA: G.G. 14 TOP: Volume and Lateral Area 527 ANS:
4. $l_{1} w_{1} h_{1}=l_{2} w_{2} h_{2}$
$10 \times 2 \times h=5 \times w_{2} \times h$
$20=5 w_{2}$
$w_{2}=4$
PTS: 2
REF: 011030ge
STA: G.G. 11
TOP: Volume
ANS:

PTS: 2
REF: 081032ge
STA: G.G. 20
TOP: Constructions
$(7,5) m_{\overline{A B}}=\left(\frac{3+7}{2}, \frac{3+9}{2}\right)=(5,6) m_{B C}=\left(\frac{7+11}{2}, \frac{9+3}{2}\right)=(9,6)$

PTS: 2
REF: 081134ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
530
$2 x-20=x+20 . \mathrm{m} \overparen{A B}=x+20=40+20=60$

$$
x=40
$$

PTS: 2
REF: 011229ge
STA: G.G. 52
TOP: Chords

531 ANS:

PTS: 2 REF: 081334ge STA: G.G. 22 TOP: Locus
532 ANS:
True. The first statement is true and the second statement is false. In a disjunction, if either statement is true, the disjunction is true.

PTS: 2 REF: 060933ge STA: G.G. 25 TOP: Compound Statements
KEY: disjunction
533 ANS:

PTS: 2
REF: 081330ge
STA: G.G. 17
TOP: Constructions
534 ANS:

PTS: 2
REF: fall0832ge
STA: G.G. 17
TOP: Constructions
535 ANS:

PTS: 2
REF: 011330ge
STA: G.G. 50
TOP: Tangents
KEY: common tangency

536 ANS:
$\angle A C B \cong \angle A E D$ is given. $\angle A \cong \angle A$ because of the reflexive property. Therefore $\triangle A B C \sim \triangle A D E$ because of AA.
PTS: 2 REF: 081133ge STA: G.G. 44 TOP: Similarity Proofs
537 ANS:
$S A=4 \pi r^{2}=4 \pi \cdot 2.5^{2}=25 \pi \approx 78.54$
PTS: 2 REF: 011429ge STA: G.G. 16 TOP: Volume and Surface Area
538 ANS:

PTS: 2
REF: 011430ge
STA: G.G. 18
ANS:
$V=\frac{4}{3} \pi \cdot 9^{3}=972 \pi$

PTS: 2
REF: 081131ge
STA: G.G. 16
TOP: Volume and Surface Area
540 ANS:
Contrapositive-If two angles of a triangle are not congruent, the sides opposite those angles are not congruent.
PTS: 2 REF: fall0834ge STA: G.G. 26 TOP: Conditional Statements
541 ANS:
$A=2 B-15 \quad .2 B-15+B+2 B-15+B=180$
$C=A+B$
$C=2 B-15+B$

$$
\begin{aligned}
6 B-30 & =180 \\
6 B & =210 \\
B & =35
\end{aligned}
$$

PTS: 2
REF: 081332ge STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles

542 ANS:

$$
A^{\prime}(-2,1), B^{\prime}(-3,-4) \text {, and } C^{\prime}(5,-3)
$$

PTS: 2
REF: 081230ge
STA: G.G. 54
TOP: Rotations
543 ANS:

$$
\begin{aligned}
B h & =V \\
12 h & =84 \\
h & =7
\end{aligned}
$$

PTS: 2 REF: 011432ge STA: G.G. 12 TOP: Volume
544 ANS:

PTS: 2
REF: 060932ge STA: G.G. 22
TOP: Locus

Geometry 4 Point Regents Exam Questions

Answer Section

545 ANS:
$2 \quad \frac{x+2}{x}=\frac{x+6}{4}$

$$
\begin{aligned}
x^{2}+6 x & =4 x+8 \\
x^{2}+2 x-8 & =0 \\
(x+4)(x-2) & =0 \\
x & =2
\end{aligned}
$$

PTS: 4
REF: 081137ge
STA: G.G. 45
TOP: Similarity
KEY: basic
546 ANS:

PTS: 4
REF: 061137ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
547 ANS:
$A^{\prime}(7,-4), B^{\prime}(7,-1) \cdot C^{\prime}(9,-4)$. The areas are equal because translations preserve distance.

PTS: 4 REF: 011235ge STA: G.G. 55 TOP: Properties of Transformations

548 ANS:

$$
\begin{aligned}
2(y+10) & =4 y-20 . \overline{D F}=y+10=20+10=30 . \overline{O A}=\overline{O D}=\sqrt{16^{2}+30^{2}}=34 \\
2 y+20 & =4 y-20 \\
40 & =2 y \\
20 & =y
\end{aligned}
$$

PTS: 4 REF: 061336ge STA: G.G. 49 TOP: Chords
549 ANS:
$\triangle A B C, \overline{B D}$ bisects $\angle A B C, \overline{B D} \perp \overline{A C}$ (Given). $\angle C B D \cong \angle A B D$ (Definition of angle bisector). $\overline{B D} \cong \overline{B D}$ (Reflexive property). $\angle C D B$ and $\angle A D B$ are right angles (Definition of perpendicular). $\angle C D B \cong \angle A D B$ (All right angles are congruent). $\triangle C D B \cong \triangle A D B$ (SAS). $\overline{A B} \cong \overline{C B}$ (СРСТС).

PTS: 4 REF: 081335ge STA: G.G. 27 TOP: Triangle Proofs
550 ANS:

$A^{\prime \prime}(8,2), B^{\prime \prime}(2,0), C^{\prime \prime}(6,-8)$
PTS: 4 REF: 081036ge STA: G.G. 58 TOP: Compositions of Transformations
551 ANS:

$$
A^{\prime}(5,-4), B^{\prime}(5,1), C^{\prime}(2,1), D^{\prime}(2,-6) ; A^{\prime \prime}(5,4), B^{\prime \prime}(5,-1), C^{\prime \prime}(2,-1), D^{\prime \prime}(2,6)
$$

PTS: 4 REF: 061236ge

STA: G.G. 58
TOP: Compositions of Transformations
KEY: grids
552 ANS:
18. If the ratio of $T A$ to $A C$ is $1: 3$, the ratio of $T E$ to $E S$ is also $1: 3 . \quad x+3 x=24.3(6)=18$.

$$
x=6
$$

PTS: 4
REF: 060935ge
STA: G.G. 50 TOP: Tangents
KEY: common tangency

553 ANS:
$M\left(\frac{-7+5}{2}, \frac{2+4}{2}\right)=M(-1,3) . N\left(\frac{3+5}{2}, \frac{-4+4}{2}\right)=N(4,0) . \overline{M N}$ is a midsegment.

PTS: 4 REF: 011237ge STA: G.G. 42 TOP: Midsegments
554 ANS:
11. $x^{2}+6 x=x+$ 14. $6(2)-1=11$
$x^{2}+5 x-14=0$
$(x+7)(x-2)=0$
$x=2$
PTS: 2 REF: 081235ge STA: G.G. 38 TOP: Parallelograms
ANS:
$y=\frac{4}{3} x-6 . \quad M_{x}=\frac{-1+7}{2}=3 \quad$ The perpendicular bisector goes through $(3,-2)$ and has a slope of $\frac{4}{3}$.

$$
\begin{aligned}
& M_{y}=\frac{1+(-5)}{2}=-2 \\
& m=\frac{1-(-5)}{-1-7}=-\frac{3}{4}
\end{aligned}
$$

$y-y_{M}=m\left(x-x_{M}\right)$.

$$
y-1=\frac{4}{3}(x-2)
$$

PTS: 4
REF: 080935ge STA: G.G. 68
TOP: Perpendicular Bisector

556 ANS:

PTS: 4 REF: 011037ge STA: G.G. 23 TOP: Locus
557 ANS:

PTS: 4
ANS:
2.4. $5 a=4^{2} \quad 5 b=3^{2} \quad h^{2}=a b$

$$
\begin{array}{ll}
a=3.2 \quad b=1.8 & h^{2}=3.2 \cdot 1.8 \\
& h=\sqrt{5.76}=2.4
\end{array}
$$

PTS: 4 REF: 081037ge STA: G.G. 47 TOP: Similarity KEY: altitude
559

PTS: 4
REF: fall0837ge STA: G.G. 23
TOP: Locus

560 ANS:

$$
\begin{aligned}
x^{2}-8 x & =5 x+30 . \mathrm{m} \angle C=4(15)-5=55 \\
x^{2}-13 x-30 & =0 \\
(x-15)(x+2) & =0 \\
x & =15
\end{aligned}
$$

PTS: 4
REF: 061337ge
STA: G.G. 45
TOP: Similarity
KEY: basic
561 ANS:
32. $\frac{16}{20}=\frac{x-3}{x+5} \cdot \overline{A C}=x-3=35-3=32$

$$
16 x+80=20 x-60
$$

$$
140=4 x
$$

$$
35=x
$$

PTS: 4
REF: 011137ge
STA: G.G. 46
TOP: Side Splitter Theorem
562 ANS:

$$
\begin{aligned}
4 x \cdot x & =6^{2} \\
4 x^{2} & =36 \\
x^{2} & =9 \\
x & =3 \\
\overline{B D} & =4(3)=12
\end{aligned}
$$

PTS: 4
REF: 011437ge
STA: G.G. 47
TOP: Similarity
KEY: leg
563 ANS:

PTS: 3 KEY: grids

REF: 011436ge STA: G.G. 58
TOP: Compositions of Transformations

564 ANS:

$$
M^{\prime \prime}(1,-2), A^{\prime \prime}(6,-2), T^{\prime \prime}(5,-4), H^{\prime \prime}(3,-4)
$$

PTS: 4
REF: 081336ge
STA: G.G. 58
TOP: Compositions of Transformations
KEY: grids
565 ANS:
$\overline{B D} \cong \overline{D B}$ (Reflexive Property); $\triangle A B D \cong \triangle C D B$ (SSS); $\angle B D C \cong \angle A B D$ (CPCTC).

PTS: 4
REF: 061035ge
STA: G.G. 27
TOP: Quadrilateral Proofs
566 ANS:
$x^{2}+12+11 x+5+13 x-17=180 . \mathrm{m} \angle A=6^{2}+12=48 . \angle B$ is the largest angle, so $\overline{A C}$ in the longest side.

$$
\begin{array}{rlrl}
x^{2}+24 x-180 & =0 & & \mathrm{~m} \angle B=11(6)+5=71 \\
(x+30)(x-6) & =0 & \mathrm{~m} \angle C=13(6)-7=61 \\
x & =6 & &
\end{array}
$$

PTS: 4 REF: 011337ge STA: G.G. 34 TOP: Angle Side Relationship
567 ANS:

$$
\begin{aligned}
V & =\pi r^{2} h \quad . L=2 \pi r h=2 \pi \cdot 5 \sqrt{2} \cdot 12 \approx 533.1 \\
600 \pi & =\pi r^{2} \cdot 12 \\
50 & =r^{2} \\
\sqrt{25} \sqrt{2} & =r \\
5 \sqrt{2} & =r
\end{aligned}
$$

PTS: 4 REF: 011236ge STA: G.G. 14 TOP: Volume and Lateral Area

568 ANS:

PTS: 4 REF: 080937ge STA: G.G. 55 TOP: Properties of Transformations 569 ANS:

$$
\begin{array}{rlrl}
12 x-4+180-6 x+6 x+7 x+13 & =360 . & 16 y+1 & =\frac{12 y+1+18 y+6}{2} \\
19 x+189 & =360 & 32 y+2 & =30 y+7 \\
19 x & =171 & 2 y & =5 \\
x & =9 & y & =\frac{5}{2}
\end{array}
$$

PTS: 4
REF: 081337g
STA: G.G. 40
TOP: Trapezoids
570
ANS:
$y=\frac{2}{3} x+1.2 y+3 x=6 \quad . y=m x+b$

$$
\begin{array}{rlrl}
2 y & =-3 x+6 & 5 & =\frac{2}{3}(6)+b \\
y & =-\frac{3}{2} x+3 & 5 & =4+b \\
m & =-\frac{3}{2} & 1 & =b \\
m_{\perp} & =\frac{2}{3} & y & =\frac{2}{3} x+1
\end{array}
$$

PTS: 4 REF: 061036ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines 571 ANS:

PTS: 4
REF: 080936ge
STA: G.G. 23
TOP: Locus

572
ANS:
$\angle B$ and $\angle E$ are right angles because of the definition of perpendicular lines. $\angle B \cong \angle E$ because all right angles are congruent. $\angle B F D$ and $\angle D F E$ are supplementary and $\angle E C A$ and $\angle A C B$ are supplementary because of the definition of supplementary angles. $\angle D F E \cong \angle A C B$ because angles supplementary to congruent angles are congruent. $\triangle A B C \sim \triangle D E F$ because of AA.

PTS: 4 REF: 011136ge STA: G.G. 44 TOP: Similarity Proofs
573 ANS:
30. $3 x+4 x+5 x=360 . \mathrm{m} \overparen{\mathrm{LN}}: \mathrm{m} \overparen{\mathrm{NK}}: \mathrm{m} \overparen{\mathrm{KL}}=90: 120: 150 . \frac{150-90}{2}=30$

$$
x=20
$$

PTS: 4
REF: 061136ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: outside circle
574 ANS:

$$
S^{\prime \prime}(5,-3), W^{\prime \prime}(3,-4), A^{\prime \prime}(2,1) \text {, and } N^{\prime \prime}(4,2)
$$

PTS: 4
REF: 061335ge STA: G.G. 58
TOP: Compositions of Transformations
KEY: grids
ANS:

$$
\begin{array}{rlrl}
x(x+2) & =12 \cdot 2 . \overline{R T}=6+4=10 . & y \cdot y & =18 \cdot 8 \\
x^{2}+2 x-24 & =0 & y^{2} & =144 \\
(x+6)(x-4) & =0 & y & =12 \\
x & =4 & &
\end{array}
$$

PTS: 4
REF: 061237ge STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant

576
ANS:

$$
G^{\prime \prime}(3,3), H^{\prime \prime}(7,7), S^{\prime \prime}(-1,9)
$$

PTS: 4
REF: 081136ge
STA: G.G. 58
TOP: Compositions of Transformations
577 ANS:

PTS: 4
REF: 060937ge STA: G.G. 54
TOP: Compositions of Transformations KEY: grids
ANS:
$\angle B$ and $\angle C$ are right angles because perpendicular lines form right angles. $\angle B \cong \angle C$ because all right angles are congruent. $\angle A E B \cong \angle D E C$ because vertical angles are congruent. $\triangle A B E \cong \triangle D C E$ because of ASA. $\overline{A B} \cong \overline{D C}$ because СРСТС.

PTS: 4 REF: 061235ge STA: G.G. 27 TOP: Triangle Proofs
579 ANS:
$L=2 \pi r h=2 \pi \cdot 3 \cdot 5 \approx 94.25 . V=\pi r^{2} h=\pi(3)^{2}(5) \approx 141.37$
PTS: 4
REF: 011335ge
STA: G.G. 14
TOP: Volume and Lateral Area
580 ANS:

PTS: 4
REF: 081237ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

ANS:
$x+3 x-60+5 x-30=180$
$5(30)-30=120$

$$
\mathrm{m} \angle B A C=180-120=60
$$

$$
\begin{aligned}
6 y-8 & =4 y-2 \quad \overline{D C}=10+10=20 \\
2 y & =6 \\
y & =3 \\
4(3)-2 & =10=\overline{B C}
\end{aligned}
$$

PTS: 3 REF: 011435ge STA: G.G. 31 TOP: Isosceles Triangle Theorem 582 ANS:

PTS: 4
REF: 081236ge
STA: G.G. 58
TOP: Compositions of Transformations
KEY: grids
583 ANS:
Yes, $\mathrm{m} \angle A B D=\mathrm{m} \angle \mathrm{BDC}=44180-(93+43)=44 x+19+2 x+6+3 x+5=180$. Because alternate interior

$$
\begin{aligned}
6 x+30 & =180 \\
6 x & =150 \\
x & =25 \\
x+19 & =44
\end{aligned}
$$

angles $\angle A B D$ and $\angle C D B$ are congruent, $\overline{A B}$ is parallel to $\overline{D C}$.
PTS: 4 REF: 081035ge STA: G.G. 35 TOP: Parallel Lines and Transversals
584 ANS:
$\overline{J K} \cong \overline{L M}$ because opposite sides of a parallelogram are congruent. $\overline{L M} \cong \overline{L N}$ because of the Isosceles Triangle Theorem. $L M \cong J M$ because of the transitive property. $J K L M$ is a rhombus because all sides are congruent.

PTS: 4
REF: 011036ge STA: G.G. 27
TOP: Quadrilateral Proofs

585
ANS:

PTS: 4 REF: 011336ge STA: G.G. 58 TOP: Compositions of Transformations
Midpoint: $\left(\frac{-4+4}{2}, \frac{2+(-4)}{2}\right)=(0,-1)$. Distance: $d=\sqrt{(-4-4)^{2}+(2-(-4))^{2}}=\sqrt{100}=10$

$$
r=5
$$

$$
r^{2}=25
$$

$x^{2}+(y+1)^{2}=25$
PTS: 4 REF: 061037ge STA: G.G. 71 TOP: Equations of Circles
587 ANS:

PTS: 4
REF: fall0835ge STA: G.G. 42
TOP: Midsegments
ANS:

No, $\angle K G H$ is not congruent to $\angle G K H$.

PTS: 2
REF: 081135ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem 589 ANS:

36, because a dilation does not affect angle measure. 10, because a dilation does affect distance.
PTS: 4
REF: 011035ge
STA: G.G. 59
TOP: Properties of Transformations

ANS:
$15+5 \sqrt{5}$.

PTS: 4
REF: 060936ge
STA: G.G. 69
TOP: Triangles in the Coordinate Plane
591 ANS:

PTS: 4
REF: 011135ge
STA: G.G. 23 TOP: Locus
592 ANS:
$\angle D, \angle G$ and 24° or $\angle E, \angle F$ and $84^{\circ} . \mathrm{m} \overparen{F E}=\frac{2}{15} \times 360=48$. Since the chords forming $\angle D$ and $\angle G$ are intercepted by $\overparen{F E}$, their measure is 24°. m $\overparen{G D}=\frac{7}{15} \times 360=168$. Since the chords forming $\angle E$ and $\angle F$ are intercepted by $\overparen{G D}$, their measure is 84°.

PTS: 4 REF: fall0836ge STA: G.G. 51 TOP: Arcs Determined by Angles KEY: inscribed

Geometry 6 Point Regents Exam Questions
 Answer Section

593
ANS:
52, 40, 80. $360-(56+112)=192 . \frac{192-112}{2}=40 . \frac{112+48}{2}=80$

$$
\begin{aligned}
& \frac{1}{4} \times 192=48 \\
& \frac{56+48}{2}=52
\end{aligned}
$$

PTS: 6
REF: 081238ge STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: mixed
ANS:

$$
\begin{array}{rlrlrl}
8 x-5 & =3 x+30 . & 4 z-8 & =3 z . & 9 y+8+5 y-2 & =90 . \\
5 x & =35 & z & =8 & 14 y+6 & =90 \\
x & =7 & & 14 y & =84
\end{array}
$$

REF: 061038ge STA: G.G. 39
TOP: Special Parallelograms
PTS: 6
ANS:
Quadrilateral $A B C D, \overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$ are given. $\overline{A D} \| \overline{B C}$ because if two lines are cut by a transversal so that a pair of alternate interior angles are congruent, the lines are parallel. $A B C D$ is a parallelogram because if one pair of opposite sides of a quadrilateral are both congruent and parallel, the quadrilateral is a parallelogram. $\overline{A E} \cong \overline{C E}$ because the diagonals of a parallelogram bisect each other. $\angle F E A \cong \angle G E C$ as vertical angles. $\triangle A E F \cong \triangle C E G$ by ASA.

PTS: 6
REF: 011238ge
STA: G.G. 27
TOP: Quadrilateral Proofs

596
ANS:

$$
\overline{F E} \cong \overline{F E} \text { (Reflexive Property); } \overline{A E}-\overline{F E} \cong \overline{F C}-\overline{E F} \text { (Line Segment Subtraction }
$$ Theorem); $\overline{A F} \cong \overline{C E}$ (Substitution); $\angle B F A \cong \angle D E C$ (All right angles are congruent); $\triangle B F A \cong \triangle D E C$ (AAS); $\overline{A B} \cong \overline{C D}$ and $\overline{B F} \cong \overline{D E}$ (CPCTC); $\angle B F C \cong \angle D E A$ (All right angles are congruent); $\triangle B F C \cong \triangle D E A$ (SAS); $\overline{A D} \cong \overline{C B}$ (СРСТС); $A B C D$ is a parallelogram (opposite sides of quadrilateral $A B C D$ are congruent)

PTS: 6 REF: 080938ge STA: G.G. 27 TOP: Quadrilateral Proofs
597 ANS:
$\Delta M A H, \overline{M H} \cong \overline{A H}$ and medians $\overline{A B}$ and $\overline{M T}$ are given. $\overline{M A} \cong \overline{A M}$ (reflexive property). $\triangle M A H$ is an isosceles triangle (definition of isosceles triangle). $\angle A M B \cong \angle M A T$ (isosceles triangle theorem). B is the midpoint of $\overline{M H}$ and T is the midpoint of $\overline{A H}$ (definition of median). $\mathrm{m} \overline{M B}=\frac{1}{2} \mathrm{~m} \overline{M H}$ and $\mathrm{m} \overline{A T}=\frac{1}{2} \mathrm{~m} \overline{A H}$ (definition of midpoint). $\overline{M B} \cong \overline{A T}$ (multiplication postulate). $\triangle M B A \cong \triangle A T M$ (SAS). $\angle M B A \cong \angle A T M$ (CPCTC).

PTS: 6 REF: 061338ge STA: G.G. 27 TOP: Triangle Proofs
598 ANS:
Because $\overline{A B} \| \overline{D C}, \overparen{A D} \cong \overparen{B C}$ since parallel chords intersect congruent arcs. $\angle B D C \cong \angle A C D$ because inscribed angles that intercept congruent arcs are congruent. $\overline{A D} \cong \overline{B C}$ since congruent chords intersect congruent arcs. $\angle D A C \cong \angle D B C$ because inscribed angles that intercept the same arc are congruent. Therefore, $\triangle A C D \cong \triangle B D C$ because of AAS.

PTS: 6 REF: fall0838ge STA: G.G. 27 TOP: Circle Proofs
599 ANS:

$\overline{A B} \| \overline{C D}$ and $\overline{A D} \| \overline{C B}$ because their slopes are equal. $A B C D$ is a parallelogram because opposite side are parallel. $\overline{A B} \neq \overline{B C}$. $A B C D$ is not a rhombus because all sides are not equal. $\overline{A B} \sim \perp \overline{B C}$ because their slopes are not opposite reciprocals. $A B C D$ is not a rectangle because $\angle A B C$ is not a right angle.

PTS: 4
REF: 081038ge STA: G.G. 69
TOP: Quadrilaterals in the Coordinate Plane

600
ANS:
Rectangle $A B C D$ with points E and F on side $\overline{A B}$, segments $C E$ and $D F$ intersect at G, and $\angle A D G \cong \angle B C E$ are given. $\overline{A D} \cong \overline{B C}$ because opposite sides of a rectangle are congruent. $\angle A$ and $\angle B$ are right angles and congruent because all angles of a rectangle are right and congruent. $\triangle A D F \cong \triangle B C E$ by ASA. $\overline{A F} \cong \overline{B E}$ per CPCTC. $\overline{E F} \cong \overline{F E}$ under the Reflexive Property. $\overline{A F}-\overline{E F} \cong \overline{B E}-\overline{F E}$ using the Subtraction Property of Segments. $\overline{A E} \cong \overline{B F}$ because of the Definition of Segments.

PTS: 6 REF: 011338ge STA: G.G. 27 TOP: Quadrilateral Proofs 601 ANS:
$\overline{O A} \cong \overline{O B}$ because all radii are equal. $\overline{O P} \cong \overline{O P}$ because of the reflexive property. $\overline{O A} \perp \overline{P A}$ and $\overline{O B} \perp \overline{P B}$ because tangents to a circle are perpendicular to a radius at a point on a circle. $\angle P A O$ and $\angle P B O$ are right angles because of the definition of perpendicular. $\angle P A O \cong \angle P B O$ because all right angles are congruent. $\triangle A O P \cong \triangle B O P$ because of $\mathrm{HL} . \angle A O P \cong \angle B O P$ because of CPCTC.

PTS: 6 REF: 061138ge STA: G.G. 27 TOP: Circle Proofs
602 ANS:
$\overline{A C} \cong \overline{E C}$ and $\overline{D C} \cong \overline{B C}$ because of the definition of midpoint. $\angle A C B \cong \angle E C D$ because of vertical angles. $\triangle A B C \cong \triangle E D C$ because of SAS. $\angle C D E \cong \angle C B A$ because of CPCTC. $\overline{B D}$ is a transversal intersecting $\overline{A B}$ and $\overline{E D}$. Therefore $\overline{A B} \| \overline{D E}$ because $\angle C D E$ and $\angle C B A$ are congruent alternate interior angles.

PTS: 6 REF: 060938ge STA: G.G. 27 TOP: Triangle Proofs
603 ANS:

PTS: 6
REF: 011038ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

604
ANS:
$m_{\overline{A B}}=\left(\frac{-6+2}{2}, \frac{-2+8}{2}\right)=D(2,3) m_{B C}=\left(\frac{2+6}{2}, \frac{8+-2}{2}\right)=E(4,3) F(0,-2)$. To prove that $A D E F$ is a parallelogram, show that both pairs of opposite sides of the parallelogram are parallel by showing the opposite sides have the same slope: $\mathrm{m}_{\overline{A D}}=\frac{3--2}{-2--6}=\frac{5}{4} \quad \overline{A F} \| \overline{D E}$ because all horizontal lines have the same slope. $A D E F$

$$
\mathrm{m}_{F E}=\frac{3--2}{4-0}=\frac{5}{4}
$$

is not a rhombus because not all sides are congruent. $A D=\sqrt{5^{2}+4^{2}}=\sqrt{41} \quad A F=6$
PTS: 6 REF: 081138ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
605 ANS:
2. The diameter of a circle is \perp to a tangent at the point of tangency. 4. An angle inscribed in a semicircle is a right angle. 5. All right angles are congruent. 7. AA. 8. Corresponding sides of congruent triangles are in proportion. 9. The product of the means equals the product of the extremes.

PTS: 6 REF: 011438ge STA: G.G. 27 TOP: Circle Proofs
606 ANS:

The length of each side of quadrilateral is 5 . Since each side is congruent, quadrilateral MATH is a rhombus. The slope of $\overline{M H}$ is 0 and the slope of $\overline{H T}$ is $-\frac{4}{3}$. Since the slopes are not negative reciprocals, the sides are not perpendicular and do not form rights angles. Since adjacent sides are not perpendicular, quadrilateral MATH is not a square.

PTS: 6 REF: 011138ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane

607
ANS:
$M\left(\frac{-7+-3}{2}, \frac{4+6}{2}\right)=M(-5,5) . m_{M N}=\frac{5-3}{-5-0}=\frac{2}{-5}$. Since both opposite sides have equal slopes and are $N\left(\frac{-3+3}{2}, \frac{6+0}{2}\right)=N(0,3) \quad m_{P Q}=\frac{-4--2}{2--3}=\frac{-2}{5}$
$P\left(\frac{3+1}{2}, \frac{0+-8}{2}\right)=P(2,-4)$

$$
m_{N A}=\frac{3--4}{0-2}=\frac{7}{-2}
$$

$Q\left(\frac{-7+1}{2}, \frac{4+-8}{2}\right)=Q(-3,-2)$ $m_{Q M}=\frac{-2-5}{-3--5}=\frac{-7}{2}$
parallel, $M N P Q$ is a parallelogram. $\overline{M N}=\sqrt{(-5-0)^{2}+(5-3)^{2}}=\sqrt{29} \cdot \overline{M N}$ is not congruent to $\overline{N P}$, so $M N P Q$

$$
\overline{N A}=\sqrt{(0-2)^{2}+(3--4)^{2}}=\sqrt{53}
$$

is not a rhombus since not all sides are congruent.

PTS: 6
REF: 081338ge
STA: G.G. 69
TOP: Quadrilaterals in the Coordinate Plane
608 ANS:

REF: 061238ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

