JMAP
REGENTS BY TYPE

The NY Algebra 2/Trigonometry Regents Exam Questions from Spring 2009 to January 2016

www.jmap.org
1 The expression $\cos 4x \cos 3x + \sin 4x \sin 3x$ is equivalent to
 1) $\sin x$
 2) $\sin 7x$
 3) $\cos x$
 4) $\cos 7x$

2 What is the range of $f(x) = (x + 4)^2 + 7$?
 1) $y \geq -4$
 2) $y \geq 4$
 3) $y = 7$
 4) $y \geq 7$

3 A market research firm needs to collect data on viewer preferences for local news programming in Buffalo. Which method of data collection is most appropriate?
 1) census
 2) survey
 3) observation
 4) controlled experiment

4 Brian correctly used a method of completing the square to solve the equation $x^2 + 7x - 11 = 0$. Brian’s first step was to rewrite the equation as $x^2 + 7x = 11$. He then added a number to both sides of the equation. Which number did he add?
 1) $\frac{7}{2}$
 2) $\frac{49}{4}$
 3) $\frac{49}{2}$
 4) 49

5 What is the period of the function $f(\theta) = -2 \cos 3\theta$?
 1) π
 2) $\frac{2\pi}{3}$
 3) $\frac{3\pi}{2}$
 4) 2π

6 In the diagram below of right triangle JTM, $JT = 12$, $JM = 6$, and $\angle JMT = 90$. What is the value of $\cot J$?
 1) $\frac{\sqrt{3}}{3}$
 2) 2
 3) $\sqrt{3}$
 4) $2\sqrt{3}$

7 The conjugate of $7 - 5i$ is
 1) $-7 - 5i$
 2) $-7 + 5i$
 3) $7 - 5i$
 4) $7 + 5i$
8 Which function is one-to-one?
 1) \(k(x) = x^2 + 2 \)
 2) \(g(x) = x^3 + 2 \)
 3) \(f(x) = |x| + 2 \)
 4) \(j(x) = x^4 + 2 \)

9 Which angle does not terminate in Quadrant IV when drawn on a unit circle in standard position?
 1) \(-300^\circ\)
 2) \(-50^\circ\)
 3) \(280^\circ\)
 4) \(1030^\circ\)

10 Which statement regarding the inverse function is true?
 1) A domain of \(y = \sin^{-1} x \) is \([0, 2\pi]\).
 2) The range of \(y = \sin^{-1} x \) is \([-1, 1]\).
 3) A domain of \(y = \cos^{-1} x \) is \((-\infty, \infty)\).
 4) The range of \(y = \cos^{-1} x \) is \([0, \pi]\).

11 A school cafeteria has five different lunch periods. The cafeteria staff wants to find out which items on the menu are most popular, so they give every student in the first lunch period a list of questions to answer in order to collect data to represent the school. Which type of study does this represent?
 1) observation
 2) controlled experiment
 3) population survey
 4) sample survey

12 The expression \(2i^2 + 3i^3\) is equivalent to
 1) \(-2 - 3i\)
 2) \(2 - 3i\)
 3) \(-2 + 3i\)
 4) \(2 + 3i\)

13 The product of \((3 + \sqrt{5})\) and \((3 - \sqrt{5})\) is
 1) \(4 - 6\sqrt{5}\)
 2) \(14 - 6\sqrt{5}\)
 3) \(14\)
 4) \(4\)

14 What is the fifteenth term of the sequence \(5, -10, 20, -40, 80, \ldots?\)
 1) \(-163,840\)
 2) \(-81,920\)
 3) \(81,920\)
 4) \(327,680\)

15 Four points on the graph of the function \(f(x)\) are shown below.
 \(\{(0,1),(1,2),(2,4),(3,8)\}\)
Which equation represents \(f(x)\)?
 1) \(f(x) = 2^x\)
 2) \(f(x) = 2x\)
 3) \(f(x) = x + 1\)
 4) \(f(x) = \log_2 x\)
16. What is the number of degrees in an angle whose radian measure is $\frac{11\pi}{12}$?
 1) 150
 2) 165
 3) 330
 4) 518

17. Which statement about the graph of the equation $y = e^x$ is not true?
 1) It is asymptotic to the x-axis.
 2) The domain is the set of all real numbers.
 3) It lies in Quadrants I and II.
 4) It passes through the point $(e, 1)$.

18. If $f(x) = x^2 - 5$ and $g(x) = 6x$, then $g(f(x))$ is equal to
 1) $6x^3 - 30x$
 2) $6x^2 - 30$
 3) $36x^2 - 5$
 4) $x^2 + 6x - 5$

19. If $f(x) = \frac{x}{x^2 - 16}$, what is the value of $f(-10)$?
 1) $\frac{5}{2}$
 2) $\frac{5}{42}$
 3) $\frac{5}{58}$
 4) $\frac{5}{18}$

20. Which equation has real, rational, and unequal roots?
 1) $x^2 + 10x + 25 = 0$
 2) $x^2 - 5x + 4 = 0$
 3) $x^2 - 3x + 1 = 0$
 4) $x^2 - 2x + 5 = 0$

21. Which values of x are solutions of the equation $x^3 + x^2 - 2x = 0$?
 1) 0, 1, 2
 2) 0, -1, 2
 3) 0, -1, -2
 4) 0, -1, -2

22. Which survey is least likely to contain bias?
 1) surveying a sample of people leaving a movie theater to determine which flavor of ice cream is the most popular
 2) surveying the members of a football team to determine the most watched TV sport
 3) surveying a sample of people leaving a library to determine the average number of books a person reads in a year
 4) surveying a sample of people leaving a gym to determine the average number of hours a person exercises per week

23. The value of the expression $2 \sum_{n=0}^{2} (n^2 + 2^n)$ is
 1) 12
 2) 22
 3) 24
 4) 26
24. An investment is earning 5% interest compounded quarterly. The equation represents the total amount of money, A, where P is the original investment, r is the interest rate, t is the number of years, and n represents the number of times per year the money earns interest. Which graph could represent this investment over at least 50 years?

1) ![Graph 1]
2) ![Graph 2]
3) ![Graph 3]
4) ![Graph 4]

25. The value of x in the equation $4^{2x+5} = 8^{3x}$ is
1) 1
2) 2
3) 5
4) -10

26. Which statement regarding correlation is not true?
1) The closer the absolute value of the correlation coefficient is to one, the closer the data conform to a line.
2) A correlation coefficient measures the strength of the linear relationship between two variables.
3) A negative correlation coefficient indicates that there is a weak relationship between two variables.
4) A relation for which most of the data fall close to a line is considered strong.

27. Which summation represents $5 + 7 + 9 + 11 + \ldots + 43$?
1) $\sum_{n=5}^{43} n$
2) $\sum_{n=1}^{20} (2n + 3)$
3) $\sum_{n=4}^{24} (2n - 3)$
4) $\sum_{n=3}^{23} (3n - 4)$

28. Which step can be used when solving $x^2 - 6x - 25 = 0$ by completing the square?
1) $x^2 - 6x + 9 = 25 + 9$
2) $x^2 - 6x - 9 = 25 - 9$
3) $x^2 - 6x + 36 = 25 + 36$
4) $x^2 - 6x - 36 = 25 - 36$
29 What is the period of the function
\[y = \frac{1}{2} \sin \left(\frac{x}{3} - \pi \right) \]?

1) \(\frac{1}{2} \)
2) \(\frac{2}{3} \pi \)
3) \(\frac{2}{3} \pi \)
4) \(6\pi \)

30 Ms. Bell’s mathematics class consists of 4 sophomores, 10 juniors, and 5 seniors. How many different ways can Ms. Bell create a four-member committee of juniors if each junior has an equal chance of being selected?

1) 210
2) 3,876
3) 5,040
4) 93,024

31 The solution set of the inequality \(x^2 - 3x > 10 \) is

1) \(\{x \mid -2 < x < 5\} \)
2) \(\{x \mid 0 < x < 3\} \)
3) \(\{x \mid x < -2 \text{ or } x > 5\} \)
4) \(\{x \mid x < -5 \text{ or } x > 2\} \)

32 The expression \(4ab\sqrt{2b} - 3a\sqrt{18b^3} + 7ab\sqrt{6b} \) is equivalent to

1) \(2ab\sqrt{6b} \)
2) \(16ab\sqrt{2b} \)
3) \(-5ab + 7ab\sqrt{6b} \)
4) \(-5ab\sqrt{2b} + 7ab\sqrt{6b} \)

33 In \(\triangle KLM, KL = 20, LM = 13, \) and \(\angle K = 40^\circ \). The measure of \(\angle M \)?

1) must be between \(0^\circ \) and \(90^\circ \)
2) must equal \(90^\circ \)
3) must be between \(90^\circ \) and \(180^\circ \)
4) is ambiguous

34 Which formula can be used to determine the total number of different eight-letter arrangements that can be formed using the letters in the word \(\text{DEADLINE} \)?

1) \(8! \)
2) \(\frac{8!}{4!} \)
3) \(\frac{8!}{2! + 2!} \)
4) \(\frac{8!}{2! \cdot 2!} \)

35 An amateur bowler calculated his bowling average for the season. If the data are normally distributed, about how many of his 50 games were within one standard deviation of the mean?

1) 14
2) 17
3) 34
4) 48

36 What is the solution of the equation \(2 \log_4 (5x) = 3? \)

1) 6.4
2) 2.56
3) \(\frac{9}{5} \)
4) \(\frac{8}{5} \)
37 Written in simplest form, the expression \(\frac{x - 1}{x} - \frac{1}{2x + 4} \) is equivalent to
1) \(x - 1 \)
2) \(x - 2 \)
3) \(\frac{x - 2}{2} \)
4) \(\frac{x^2 - 4}{x + 2} \)

38 What is a formula for the \(n \)th term of sequence \(B \) shown below?
\[B = 10, 12, 14, 16, \ldots \]
1) \(b_n = 8 + 2n \)
2) \(b_n = 10 + 2n \)
3) \(b_n = 10(2)^n \)
4) \(b_n = 10(2)^{n-1} \)

39 Given \(\triangle ABC \) with \(a = 9 \), \(b = 10 \), and \(m\angle B = 70 \), what type of triangle can be drawn?
1) an acute triangle, only
2) an obtuse triangle, only
3) both an acute triangle and an obtuse triangle
4) neither an acute triangle nor an obtuse triangle

40 Factored completely, the expression \(12x^4 + 10x^3 - 12x^2 \) is equivalent to
1) \(x^2(4x + 6)(3x - 2) \)
2) \(2(2x^2 + 3x)(3x^2 - 2x) \)
3) \(2x^2(2x - 3)(3x + 2) \)
4) \(2x^2(2x + 3)(3x - 2) \)

41 Six people met at a dinner party, and each person shook hands once with everyone there. Which expression represents the total number of handshakes?
1) \(6! \)
2) \(6! \cdot 2! \)
3) \(\frac{6!}{2!} \)
4) \(\frac{6!}{4! \cdot 2!} \)

42 The principal would like to assemble a committee of 8 students from the 15-member student council. How many different committees can be chosen?
1) 120
2) 6,435
3) 32,432,400
4) 259,459,200

43 The expression \(\frac{a^2b^{-3}}{a^{-4}b^2} \) is equivalent to
1) \(\frac{a^6}{b^5} \)
2) \(\frac{b^5}{a^6} \)
3) \(\frac{a^2}{b} \)
4) \(a^{-2}b^{-1} \)

44 In \(\triangle MNP \), \(m = 6 \) and \(n = 10 \). Two distinct triangles can be constructed if the measure of angle \(M \) is
1) 35
2) 40
3) 45
4) 50
45 The lengths of 100 pipes have a normal distribution with a mean of 102.4 inches and a standard deviation of 0.2 inch. If one of the pipes measures exactly 102.1 inches, its length lies
1) below the 16th percentile
2) between the 50th and 84th percentiles
3) between the 16th and 50th percentiles
4) above the 84th percentile

46 Which equation represents a circle with its center at \((2, -3)\) and that passes through the point \((6, 2)\)?
1) \((x - 2)^2 + (y + 3)^2 = \sqrt{41}\)
2) \((x + 2)^2 + (y - 3)^2 = \sqrt{41}\)
3) \((x - 2)^2 + (y + 3)^2 = 41\)
4) \((x + 2)^2 + (y - 3)^2 = 41\)

47 In which interval of \(f(x) = \cos(x)\) is the inverse also a function?
1) \(-\frac{\pi}{2} < x < \frac{\pi}{2}\)
2) \(-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\)
3) \(0 \leq x \leq \pi\)
4) \(\frac{\pi}{2} \leq x \leq \frac{3\pi}{2}\)

48 The roots of the equation \(2x^2 + 7x - 3 = 0\) are
1) \(\frac{1}{2}\) and \(-3\)
2) \(\frac{1}{2}\) and \(3\)
3) \(-\frac{7 \pm \sqrt{73}}{4}\)
4) \(\frac{7 \pm \sqrt{73}}{4}\)

49 The expression \(\frac{4}{5 - \sqrt{13}}\) is equivalent to
1) \(\frac{4\sqrt{13}}{5\sqrt{13} - 13}\)
2) \(\frac{4(5 - \sqrt{13})}{38}\)
3) \(\frac{5 + \sqrt{13}}{3}\)
4) \(\frac{4(5 + \sqrt{13})}{38}\)

50 The roots of the equation \(4(x^2 - 1) = -3x\) are
1) imaginary
2) real, rational, equal
3) real, rational, unequal
4) real, irrational, unequal

51 Theresa is comparing the graphs of \(y = 2^x\) and \(y = 5^x\). Which statement is true?
1) The \(y\)-intercept of \(y = 2^x\) is \((0, 2)\), and the \(y\)-intercept of \(y = 5^x\) is \((0, 5)\).
2) Both graphs have a \(y\)-intercept of \((0, 1)\), and \(y = 2^x\) is steeper for \(x > 0\).
3) Both graphs have a \(y\)-intercept of \((0, 1)\), and \(y = 5^x\) is steeper for \(x > 0\).
4) Neither graph has a \(y\)-intercept.

52 When the inverse of \(\tan \theta\) is sketched, its domain is
1) \(-1 \leq \theta \leq 1\)
2) \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\)
3) \(0 \leq \theta \leq \pi\)
4) \(-\infty < \theta < \infty\)
53 An angle, P, drawn in standard position, terminates in Quadrant II if
1) $\cos P < 0$ and $\csc P < 0$
2) $\sin P > 0$ and $\cos P > 0$
3) $\csc P > 0$ and $\cot P < 0$
4) $\tan P < 0$ and $\sec P > 0$

54 When $x^{-1} - 1$ is divided by $x - 1$, the quotient is
1) -1
2) $\frac{1}{x}$
3) $\frac{1}{x^2}$
4) $\frac{1}{(x - 1)^2}$

55 The expression $\sqrt[3]{27a^{-6}b^3c^2}$ is equivalent to
1) $\frac{3bc^\frac{2}{3}}{a^2}$
2) $\frac{3b^9c^6}{a^{18}}$
3) $\frac{3b^6c^5}{a^3}$
4) $\frac{3b^3\sqrt[3]{3c^2}}{a^2}$

56 The expression $(3 - 7i)^2$ is equivalent to
1) $-40 + 0i$
2) $-40 - 42i$
3) $58 + 0i$
4) $58 - 42i$

57 Which equation represents a graph that has a period of 4π?
1) $y = 3 \sin \frac{1}{2}x$
2) $y = 3 \sin 2x$
3) $y = 3 \sin \frac{1}{4}x$
4) $y = 3 \sin 4x$

58 In $\triangle ABC$, $a = 15$, $b = 14$, and $c = 13$, as shown in the diagram below. What is the $\angle C$, to the nearest degree?

59 In simplest form, $\sqrt{-300}$ is equivalent to
1) $3i\sqrt{10}$
2) $5i\sqrt{12}$
3) $10i\sqrt{3}$
4) $12i\sqrt{5}$
60. Which equation is represented by the graph below?

![Graph](image)

1) \(y = 5^x \)
2) \(y = 0.5^x \)
3) \(y = 5^{-x} \)
4) \(y = 0.5^{-x} \)

61. Which equation is sketched in the diagram below?

![Graph](image)

1) \(y = \csc x \)
2) \(y = \sec x \)
3) \(y = \cot x \)
4) \(y = \tan x \)

62. What is the formula for the \(n \)th term of the sequence 54, 18, 6, . . . ?

1) \(a_n = 6 \left(\frac{1}{3} \right)^n \)
2) \(a_n = 6 \left(\frac{1}{3} \right)^{n-1} \)
3) \(a_n = 54 \left(\frac{1}{3} \right)^n \)
4) \(a_n = 54 \left(\frac{1}{3} \right)^{n-1} \)

63. If angles \(A \) and \(B \) are complementary, then \(\sec B \) equals

1) \(\csc(90^\circ - B) \)
2) \(\csc(B - 90^\circ) \)
3) \(\cos(B - 90^\circ) \)
4) \(\cos(90^\circ - B) \)

64. The solution set of \(4x^2 + 4x = 2^6 \) is

1) \(\{1, 3\} \)
2) \(\{-1, 3\} \)
3) \(\{-1, 3\} \)
4) \(\{1, -3\} \)

65. A circle has a radius of 4 inches. In inches, what is the length of the arc intercepted by a central angle of 2 radians?

1) \(2\pi \)
2) \(2 \)
3) \(8\pi \)
4) \(8 \)
66 Which problem involves evaluating P_4?
 1) How many different four-digit ID numbers can be formed using 1, 2, 3, 4, 5, and 6 without repetition?
 2) How many different subcommittees of four can be chosen from a committee having six members?
 3) How many different outfits can be made using six shirts and four pairs of pants?
 4) How many different ways can one boy and one girl be selected from a group of four boys and six girls?

67 Which equation represents the circle shown in the graph below that passes through the point (0, -1)?

![Circle graph]

1) $(x - 3)^2 + (y + 4)^2 = 16$
2) $(x - 3)^2 + (y + 4)^2 = 18$
3) $(x + 3)^2 + (y - 4)^2 = 16$
4) $(x + 3)^2 + (y - 4)^2 = 18$

68 In $\triangle ABC$, $m\angle A = 74$, $a = 59.2$, and $c = 60.3$.
What are the two possible values for $m\angle C$, to the nearest tenth?
 1) 73.7 and 106.3
 2) 73.7 and 163.7
 3) 78.3 and 101.7
 4) 78.3 and 168.3

69 If $a = 3$ and $b = -2$, what is the value of the expression $\frac{a^2 - 2}{b^3}$?
 1) $\frac{9}{8}$
 2) -1
 3) $\frac{8}{9}$
 4) $\frac{8}{9}$

70 Which function is one-to-one?
 1) $f(x) = |x|$
 2) $f(x) = 2^x$
 3) $f(x) = x^2$
 4) $f(x) = \sin x$

71 An auditorium has 21 rows of seats. The first row has 18 seats, and each succeeding row has two more seats than the previous row. How many seats are in the auditorium?
 1) 540
 2) 567
 3) 760
 4) 798
72 How many distinct triangles can be formed if \(m \angle A = 35 \), \(a = 10 \), and \(b = 13 \)?

1) 1
2) 2
3) 3
4) 0

73 What is the principal value of \(\cos^{-1} \left(\frac{-\sqrt{3}}{2} \right) \)?

1) \(-30^\circ\)
2) \(60^\circ\)
3) \(150^\circ\)
4) \(240^\circ\)

74 Which diagram represents a relation that is both one-to-one and onto?

1)

2)

3)

4)

75 If \(r = \frac{A^2 B}{C} \), then \(\log r \) can be represented by

1) \(\frac{1}{6} \log A + \frac{1}{3} \log B - \log C \)
2) \(3(\log A^2 + \log B - \log C) \)
3) \(\frac{1}{3} \log(A^2 + B) - C \)
4) \(\frac{2}{3} \log A + \frac{1}{3} \log B - \frac{1}{3} \log C \)

76 The table below shows the first-quarter averages for Mr. Harper’s statistics class.

<table>
<thead>
<tr>
<th>Statistics Class Averages</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>97</td>
<td>5</td>
</tr>
<tr>
<td>95</td>
<td>4</td>
</tr>
<tr>
<td>92</td>
<td>4</td>
</tr>
<tr>
<td>90</td>
<td>7</td>
</tr>
<tr>
<td>87</td>
<td>2</td>
</tr>
<tr>
<td>84</td>
<td>6</td>
</tr>
<tr>
<td>81</td>
<td>2</td>
</tr>
<tr>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td>70</td>
<td>2</td>
</tr>
<tr>
<td>65</td>
<td>1</td>
</tr>
</tbody>
</table>

What is the population variance for this set of data?

1) 8.2
2) 8.3
3) 67.3
4) 69.3
77 In the diagram below, the spinner is divided into eight equal regions.

Which expression represents the probability of the spinner landing on B exactly three times in five spins?

1) \(\binom{5}{3} \left(\frac{1}{5} \right)^3 \left(\frac{4}{5} \right)^5 \)
2) \(\binom{8}{3} \left(\frac{1}{5} \right)^5 \left(\frac{4}{5} \right)^3 \)
3) \(\binom{5}{3} \left(\frac{1}{8} \right)^2 \left(\frac{7}{8} \right)^3 \)
4) \(\binom{8}{3} \left(\frac{1}{8} \right)^3 \left(\frac{7}{8} \right)^2 \)

78 The minimum point on the graph of the equation \(y = f(x) \) is \((-1, -3)\). What is the minimum point on the graph of the equation \(y = f(x) + 5 \)?

1) \((-1, 2)\)
2) \((-1, -8)\)
3) \((4, -3)\)
4) \((-6, -3)\)

80 The expression \((x^2 - 1)^{\frac{2}{3}} \) is equivalent to

1) \(\frac{1}{\sqrt[3]{(x^2 - 1)^2}} \)
2) \(\frac{1}{\sqrt[3]{(x^2 - 1)^2}} \)
3) \(\sqrt[3]{(x^2 - 1)^3} \)
4) \(\frac{1}{\sqrt[3]{(x^2 - 1)^3}} \)

81 Which trigonometric expression does not simplify to 1?

1) \(\sin^2 x (1 + \cot^2 x) \)
2) \(\sec^2 x (1 - \sin^2 x) \)
3) \(\cos^2 x (\tan^2 x - 1) \)
4) \(\cot^2 x (\sec^2 x - 1) \)

82 What is the coefficient of the fourth term in the expansion of \((a - 4b)^9 \)?

1) \(-5,376\)
2) \(-336\)
3) \(336\)
4) \(5,376\)

83 What is the equation of a circle with its center at \((0, -2)\) and passing through the point \((3, -5)\)?

1) \(x^2 + (y + 2)^2 = 9 \)
2) \((x + 2)^2 + y^2 = 9 \)
3) \(x^2 + (y + 2)^2 = 18 \)
4) \((x + 2)^2 + y^2 = 18 \)

79 In \(\triangle ABC \), \(m \angle A = 120 \), \(b = 10 \), and \(c = 18 \). What is the area of \(\triangle ABC \) to the nearest square inch?

1) 52
2) 78
3) 90
4) 156
84 The graph of \(y = x^3 - 4x^2 + x + 6 \) is shown below.

What is the product of the roots of the equation \(x^3 - 4x^2 + x + 6 = 0 \)?
1) 36
2) 6
3) 6
4) 4

85 What is the domain of the function \(f(x) = \sqrt{x - 2} + 3 \)?
1) \((-\infty, \infty)\)
2) \((2, \infty)\)
3) \([2, \infty)\)
4) \([3, \infty)\)

86 What is the fourth term in the expansion of \((3x - 2)^5\)?
1) \(-720x^2\)
2) \(-240x\)
3) \(720x^2\)
4) \(1,080x^3\)

87 The expression \(x^{-\frac{2}{5}} \) is equivalent to
1) \(-\sqrt[5]{x^2}\)
2) \(-\sqrt[5]{x^2}\)
3) \(\frac{1}{\sqrt[5]{x^2}}\)
4) \(\frac{1}{\sqrt[5]{x^2}}\)

88 Which relation does not represent a function?
1) Domain Range
2) Domain Range
3) Domain Range
4) Domain Range
89 Which is a graph of \(y = \cot x \)?

1)

2)

3)

4)

90 The relationship between \(t \), a student’s test scores, and \(d \), the student’s success in college, is modeled by the equation \(d = 0.48t + 75.2 \). Based on this linear regression model, the correlation coefficient could be

1) between \(-1\) and 0
2) between 0 and 1
3) equal to \(-1\)
4) equal to 0

91 The solutions of the equation \(y^2 - 3y = 9 \) are

1) \(\frac{3 + 3i\sqrt{3}}{2} \)
2) \(\frac{3 + 3i\sqrt{5}}{2} \)
3) \(\frac{-3 + 3i\sqrt{5}}{2} \)
4) \(\frac{3 + 3i\sqrt{5}}{2} \)

92 The number of possible different 12-letter arrangements of the letters in the word “TRIGNOMETRY” is represented by

1) \(\frac{12!}{3!} \)
2) \(\frac{12!}{6!} \)
3) \(\frac{12P_{12}}{8} \)
4) \(\frac{12P_{12}}{6!} \)

93 What is the common ratio of the geometric sequence whose first term is 27 and fourth term is 64?

1) \(\frac{3}{4} \)
2) \(\frac{64}{81} \)
3) \(\frac{4}{3} \)
4) \(\frac{37}{3} \)
94 If \(n \) is a negative integer, then which statement is always true?

1) \(6n^{-2} < 4n^{-1} \)
2) \(\frac{n}{4} > -6n^{-1} \)
3) \(6n^{-1} < 4n^{-1} \)
4) \(4n^{-1} > (6n)^{-1} \)

95 What is the equation of the circle passing through the point (6,5) and centered at (3, -4)?

1) \((x - 6)^2 + (y - 5)^2 = 82 \)
2) \((x - 6)^2 + (y - 5)^2 = 90 \)
3) \((x - 3)^2 + (y + 4)^2 = 82 \)
4) \((x - 3)^2 + (y + 4)^2 = 90 \)

96 Which statement about the equation \(3x^2 + 9x - 12 = 0 \) is true?

1) The product of the roots is -12.
2) The product of the roots is -4.
3) The sum of the roots is 3.
4) The sum of the roots is -9.

97 A survey is to be conducted in a small upstate village to determine whether or not local residents should fund construction of a skateboard park by raising taxes. Which segment of the population would provide the most unbiased responses?

1) a club of local skateboard enthusiasts
2) senior citizens living on fixed incomes
3) a group opposed to any increase in taxes
4) every tenth person 18 years of age or older walking down Main St.

98 For which equation does the sum of the roots equal \(\frac{3}{4} \) and the product of the roots equal -2?

1) \(4x^2 - 8x + 3 = 0 \)
2) \(4x^2 + 8x + 3 = 0 \)
3) \(4x^2 - 3x - 8 = 0 \)
4) \(4x^2 + 3x - 2 = 0 \)

99 If \(\sin A = \frac{2}{3} \) where \(0^\circ < A < 90^\circ \), what is the value of \(\sin 2A \)?

1) \(\frac{2\sqrt{5}}{3} \)
2) \(\frac{2\sqrt{5}}{9} \)
3) \(\frac{4\sqrt{5}}{9} \)
4) \(\frac{4\sqrt{5}}{9} \)

100 What is the radian measure of the smaller angle formed by the hands of a clock at 7 o’clock?

1) \(\frac{\pi}{2} \)
2) \(\frac{2\pi}{3} \)
3) \(\frac{5\pi}{6} \)
4) \(\frac{7\pi}{6} \)
101 Given the relation \{(8,2),(3,6), (7,5), (k, 4)\}, which value of \(k\) will result in the relation not being a function?

1) 1
2) 2
3) 3
4) 4

102 The value of \(\tan 126^\circ43'\) to the nearest ten-thousandth is

1) \(-1.3407\)
2) \(-1.3408\)
3) \(-1.3548\)
4) \(-1.3549\)

103 Which expression is equivalent to the sum of the sequence 6, 12, 20, 30?

1) \(\sum_{n=4}^{7} 2^n - 10\)
2) \(\sum_{n=3}^{6} 2n^2 \frac{2}{3}\)
3) \(\sum_{n=2}^{5} 5n - 4\)
4) \(\sum_{n=2}^{5} n^2 + n\)

104 If \(x^2 = 12x - 7\) is solved by completing the square, one of the steps in the process is

1) \((x - 6)^2 = -43\)
2) \((x + 6)^2 = -43\)
3) \((x - 6)^2 = 29\)
4) \((x + 6)^2 = 29\)

105 Samantha constructs the scatter plot below from a set of data.

Based on her scatter plot, which regression model would be most appropriate?

1) exponential
2) linear
3) logarithmic
4) power

106 A study finds that 80% of the local high school students text while doing homework. Ten students are selected at random from the local high school. Which expression would be part of the process used to determine the probability that, at most, 7 of the 10 students text while doing homework?

1) \(\binom{10}{6} \left(\frac{4}{5}\right)^6 \left(\frac{1}{5}\right)^4\)
2) \(\binom{10}{7} \left(\frac{4}{5}\right)^7 \left(\frac{1}{5}\right)^3\)
3) \(\binom{10}{8} \left(\frac{7}{10}\right)^8 \left(\frac{3}{10}\right)^2\)
4) \(\binom{10}{9} \left(\frac{7}{10}\right)^9 \left(\frac{3}{10}\right)^1\)
107 If \(f(x) = \frac{1}{2}x - 3 \) and \(g(x) = 2x + 5 \), what is the value of \((g \circ f)(4)\)?

1) \(-13\)
2) \(3.5\)
3) \(3\)
4) \(6\)

108 The yearbook staff has designed a survey to learn student opinions on how the yearbook could be improved for this year. If they want to distribute this survey to 100 students and obtain the most reliable data, they should survey
1) every third student sent to the office
2) every third student to enter the library
3) every third student to enter the gym for the basketball game
4) every third student arriving at school in the morning

109 The expression \(2 \log x - (3 \log y + \log z)\) is equivalent to
1) \(\log \frac{x^2}{y^3z}\)
2) \(\log \frac{x^2z}{y^3}\)
3) \(\log \frac{2x}{3yz}\)
4) \(\log \frac{2xz}{3y}\)

110 Factored completely, the expression \(6x - x^3 - x^2\) is equivalent to
1) \(x(x + 3)(x - 2)\)
2) \(x(x - 3)(x + 2)\)
3) \(-x(x - 3)(x + 2)\)
4) \(-x(x + 3)(x - 2)\)

111 Which sketch shows the inverse of \(y = a^x\), where \(a > 1\)?

1)
2)
3)
4)
112 If a function is defined by the equation \(f(x) = 4^x \), which graph represents the inverse of this function?

1)

2)

3)

4)

113 The roots of the equation \(2x^2 + 4 = 9x \) are

1) real, rational, and equal
2) real, rational, and unequal
3) real, irrational, and unequal
4) imaginary

114 What is the solution set of the equation \(|4a + 6| - 4a = -10 \)?

1) \(\emptyset \)
2) \(\{0\} \)
3) \(\{\frac{1}{2}\} \)
4) \(\{0, \frac{1}{2}\} \)

115 Which list of ordered pairs does not represent a one-to-one function?

1) \((1, -1), (2, 0), (3, 1), (4, 2) \)
2) \((1, 2), (2, 3), (3, 4), (4, 6) \)
3) \((1, 3), (2, 4), (3, 3), (4, 1) \)
4) \((1, 5), (2, 4), (3, 1), (4, 0) \)

116 Twenty different cameras will be assigned to several boxes. Three cameras will be randomly selected and assigned to box \(A \). Which expression can be used to calculate the number of ways that three cameras can be assigned to box \(A \)?

1) \(20! \)
2) \(\frac{20!}{3!} \)
3) \(_{20}C_3 \)
4) \(_{20}P_3 \)
117 Which graph represents one complete cycle of the equation \(y = \sin 3\pi x \)?

1.
2.
3.
4.

118 For which equation does the sum of the roots equal \(-3\) and the product of the roots equal \(2\)?

1) \(x^2 + 2x - 3 = 0 \)
2) \(x^2 - 3x + 2 = 0 \)
3) \(2x^2 + 6x + 4 = 0 \)
4) \(2x^2 - 6x + 4 = 0 \)

119 What is the value of \(x \) in the equation \(9^{3x+1} = 27^{x+2} \)?

1) \(1 \)
2) \(\frac{1}{3} \)
3) \(\frac{1}{2} \)
4) \(\frac{4}{3} \)

120 What are the domain and the range of the function shown in the graph below?

1) \(\{x \mid x > -4\}; \{y \mid y > 2\} \)
2) \(\{x \mid x \geq -4\}; \{y \mid y \geq 2\} \)
3) \(\{x \mid x > 2\}; \{y \mid y > -4\} \)
4) \(\{x \mid x \geq 2\}; \{y \mid y \geq -4\} \)

121 The expression \(\log_8 64 \) is equivalent to

1) \(8 \)
2) \(2 \)
3) \(\frac{1}{2} \)
4) \(\frac{1}{8} \)
122 The product of \(i^7\) and \(i^5\) is equivalent to
1) 1
2) −1
3) \(i\)
4) \(−i\)

123 Which calculator output shows the strongest linear relationship between \(x\) and \(y\)?

1) \(\text{Lin Reg}
\begin{align*}
y &= a + bx \\
a &= 59.026 \\
b &= 6.767 \\
r &= .8643
\end{align*}

2) \(\text{Lin Reg}
\begin{align*}
y &= a + bx \\
a &= .7 \\
b &= 24.2 \\
r &= .8361
\end{align*}

3) \(\text{Lin Reg}
\begin{align*}
y &= a + bx \\
a &= 2.45 \\
b &= .95 \\
r &= .6022
\end{align*}

4) \(\text{Lin Reg}
\begin{align*}
y &= a + bx \\
a &= −2.9 \\
b &= 24.1 \\
r &= −.8924
\end{align*}

124 Which expression represents the total number of different 11-letter arrangements that can be made using the letters in the word “MATHEMATICS”?
1) \(\frac{11!}{3!}\)
2) \(\frac{11!}{2!+2!+2!}\)
3) \(\frac{11!}{8!}\)
4) \(\frac{11!}{2!\cdot2!\cdot2!}\)

125 Which statement is true about the graphs of \(f\) and \(g\) shown below?

1) \(f\) is a relation and \(g\) is a function.
2) \(f\) is a function and \(g\) is a relation.
3) Both \(f\) and \(g\) are functions.
4) Neither \(f\) nor \(g\) is a function.

126 Which value of \(r\) represents data with a strong positive linear correlation between two variables?
1) 0.89
2) 0.34
3) 1.04
4) 0.01

127 The value of the expression \(\sum_{r=3}^{5} (-r^2 + r)\) is
1) −38
2) −12
3) 26
4) 62
128 The expression $\cos^2 \theta - \cos 2\theta$ is equivalent to
 1) $\sin^2 \theta$
 2) $-\sin^2 \theta$
 3) $\cos^2 \theta + 1$
 4) $-\cos^2 \theta - 1$

129 In $\triangle ABC$, $a = 3$, $b = 5$, and $c = 7$. What is $m\angle C$?
 1) 22
 2) 38
 3) 60
 4) 120

130 In $\triangle PQR$, p equals
 1) $\frac{r \sin P}{\sin Q}$
 2) $\frac{r \sin P}{\sin R}$
 3) $\frac{r \sin R}{\sin P}$
 4) $\frac{q \sin R}{\sin Q}$

131 The expression $\frac{\sin^2 \theta + \cos^2 \theta}{1 - \sin^2 \theta}$ is equivalent to
 1) $\cos^2 \theta$
 2) $\sin^2 \theta$
 3) $\sec^2 \theta$
 4) $\csc^2 \theta$

132 The graph below shows the function $f(x)$. Which graph represents the function $f(x + 2)$?

1)

2)

3)

4)
133 Which graph represents the function \(\log_2 x = y \)?

1)

2)

3)

4)

134 In the diagram below of a unit circle, the ordered pair \(\left(\frac{-\sqrt{2}}{2}, \frac{-\sqrt{2}}{2} \right) \) represents the point where the terminal side of \(\theta \) intersects the unit circle.

What is \(m\angle \theta \)?

1) 45
2) 135
3) 225
4) 240

135 The solution set of \(\sqrt{3x + 16} = x + 2 \) is

1) \(\{-3, 4\} \)
2) \(\{-4, 3\} \)
3) \(\{3\} \)
4) \(\{-4\} \)

136 If \(m = \{(-1, 1), (1, 1), (-2, 4), (2, 4), (-3, 9), (3, 9)\} \), which statement is true?

1) \(m \) and its inverse are both functions.
2) \(m \) is a function and its inverse is not a function.
3) \(m \) is not a function and its inverse is a function.
4) Neither \(m \) nor its inverse is a function.
137 In the diagram below of right triangle KTW, $KW = 6$, $KT = 5$, and $m\angle KTW = 90$.

What is the measure of $\angle K$, to the nearest minute?

1) $33^\circ 33'$
2) $33^\circ 34'$
3) $33^\circ 55'$
4) $33^\circ 56'$

138 What is the common difference of the arithmetic sequence $5, 8, 11, 14$?

1) $\frac{8}{5}$
2) -3
3) 3
4) 9

139 The expression $\log_5 \left(\frac{1}{25} \right)$ is equivalent to

1) $\frac{1}{2}$
2) 2
3) $\frac{1}{2}$
4) -2

140 Which expression is equivalent to $\frac{\sqrt{3} + 5}{\sqrt{3} - 5}$?

1) $\frac{14 + 5\sqrt{3}}{11}$
2) $\frac{17 + 5\sqrt{3}}{11}$
3) $\frac{14 + 5\sqrt{3}}{14}$
4) $\frac{17 + 5\sqrt{3}}{14}$

141 A dartboard is shown in the diagram below. The two lines intersect at the center of the circle, and the central angle in sector 2 measures $\frac{2\pi}{3}$.

If darts thrown at this board are equally likely to land anywhere on the board, what is the probability that a dart that hits the board will land in either sector 1 or sector 3?

1) $\frac{1}{6}$
2) $\frac{1}{3}$
3) $\frac{1}{2}$
4) $\frac{2}{3}$
142 What is the radian measure of an angle whose measure is \(-420\text{°}\)?
1) \(\frac{7\pi}{3}\)
2) \(\frac{7\pi}{6}\)
3) \(\frac{7\pi}{6}\)
4) \(\frac{7\pi}{3}\)

143 The expression \(\sqrt[4]{81x^2y^5}\) is equivalent to
1) \(3x^{\frac{1}{2}}y^{\frac{5}{4}}\)
2) \(3x^{\frac{1}{2}}y^{\frac{4}{5}}\)
3) \(9xy^{\frac{1}{2}}\)
4) \(9xy^{\frac{3}{2}}\)

144 Three marbles are to be drawn at random, without replacement, from a bag containing 15 red marbles, 10 blue marbles, and 5 white marbles. Which expression can be used to calculate the probability of drawing 2 red marbles and 1 white marble from the bag?
1) \(\frac{15C_2 \cdot 5C_1}{30C_3}\)
2) \(\frac{15P_2 \cdot 5P_1}{30C_3}\)
3) \(\frac{15C_2 \cdot 5C_1}{30P_3}\)
4) \(\frac{15P_2 \cdot 5P_1}{30P_3}\)

145 Which values of \(x\) are in the solution set of the following system of equations?
\[
\begin{align*}
y &= 3x - 6 \\
y &= x^2 - x - 6
\end{align*}
\]
1) \(0, -4\)
2) \(0, 4\)
3) \(6, -2\)
4) \(-6, 2\)

146 What are the values of \(\theta\) in the interval \(0^\circ \leq \theta < 360^\circ\) that satisfy the equation \(\tan \theta - \sqrt{3} = 0\)?
1) \(60^\circ, 240^\circ\)
2) \(72^\circ, 252^\circ\)
3) \(72^\circ, 108^\circ, 252^\circ, 288^\circ\)
4) \(60^\circ, 120^\circ, 240^\circ, 300^\circ\)

147 The number of minutes students took to complete a quiz is summarized in the table below.

<table>
<thead>
<tr>
<th>Minutes</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Students</td>
<td>5</td>
<td>3</td>
<td>(x)</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

If the mean number of minutes was 17, which equation could be used to calculate the value of \(x\)?
1) \(17 = \frac{119 + x}{x}\)
2) \(17 = \frac{119 + 16x}{x}\)
3) \(17 = \frac{446 + x}{26 + x}\)
4) \(17 = \frac{446 + 16x}{26 + x}\)
148 Which equation is represented by the graph below?

1) \(y = \cot x \)
2) \(y = \csc x \)
3) \(y = \sec x \)
4) \(y = \tan x \)

149 Expressed with a rational denominator and in simplest form, \(\frac{x}{x - \sqrt{x}} \) is

1) \(\frac{x^2 + x\sqrt{x}}{x^2 - x} \)
2) \(-\sqrt{x} \)
3) \(\frac{x + \sqrt{x}}{1 - x} \)
4) \(\frac{x + \sqrt{x}}{x - 1} \)

150 When simplified, the expression \(\left(\frac{w^{-5}}{w^{-9}} \right)^{\frac{1}{2}} \) is equivalent to

1) \(w^{-7} \)
2) \(w^{2} \)
3) \(w^{7} \)
4) \(w^{14} \)

151 When \(\frac{3}{2} x^2 - \frac{1}{4} x - 4 \) is subtracted from \(\frac{5}{2} x^2 - \frac{3}{4} x + 1 \), the difference is

1) \(-x^2 + \frac{1}{2} x - 5 \)
2) \(x^2 - \frac{1}{2} x + 5 \)
3) \(-x^2 - x - 3 \)
4) \(x^2 - x - 3 \)

152 What is the conjugate of \(-2 + 3i\)?

1) \(-3 + 2i \)
2) \(-2 - 3i \)
3) \(2 - 3i \)
4) \(3 + 2i \)

153 Expressed as a function of a positive acute angle, \(\sin 230^\circ \) is equal to

1) \(-\sin 40^\circ \)
2) \(-\sin 50^\circ \)
3) \(\sin 40^\circ \)
4) \(\sin 50^\circ \)
154 A jogger ran $\frac{1}{3}$ mile on day 1, and $\frac{2}{3}$ mile on day 2, and $1 \frac{1}{3}$ miles on day 3, and $2 \frac{2}{3}$ miles on day 4, and this pattern continued for 3 more days. Which expression represents the total distance the jogger ran?

1) $\sum_{d=1}^{2} \left(\frac{1}{3} \right)^{d-1}$
2) $\sum_{d=1}^{7} \left(\frac{2}{3} \right)^{d}$
3) $\sum_{d=1}^{7} \left(\frac{1}{3} \right)^{d-1}$
4) $\sum_{d=1}^{7} \left(\frac{1}{3} \right)^{d}$

155 A four-digit serial number is to be created from the digits 0 through 9. How many of these serial numbers can be created if 0 can not be the first digit, no digit may be repeated, and the last digit must be 5?

1) 448
2) 504
3) 2,240
4) 2,520

156 What is the fifteenth term of the geometric sequence $-\sqrt{5}, \sqrt{10}, -2\sqrt{5}, \ldots$?

1) $-128\sqrt{5}$
2) $128\sqrt{10}$
3) $-16384\sqrt{5}$
4) $16384\sqrt{10}$

157 The graph of $y = f(x)$ is shown below.

Which set lists all the real solutions of $f(x) = 0$?

1) $\{-3, 2\}$
2) $\{-2, 3\}$
3) $\{-3, 0, 2\}$
4) $\{-2, 0, 3\}$

158 Akeem invests $25,000 in an account that pays 4.75% annual interest compounded continuously. Using the formula $A = Pe^{rt}$, where A = the amount in the account after t years, P = principal invested, and r = the annual interest rate, how many years, to the nearest tenth, will it take for Akeem’s investment to triple?

1) 10.0
2) 14.6
3) 23.1
4) 24.0
159 Which relation is both one-to-one and onto?

1) 2) 3) 4)

160 Which two functions are inverse functions of each other?

1) \(f(x) = \sin x \) and \(g(x) = \cos x \)
2) \(f(x) = 3 + 8x \) and \(g(x) = 3 - 8x \)
3) \(f(x) = e^x \) and \(g(x) = \ln x \)
4) \(f(x) = 2x - 4 \) and \(g(x) = \frac{1}{2}x + 4 \)

161 The discriminant of a quadratic equation is 24. The roots are

1) imaginary
2) real, rational, and equal
3) real, rational, and unequal
4) real, irrational, and unequal

162 Which expression, when rounded to three decimal places, is equal to \(-1.155\)?

1) \(\sec \left(\frac{5\pi}{6} \right) \)
2) \(\tan(49°20') \)
3) \(\sin \left(\frac{3\pi}{5} \right) \)
4) \(\csc(-118°) \)

163 The solution set of the equation \(\sqrt{x + 3} = 3 - x \) is

1) \{1\}
2) \{0\}
3) \{1, 6\}
4) \{2, 3\}

164 What is the value of \(x \) in the equation \(\log_5 x = 4 \)?

1) 1.16
2) 20
3) 625
4) 1,024

165 The equation \(\log_a x = y \) where \(x > 0 \) and \(a > 1 \) is equivalent to

1) \(x^y = a \)
2) \(y^a = x \)
3) \(a^y = x \)
4) \(a^x = y \)
166 The roots of $3x^2 + x = 14$ are
1) imaginary
2) real, rational, and equal
3) real, rational, and unequal
4) real, irrational, and unequal

167 Which expression always equals 1?
1) $\cos^2 x - \sin^2 x$
2) $\cos^2 x + \sin^2 x$
3) $\cos x - \sin x$
4) $\cos x + \sin x$

168 Which value is in the domain of the function graphed below, but is not in its range?

1) 0
2) 2
3) 3
4) 7

169 For which value of k will the roots of the equation $2x^2 - 5x + k = 0$ be real and rational numbers?
1) 1
2) -5
3) 0
4) 4
Algebra 2/Trigonometry Multiple Choice Regents Exam Questions

172 A circle with center \(O \) and passing through the origin is graphed below.

![Graph of a circle](image)

What is the equation of circle \(O \)?

1) \(x^2 + y^2 = 2\sqrt{5} \)
2) \(x^2 + y^2 = 20 \)
3) \((x + 4)^2 + (y - 2)^2 = 2\sqrt{5} \)
4) \((x + 4)^2 + (y - 2)^2 = 20 \)

173 Mrs. Hill asked her students to express the sum \(1 + 3 + 5 + 7 + 9 + \ldots + 39 \) using sigma notation. Four different student answers were given. Which student answer is correct?

1) \(\sum_{k=1}^{20} (2k - 1) \)
2) \(\sum_{k=2}^{40} (k - 1) \)
3) \(\sum_{k=1}^{19} (k + 2) \)
4) \(\sum_{k=1}^{39} (2k - 1) \)

174 What are the sum and product of the roots of the equation \(6x^2 - 4x - 12 = 0 \)?

1) sum = \(-\frac{2}{3} \), product = \(-2 \)
2) sum = \(\frac{2}{3} \), product = \(-2 \)
3) sum = \(-2 \), product = \(\frac{2}{3} \)
4) sum = \(-2 \), product = \(-\frac{2}{3} \)

175 What is the conjugate of \(\frac{1}{2} + \frac{3}{2} i \)?

1) \(-\frac{1}{2} + \frac{3}{2} i \)
2) \(\frac{1}{2} - \frac{3}{2} i \)
3) \(\frac{3}{2} + \frac{1}{2} i \)
4) \(-\frac{1}{2} - \frac{3}{2} i \)

176 Which expression is equivalent to \((5^{-2} a^3 b^{-4})^{-1} \)?

1) \(\frac{10b^4}{a^5} \)
2) \(\frac{25b^4}{a^5} \)
3) \(\frac{a^3}{25b^4} \)
4) \(\frac{a^2}{125b^5} \)
177 Expressed as a function of a positive acute angle,
\(\cos(-305^\circ) \) is equal to
1) \(-\cos 55^\circ\)
2) \(\cos 55^\circ\)
3) \(-\sin 55^\circ\)
4) \(\sin 55^\circ\)

178 How many distinct triangles can be constructed if
\(m\angle A = 30 \), side \(a = \sqrt{34} \), and side \(b = 12 \)?
1) one acute triangle
2) one obtuse triangle
3) two triangles
4) none

179 In \(\triangle FGH \), \(f = 6 \), \(g = 9 \), and \(m\angle H = 57 \). Which statement can be used to determine the numerical value of \(h \)?
1) \(h^2 = 6^2 + 9^2 - 2(9)(h) \cos 57^\circ \)
2) \(h^2 = 6^2 + 9^2 - 2(6)(9) \cos 57^\circ \)
3) \(6^2 = 9^2 + h^2 - 2(9)(h) \cos 57^\circ \)
4) \(9^2 = 6^2 + h^2 - 2(6)(h) \cos 57^\circ \)

180 Which graph represents the solution set of
\[\left| \frac{4x - 5}{3} \right| > 1 \]?
1)
2)
3)
4)

181 Which graph does not represent a function?

182 If \(\sin \theta < 0 \) and \(\cot \theta > 0 \), in which quadrant does the terminal side of angle \(\theta \) lie?
1) I
2) II
3) III
4) IV

183 Which value of \(r \) represents data with a strong negative linear correlation between two variables?
1) \(-1.07\)
2) \(-0.89\)
3) \(-0.14\)
4) \(0.92\)
184 The expression $\sqrt{-180x^{16}}$ is equivalent to
1) $-6x^4 \sqrt{5}$
2) $-6x^8 \sqrt{5}$
3) $6x^4 i \sqrt{5}$
4) $6x^8 i \sqrt{5}$

185 The expression $\frac{\cot x}{\csc x}$ is equivalent to
1) $\sin x$
2) $\cos x$
3) $\tan x$
4) $\sec x$

186 What is the common difference of the arithmetic sequence below? $-7x, -4x, -x, 2x, 5x, \ldots$
1) -3
2) $-3x$
3) 3
4) $3x$

187 If $\sin A = \frac{1}{3}$, what is the value of $\cos 2A$?
1) $\frac{2}{3}$
2) $\frac{2}{3}$
3) $\frac{7}{9}$
4) $\frac{7}{9}$

188 Which expression is equivalent to $(n \circ m \circ p)(x)$, given $m(x) = \sin x$, $n(x) = 3x$, and $p(x) = x^2$?
1) $\sin(3x)^2$
2) $3\sin x^2$
3) $\sin^2(3x)$
4) $3\sin^2 x$

189 There are eight people in a tennis club. Which expression can be used to find the number of different ways they can place first, second, and third in a tournament?
1) $8P_3$
2) $8C_3$
3) $8P_5$
4) $8C_5$

190 If the terminal side of angle θ passes through point $(-3, -4)$, what is the value of $\sec \theta$?
1) $\frac{5}{3}$
2) $\frac{5}{3}$
3) $\frac{5}{4}$
4) $-\frac{5}{4}$

191 If $\log x = 2\log a + \log b$, then x equals
1) a^2b
2) $2ab$
3) $a^2 + b$
4) $2a + b$
192. In a circle with a diameter of 24 cm, a central angle of \(\frac{4\pi}{3} \) radians intercepts an arc. The length of the arc, in centimeters, is
1) \(8\pi \)
2) \(9\pi \)
3) \(16\pi \)
4) \(32\pi \)

193. If the amount of time students work in any given week is normally distributed with a mean of 10 hours per week and a standard deviation of 2 hours, what is the probability a student works between 8 and 11 hours per week?
1) 34.1%
2) 38.2%
3) 53.2%
4) 68.2%

194. Circle \(O \) has a radius of 2 units. An angle with a measure of \(\frac{\pi}{6} \) radians is in standard position. If the terminal side of the angle intersects the circle at point \(B \), what are the coordinates of \(B \)?
1) \(\left(\frac{\sqrt{3}}{2}, \frac{1}{2} \right) \)
2) \((\sqrt{3}, 1) \)
3) \(\left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right) \)
4) \((1, \sqrt{3}) \)

195. The common ratio of the sequence \(\frac{1}{2}, \frac{3}{4}, \frac{9}{8} \) is
1) \(\frac{3}{2} \)
2) \(\frac{2}{3} \)
3) \(\frac{1}{2} \)
4) \(\frac{1}{4} \)

196. The expression \(\frac{3 - \sqrt{8}}{\sqrt{3}} \) is equivalent to
1) \(\frac{\sqrt{3} - 2\sqrt{6}}{3} \)
2) \(-\sqrt{3} + \frac{2}{3}\sqrt{6} \)
3) \(\frac{3 - \sqrt{24}}{3} \)
4) \(\sqrt{3} - \frac{2}{3}\sqrt{6} \)

197. Which ordered pair is in the solution set of the system of equations shown below?
\[y^2 - x^2 + 32 = 0 \]
\[3y - x = 0 \]
1) (2, 6)
2) (3, 1)
3) (−1, −3)
4) (−6, −2)
198 If $m\angle \theta = -50$, which diagram represents θ drawn in standard position?

1)

2)

3)

4)

200 The roots of the equation $9x^2 + 3x - 4 = 0$ are
1) imaginary
2) real, rational, and equal
3) real, rational, and unequal
4) real, irrational, and unequal

201 Which expression is equivalent to $\sum_{n=1}^{4} (a-n)^2$?

1) $2a^2 + 17$
2) $4a^2 + 30$
3) $2a^2 - 10a + 17$
4) $4a^2 - 20a + 30$

202 Yusef deposits $50 into a savings account that pays 3.25% interest compounded quarterly. The amount, A, in his account can be determined by the formula $A = P\left(1 + \frac{r}{n}\right)^{nt}$, where P is the initial amount invested, r is the interest rate, n is the number of times per year the money is compounded, and t is the number of years for which the money is invested. What will his investment be worth in 12 years if he makes no other deposits or withdrawals?

1) 55.10
2) 73.73
3) 232.11
4) 619.74

203 How many negative solutions to the equation $2x^3 - 4x^2 + 3x - 1 = 0$ exist?

1) 1
2) 2
3) 3
4) 0
204 If \(\sin^{-1} \left(\frac{5}{8} \right) = A \), then

1) \(\sin A = \frac{5}{8} \)
2) \(\sin A = \frac{8}{5} \)
3) \(\cos A = \frac{5}{8} \)
4) \(\cos A = \frac{8}{5} \)

205 Which graph does not represent a function?

1)
2)
3)
4)

206 The expression \(\frac{x^2 + 9x - 22}{x^2 - 121} + (2 - x) \) is equivalent to

1) \(x - 11 \)
2) \(\frac{1}{x - 11} \)
3) \(11 - x \)
4) \(\frac{1}{11 - x} \)

207 If \(f(x) = 2x^2 - 3x + 4 \), then \(f(x + 3) \) is equal to

1) \(2x^2 - 3x + 7 \)
2) \(2x^2 - 3x + 13 \)
3) \(2x^2 + 9x + 13 \)
4) \(2x^2 + 9x + 25 \)

208 The graph below shows the average price of gasoline, in dollars, for the years 1997 to 2007.

What is the approximate range of this graph?

1) \(1997 \leq x \leq 2007 \)
2) \(1999 \leq x \leq 2007 \)
3) \(0.97 \leq y \leq 2.38 \)
4) \(1.27 \leq y \leq 2.38 \)
209 The amount of money in an account can be determined by the formula \(A = Pe^{rt} \), where \(P \) is the initial investment, \(r \) is the annual interest rate, and \(t \) is the number of years the money was invested. What is the value of a $5000 investment after 18 years, if it was invested at 4% interest compounded continuously?

1) $9367.30
2) $9869.39
3) $10,129.08
4) $10,272.17

210 The expression \(\left(\sqrt[3]{27x^2} \right) \left(\sqrt[3]{16x^4} \right) \) is equivalent to

1) \(12x^2 \sqrt[3]{2} \)
2) \(12x^3 \sqrt[3]{2} \)
3) \(6x^3 \sqrt[3]{2} \)
4) \(6x^3 \sqrt[3]{2} \)

211 The expression \(\sqrt[4]{16x^2y^7} \) is equivalent to

1) \(2x^2 y^{\frac{7}{4}} \)
2) \(2x^8 y^{28} \)
3) \(4x^7 y^{\frac{7}{4}} \)
4) \(4x^8 y^{28} \)

212 The sum of the first eight terms of the series \(3 - 12 + 48 - 192 + \ldots \) is

1) \(-13,107 \)
2) \(-21,845 \)
3) \(-39,321 \)
4) \(-65,535 \)

213 What is the inverse of the function \(f(x) = \log_4 x \)?

1) \(f^{-1}(x) = x^4 \)
2) \(f^{-1}(x) = 4^x \)
3) \(f^{-1}(x) = \log_4 x \)
4) \(f^{-1}(x) = -\log_4 x \)

214 If order does not matter, which selection of students would produce the most possible committees?

1) 5 out of 15
2) 5 out of 25
3) 20 out of 25
4) 15 out of 25

215 What is a positive value of \(\tan \frac{1}{2} x \), when \(\sin x = 0.8 \)?

1) 0.5
2) 0.4
3) 0.33
4) 0.25

216 The points \((2, 3), \left(4, \frac{3}{4}\right),\) and \((6, d)\) lie on the graph of a function. If \(y \) is inversely proportional to the square of \(x \), what is the value of \(d \)?

1) 1
2) \(\frac{1}{3} \)
3) \(\frac{3}{2} \)
4) 27
217 A scholarship committee rewards the school's top math students. The amount of money each winner receives is inversely proportional to the number of scholarship recipients. If there are three winners, they each receive $400. If there are eight winners, how much money will each winner receive?
1) $1067
2) $400
3) $240
4) $150

218 The expression $x^2(x + 2) - (x + 2)$ is equivalent to
1) x^2
2) $x^2 - 1$
3) $x^3 + 2x^2 - x + 2$
4) $(x + 1)(x - 1)(x + 2)$

219 What is the range of $f(x) = |x - 3| + 2$?
1) $\{x | x \geq 3\}$
2) $\{y | y \geq 2\}$
3) $\{x | x \in \text{real numbers}\}$
4) $\{y | y \in \text{real numbers}\}$

220 What is the solution set for the equation $\sqrt{5x + 29} = x + 3$?
1) $\{4\}$
2) $\{-5\}$
3) $\{4, 5\}$
4) $\{-5, 4\}$

221 What is the product of the roots of $4x^2 - 5x = 3$?
1) $\frac{3}{4}$
2) $\frac{5}{4}$
3) $\frac{3}{4}$
4) $\frac{5}{4}$

222 Liz has applied to a college that requires students to score in the top 6.7% on the mathematics portion of an aptitude test. The scores on the test are approximately normally distributed with a mean score of 576 and a standard deviation of 104. What is the minimum score Liz must earn to meet this requirement?
1) 680
2) 732
3) 740
4) 784

223 What is the common ratio of the sequence $\frac{1}{64}a^5b^4, -\frac{3}{32}a^3b^4, \frac{9}{16}ab^5, \ldots$?
1) $\frac{3b}{2a^2}$
2) $\frac{6b}{a^2}$
3) $\frac{3a^2}{b}$
4) $\frac{6a^2}{b}$
224 Which graph is the solution to the inequality $4|2x + 6| - 5 < 27$?

1)
2)
3)
4)

225 The expression $(2a)^{-4}$ is equivalent to

1) $-8a^4$
2) $\frac{16}{a^4}$
3) $\frac{2}{a^4}$
4) $\frac{1}{16a^4}$

226 What is the number of degrees in an angle whose radian measure is $\frac{8\pi}{5}$?

1) 576
2) 288
3) 225
4) 113

227 What is the third term in the expansion of $(2x - 3)^5$?

1) $720x^3$
2) $180x^3$
3) $-540x^2$
4) $-1080x^2$

228 The table below displays the number of siblings of each of the 20 students in a class.

<table>
<thead>
<tr>
<th>Number of Siblings</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

What is the population standard deviation, to the nearest hundredth, for this group?

1) 1.11
2) 1.12
3) 1.14
4) 1.15

229 The sum of $\sqrt[3]{6a^4b^2}$ and $\sqrt[3]{162a^4b^2}$, expressed in simplest radical form, is

1) $\sqrt[3]{168a^4b^4}$
2) $2a^2b\sqrt[3]{21a^2b}$
3) $4a^3\sqrt[3]{6ab^2}$
4) $10a^2b^3\sqrt[3]{8}$

230 A customer will select three different toppings for a supreme pizza. If there are nine different toppings to choose from, how many different supreme pizzas can be made?

1) 12
2) 27
3) 84
4) 504
231 If \(f(x) = 4x^2 - x + 1 \), then \(f(a + 1) \) equals
1) \(4a^2 - a + 6 \)
2) \(4a^2 - a + 4 \)
3) \(4a^2 + 7a + 6 \)
4) \(4a^2 + 7a + 4 \)

232 A population of rabbits doubles every 60 days according to the formula \(P = 10(2)^{\frac{t}{60}} \), where \(P \) is the population of rabbits on day \(t \). What is the value of \(t \) when the population is 320?
1) 240
2) 300
3) 660
4) 960

233 Which value of \(k \) satisfies the equation \(8^{3k+4} = 4^{2k-1} \)?
1) \(-1\)
2) \(\frac{9}{4}\)
3) \(-2\)
4) \(-\frac{14}{5}\)

234 What are the amplitude and the period of the graph represented by the equation \(y = -3 \cos \frac{\theta}{3} \)?
1) amplitude: \(-3\); period: \(\frac{\pi}{3}\)
2) amplitude: \(-3\); period: \(6\pi\)
3) amplitude: \(3\); period: \(\frac{\pi}{3}\)
4) amplitude: \(3\); period: \(6\pi\)

235 The expression \(\sqrt[3]{27a^3} \cdot \sqrt[4]{16b^8} \) is equivalent to
1) \(6ab^2\)
2) \(6ab^4\)
3) \(12ab^2\)
4) \(12ab^4\)

236 What are the zeros of the polynomial function graphed below?

237 If \(d \) varies inversely as \(t \), and \(d = 20 \) when \(t = 2 \), what is the value of \(t \) when \(d = -5 \)?
1) 8
2) 2
3) \(-8\)
4) \(-2\)
238 Which graph best represents the inequality \(y + 6 \geq x^2 - x \)?

239 Which values of \(x \) in the interval \(0^\circ \leq x < 360^\circ \) satisfy the equation \(2 \sin^2 x + \sin x - 1 = 0 \)?

1) \(\{30^\circ, 270^\circ\} \)
2) \(\{30^\circ, 150^\circ, 270^\circ\} \)
3) \(\{90^\circ, 210^\circ, 330^\circ\} \)
4) \(\{90^\circ, 210^\circ, 270^\circ, 330^\circ\} \)

240 What is the period of the graph of the equation \(y = \frac{1}{3} \sin 2x \)?

1) \(\frac{1}{3} \)
2) \(2 \)
3) \(\pi \)
4) \(6\pi \)

241 What is the product of \(\sqrt[3]{4a^2b^4} \) and \(\sqrt[3]{16a^3b^2} \)?

1) \(4ab^2 \sqrt[3]{a^2} \)
2) \(4a^2b^3 \sqrt[3]{a} \)
3) \(8ab^2 \sqrt[3]{a^2} \)
4) \(8a^2b^3 \sqrt[3]{a} \)

242 What is the fourth term in the binomial expansion \((x - 2)^8 \)?

1) \(448x^5 \)
2) \(448x^4 \)
3) \(-448x^5 \)
4) \(-448x^4 \)
243 What is the product of the roots of the quadratic equation $2x^2 - 7x = 5$?
1) 5
2) $\frac{5}{2}$
3) -5
4) $-\frac{5}{2}$

244 A cliff diver on a Caribbean island jumps from a height of 105 feet, with an initial upward velocity of 5 feet per second. An equation that models the height, $h(t)$, above the water, in feet, of the diver in time elapsed, t, in seconds, is $h(t) = -16t^2 + 5t + 105$. How many seconds, to the nearest hundredth, does it take the diver to fall 45 feet below his starting point?
1) 1.45
2) 1.84
3) 2.10
4) 2.72

245 What is the product of \(\left(\frac{2}{5}x - \frac{3}{4}y^2 \right) \) and \(\left(\frac{2}{5}x + \frac{3}{4}y^2 \right) \)?
1) $\frac{4}{25}x^2 - \frac{9}{16}y^4$
2) $\frac{4}{25}x - \frac{9}{16}y^2$
3) $\frac{2}{5}x^2 - \frac{3}{4}y^4$
4) $\frac{4}{5}x$

246 Which arithmetic sequence has a common difference of 4?
1) $\{0, 4n, 8n, 12n, \ldots \}$
2) $\{n, 4n, 16n, 64n, \ldots \}$
3) $\{n + 1, n + 5, n + 9, n + 13, \ldots \}$
4) $\{n + 4, n + 16, n + 64, n + 256, \ldots \}$

247 The first four terms of the sequence defined by $a_1 = \frac{1}{2}$ and $a_{n+1} = 1 - a_n$ are
1) $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
2) $\frac{1}{2}, 1, \frac{1}{2}, 2$
3) $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$
4) $\frac{1}{2}, 1, \frac{1}{2}, 1, \frac{1}{2}, 3, \frac{1}{2}$

248 What is the range of the function shown below?

1) $x \leq 0$
2) $x \geq 0$
3) $y \leq 0$
4) $y \geq 0$
249 Which expression is equivalent to \(\frac{2x^2 y^2}{4y^5} \)?

1) \(\frac{y^3}{2x^2} \)
2) \(\frac{2y^3}{x^2} \)
3) \(\frac{2x^2}{y^3} \)
4) \(\frac{x^2}{2y^3} \)

250 If \(\sin A = -\frac{7}{25} \) and \(\angle A \) terminates in Quadrant IV, \(\tan A \) equals

1) \(-\frac{7}{25} \)
2) \(\frac{7}{24} \)
3) \(\frac{24}{7} \)
4) \(\frac{24}{25} \)

252 If \(\sin A = \frac{3}{8} \), what is the value of \(\cos 2A \)?

1) \(\frac{9}{64} \)
2) \(\frac{1}{4} \)
3) \(\frac{23}{32} \)
4) \(\frac{55}{64} \)

253 What is the solution set of the equation \(3x^3 - 48x = 0 \)?

1) \(\{0, \pm 2\} \)
2) \(\{0, \pm 2, 3\} \)
3) \(\{0, \pm 2, \pm 2i\} \)
4) \(\{- \frac{7}{25} \} \)

254 What is the total number of points of intersection of the graphs of the equations \(2x^2 - y^2 = 8 \) and \(y = x + 2 \)?

1) 1
2) 2
3) 3
4) 0

255 The expression \(\left(\frac{3}{2} x + 1 \right) \left(\frac{3}{2} x - 1 \right) - \left(\frac{3}{2} x - 1 \right)^2 \) is equivalent to

1) 0
2) \(-3x\)
3) \(\frac{3}{4} x - 2\)
4) \(3x - 2\)
256 What is the middle term in the expansion of \(\left(\frac{x}{2} - 2y \right)^6 \)?

1) \(20x^3y^3\)
2) \(-\frac{15}{4}x^4y^2\)
3) \(-20x^3y^3\)
4) \(\frac{15}{4}x^4y^2\)

257 When \(\frac{7}{8}x^2 - \frac{3}{4}x\) is subtracted from \(\frac{5}{8}x^2 - \frac{1}{4}x + 2\), the difference is

1) \(-\frac{1}{4}x^2 - x + 2\)
2) \(\frac{1}{4}x^2 - x + 2\)
3) \(-\frac{1}{4}x^2 + \frac{1}{2}x + 2\)
4) \(\frac{1}{4}x^2 - \frac{1}{2}x - 2\)

258 The scores on a standardized exam have a mean of 82 and a standard deviation of 3.6. Assuming a normal distribution, a student’s score of 91 would rank

1) below the 75th percentile
2) between the 75th and 85th percentiles
3) between the 85th and 95th percentiles
4) above the 95th percentile

259 Which relation is not a function?

1) \((x - 2)^2 + y^2 = 4\)
2) \(x^2 + 4x + y = 4\)
3) \(x + y = 4\)
4) \(xy = 4\)

260 What is the total number of different nine-letter arrangements that can be formed using the letters in the word “TENNESSEE”?

1) 3,780
2) 15,120
3) 45,360
4) 362,880

261 Which equation represents the graph below?

1) \(y = -2\sin2x\)
2) \(y = -2\sin\frac{1}{2}x\)
3) \(y = -2\cos2x\)
4) \(y = -2\cos\frac{1}{2}x\)

262 Which function is not one-to-one?

1) \{(0,1),(1,2),(2,3),(3,4)\}
2) \{(0,0),(1,1),(2,2),(3,3)\}
3) \{(0,1),(1,0),(2,3),(3,2)\}
4) \{(0,1),(1,0),(2,0),(3,2)\}

263 The equation \(y - 2\sin \theta = 3\) may be rewritten as

1) \(f(y) = 2\sin x + 3\)
2) \(f(y) = 2\sin \theta + 3\)
3) \(f(x) = 2\sin \theta + 3\)
4) \(f(\theta) = 2\sin \theta + 3\)
264 Which expression represents the third term in the expansion of \((2x^4 - y)^3\)?
1) \(-y^3\)
2) \(-6x^4y^2\)
3) \(6x^4y^2\)
4) \(2x^4y^2\)

265 The ninth term of the expansion of \((3x + 2y)^{15}\) is
1) \(\binom{15}{9} (3x)^9 (2y)^6\)
2) \(\binom{15}{9} (3x)^8 (2y)^7\)
3) \(\binom{15}{8} (3x)^7 (2y)^8\)
4) \(\binom{15}{8} (3x)^6 (2y)^9\)

266 What is the third term of the recursive sequence below?
\[a_1 = -6\]
\[a_n = \frac{1}{2} a_{n-1} - n\]
1) \(\frac{11}{2}\)
2) \(\frac{5}{2}\)
3) \(\frac{1}{2}\)
4) \(-4\)

267 The legs of a right triangle are represented by \(x + \sqrt{2}\) and \(x - \sqrt{2}\). The length of the hypotenuse of the right triangle is represented by
1) \(\sqrt{2x^2 + 4}\)
2) \(2x^2 + 4\)
3) \(x\sqrt{2} + 2\)
4) \(\sqrt{x^2 - 2}\)

268 A circle is drawn to represent a pizza with a 12 inch diameter. The circle is cut into eight congruent pieces. What is the length of the outer edge of any one piece of this circle?
1) \(\frac{3\pi}{4}\)
2) \(\pi\)
3) \(\frac{3\pi}{2}\)
4) \(3\pi\)

269 Which equation has roots with the sum equal to \(\frac{9}{4}\) and the product equal to \(\frac{3}{4}\)?
1) \(4x^2 + 9x + 3 = 0\)
2) \(4x^2 + 9x - 3 = 0\)
3) \(4x^2 - 9x + 3 = 0\)
4) \(4x^2 - 9x - 3 = 0\)

270 If \(\angle A\) is acute and \(\tan A = \frac{2}{3}\), then
1) \(\cot A = \frac{2}{3}\)
2) \(\cot A = \frac{1}{3}\)
3) \(\cot(90^\circ - A) = \frac{2}{3}\)
4) \(\cot(90^\circ - A) = \frac{1}{3}\)
271 The expression $4 + \sum_{k=2}^{5} 3(k - x)$ is equal to
1) $58 - 4x$
2) $46 - 4x$
3) $58 - 12x$
4) $46 - 12x$

272 If $f(x) = 4x - x^2$ and $g(x) = \frac{1}{x}$, then $(f \circ g) \left(\frac{1}{2} \right)$ is equal to
1) $\frac{4}{7}$
2) -2
3) $\frac{7}{2}$
4) 4

273 The scores of 1000 students on a standardized test were normally distributed with a mean of 50 and a standard deviation of 5. What is the expected number of students who had scores greater than 60?
1) 1.7
2) 23
3) 46
4) 304

274 Which ordered pair is a solution of the system of equations shown below? $x + y = 5$

\[(x + 3)^2 + (y - 3)^2 = 53\]

1) $(2, 3)$
2) $(5, 0)$
3) $(-5, 10)$
4) $(-4, 9)$

275 What is the area of a parallelogram that has sides measuring 8 cm and 12 cm and includes an angle of 120°?
1) $24\sqrt{3}$
2) $48\sqrt{3}$
3) $83\sqrt{3}$
4) $96\sqrt{3}$

276 What is the solution of the inequality $9 - x^2 < 0$?
1) $\{x | -3 < x < 3\}$
2) $\{x | x > 3 \text{ or } x < -3\}$
3) $\{x | x > 3\}$
4) $\{x | x < -3\}$

277 What is the solution set of $|x - 2| = 3x + 10$?
1) $\{\}$
2) $\{-2\}$
3) $\{-6\}$
4) $\{-2, -6\}$

278 The expression $\frac{5}{4 - \sqrt{11}}$ is equivalent to
1) $4 + \sqrt{11}$
2) $\frac{20 + 5\sqrt{11}}{27}$
3) $4 - \sqrt{11}$
4) $\frac{20 - 5\sqrt{11}}{27}$
279 When \(x^2 + 3x - 4 \) is subtracted from \(x^3 + 3x^2 - 2x \), the difference is

1) \(x^3 + 2x^2 - 5x + 4 \)
2) \(x^3 + 2x^2 + x - 4 \)
3) \(-x^3 + 4x^2 + x - 4 \)
4) \(-x^3 - 2x^2 + 5x + 4 \)

280 The equation \(x^2 + y^2 - 2x + 6y + 3 = 0 \) is equivalent to

1) \((x - 1)^2 + (y + 3)^2 = -3 \)
2) \((x - 1)^2 + (y + 3)^2 = 7 \)
3) \((x + 1)^2 + (y + 3)^2 = 7 \)
4) \((x + 1)^2 + (y + 3)^2 = 10 \)

281 What is the value of \(\tan \left(\arccos \frac{15}{17} \right) \)?

1) \(\frac{8}{15} \)
2) \(\frac{8}{17} \)
3) \(\frac{15}{8} \)
4) \(\frac{17}{8} \)

283 The simplest form of \(\frac{1 - \frac{4}{x}}{1 - \frac{2}{x} - \frac{8}{x^2}} \) is

1) \(\frac{1}{2} \)
2) \(\frac{x}{x + 2} \)
3) \(\frac{x}{3} \)
4) \(\frac{-x}{x - 2} \)

284 If \(\log_b x = 3 \log_b p - \left(2 \log_b t + \frac{1}{2} \log_b r \right) \), then the value of \(x \) is

1) \(\frac{p^3}{\sqrt{r^2 r}} \)
2) \(p^3 t^2 r^2 \)
3) \(\frac{p^3 r^2}{\sqrt{r}} \)
4) \(\frac{p^3}{t^2 \sqrt{r}} \)

285 A doctor wants to test the effectiveness of a new drug on her patients. She separates her sample of patients into two groups and administers the drug to only one of these groups. She then compares the results. Which type of study best describes this situation?

1) census
2) survey
3) observation
4) controlled experiment
286 Given the sequence: \(x, (x + y), (x + 2y), \ldots \) Which expression can be used to determine the common difference of this sequence?
1) \(x - (x + y) \)
2) \((x + 2y) - (x + y) \)
3) \(\frac{x}{x+y} \)
4) \(\frac{2y}{x+y} \)

287 The expression \(\frac{1}{7 - \sqrt{11}} \) is equivalent to
1) \(\frac{7 + \sqrt{11}}{38} \)
2) \(\frac{7 - \sqrt{11}}{38} \)
3) \(\frac{7 + \sqrt{11}}{60} \)
4) \(\frac{7 - \sqrt{11}}{60} \)

288 If \$5000 \) is invested at a rate of 3\% interest compounded quarterly, what is the value of the investment in 5 years? (Use the formula \(A = P \left(1 + \frac{r}{n}\right)^{nt} \), where \(A \) is the amount accrued, \(P \) is the principal, \(r \) is the interest rate, \(n \) is the number of times per year the money is compounded, and \(t \) is the length of time, in years.)
1) \$5190.33
2) \$5796.37
3) \$5805.92
4) \$5808.08
290 In which graph is θ coterminal with an angle of -70°?

1)

2)

3)

4)

291 The domain of $f(x) = \frac{3}{\sqrt{2-x}}$ is the set of all real numbers

1) greater than 2
2) less than 2
3) except 2
4) between -2 and 2

292 Max solves a quadratic equation by completing the square. He shows a correct step:

$$(x + 2)^2 = -9$$

What are the solutions to his equation?

1) $2 \pm 3i$
2) $-2 \pm 3i$
3) $3 \pm 2i$
4) $-3 \pm 2i$

293 If $f(x) = 2x^2 - 3x + 1$ and $g(x) = x + 5$, what is $f(g(x))$?

1) $2x^2 + 17x + 36$
2) $2x^2 + 17x + 66$
3) $2x^2 - 3x + 6$
4) $2x^2 - 3x + 36$

294 The roots of the equation $x^2 - 10x + 25 = 0$ are

1) imaginary
2) real and irrational
3) real, rational, and equal
4) real, rational, and unequal

295 A population, $p(x)$, of wild turkeys in a certain area is represented by the function $p(x) = 17(1.15)^x$, where x is the number of years since 2010. How many more turkeys will be in the population for the year 2015 than 2010?

1) 46
2) 49
3) 51
4) 68
296. What is the value of $\sum_{n=1}^{3} \cos \frac{n\pi}{2}$?

1) 1
2) −1
3) 0
4) $\frac{1}{2}$

297. A wheel has a radius of 18 inches. Which distance, to the nearest inch, does the wheel travel when it rotates through an angle of $\frac{2\pi}{5}$ radians?

1) 45
2) 23
3) 13
4) 11

298. How many different ways can teams of four members be formed from a class of 20 students?

1) 5
2) 80
3) 4,845
4) 116,280

299. In $\triangle DEF$, $d = 5$, $e = 8$, and $m\angle D = 32$. How many distinct triangles can be drawn given these measurements?

1) 1
2) 2
3) 3
4) 0

300. A video-streaming service can choose from six half-hour shows and four one-hour shows. Which expression could be used to calculate the number of different ways the service can choose four half-hour shows and two one-hour shows?

1) $6P_4 \cdot 4P_2$
2) $6P_4 + 4P_2$
3) $6C_4 \cdot 4C_2$
4) $6C_4 + 4C_2$

301. What is the sum of the first 19 terms of the sequence 3, 10, 17, 24, 31, ...?

1) 1188
2) 1197
3) 1254
4) 1292

302. If p varies inversely as q, and $p = 10$ when $q = \frac{3}{2}$, what is the value of p when $q = \frac{3}{5}$?

1) 25
2) 15
3) 9
4) 4

303. When $x^{-1} + 1$ is divided by $x + 1$, the quotient equals

1) 1
2) $\frac{1}{x}$
3) x
4) $\frac{1}{x}$
304 The table below displays the results of a survey regarding the number of pets each student in a class has. The average number of pets per student in this class is 2.

<table>
<thead>
<tr>
<th>Number of Pets</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Students</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>0</td>
<td>k</td>
<td>2</td>
</tr>
</tbody>
</table>

What is the value of k for this table?
1) 9
2) 2
3) 8
4) 4

305 Which equation could be used to solve \[\frac{5}{x - 3} - \frac{2}{x} = 1? \]
1) $x^2 - 6x - 3 = 0$
2) $x^2 - 6x + 3 = 0$
3) $x^2 - 6x - 6 = 0$
4) $x^2 - 6x + 6 = 0$

306 The formula to determine continuously compounded interest is $A = Pe^{rt}$, where A is the amount of money in the account, P is the initial investment, r is the interest rate, and t is the time, in years. Which equation could be used to determine the value of an account with an $18,000 initial investment, at an interest rate of 1.25% for 24 months?
1) $A = 18,000e^{1.25 \cdot 2}$
2) $A = 18,000e^{1.25 \cdot 24}$
3) $A = 18,000e^{0.0125 \cdot 2}$
4) $A = 18,000e^{0.0125 \cdot 24}$

307 Which expression is equivalent to \[\frac{x^{-1}y^4}{3x^{-5}y^{-1}}? \]
1) $\frac{x^4y^5}{3}$
2) $\frac{x^5y^4}{3}$
3) $3x^4y^5$
4) $\frac{y^4}{3x^5}$

308 The expression $\log 4m^2$ is equivalent to
1) $2(\log 4 + \log m)$
2) $2 \log 4 + \log m$
3) $\log 4 + 2 \log m$
4) $\log 16 + 2 \log m$

309 What is the value of $\sum_{x=0}^{2} (3 - 2a)^x$?
1) $4a^2 - 2a + 12$
2) $4a^2 - 2a + 13$
3) $4a^2 - 14a + 12$
4) $4a^2 - 14a + 13$

310 When factored completely, the expression $x^3 - 2x^2 - 9x + 18$ is equivalent to
1) $(x^2 - 9)(x - 2)$
2) $(x - 2)(x - 3)(x + 3)$
3) $(x - 2)^2(x - 3)(x + 3)$
4) $(x - 3)^2(x - 2)$
311 Which value of \(k\) will make \(x^2 - \frac{1}{4}x + k\) a perfect square trinomial?

1) \(\frac{1}{64}\)
2) \(\frac{1}{16}\)
3) \(\frac{1}{8}\)
4) \(\frac{1}{4}\)

312 What is the domain of the function \(g(x) = 3^x - 1\)?

1) \((-\infty, 3]\)
2) \((-\infty, 3)\)
3) \((-\infty, \infty)\)
4) \((-1, \infty)\)

313 Which expression is equivalent to \(\left(\frac{3x^2}{x}\right)^{-1}\)?

1) \(\frac{1}{3x^2}\)
2) \(-3x^2\)
3) \(\frac{1}{9x^2}\)
4) \(-9x^2\)

314 What is the solution set for \(2 \cos \theta - 1 = 0\) in the interval \(0^\circ \leq \theta < 360^\circ\)?

1) \(\{30^\circ, 150^\circ\}\)
2) \(\{60^\circ, 120^\circ\}\)
3) \(\{30^\circ, 330^\circ\}\)
4) \(\{60^\circ, 300^\circ\}\)

315 The expression \(\frac{1}{x} + \frac{3}{y}\) is equivalent to \(\frac{1}{xy}\)

1) \(\frac{3}{2}\)
2) \(\frac{3x+y}{2xy}\)
3) \(\frac{3xy}{2}\)
4) \(\frac{3x+y}{2}\)

316 The fraction \(\frac{3}{\sqrt{3a^2 b}}\) is equivalent to \(\frac{1}{a\sqrt{b}}\)

1) \(\frac{1}{a\sqrt{b}}\)
2) \(\frac{\sqrt{b}}{ab}\)
3) \(\frac{\sqrt{3b}}{ab}\)
4) \(\frac{\sqrt{3}}{a}\)

317 Expressed in simplest form, \(\frac{3y}{2y-6} + \frac{9}{6-2y}\) is equivalent to \(-\frac{6y^2 + 36y - 54}{(2y-6)(6-2y)}\)

1) \(-\frac{6y^2 + 36y - 54}{(2y-6)(6-2y)}\)
2) \(\frac{3y-9}{2y-6}\)
3) \(\frac{3}{2}\)
4) \(-\frac{3}{2}\)
318 What is the solution set of the equation \(-\sqrt{2} \sec x = 2\) when \(0^\circ \leq x < 360^\circ\)?

1) \(\{45^\circ, 135^\circ, 225^\circ, 315^\circ\}\)
2) \(\{45^\circ, 315^\circ\}\)
3) \(\{135^\circ, 225^\circ\}\)
4) \(\{225^\circ, 315^\circ\}\)

319 The sides of a parallelogram measure 10 cm and 18 cm. One angle of the parallelogram measures 46 degrees. What is the area of the parallelogram, to the nearest square centimeter?

1) 65
2) 125
3) 129
4) 162

320 What is the number of degrees in an angle whose measure is 2 radians?

1) \(\frac{360}{\pi}\)
2) \(\frac{\pi}{360}\)
3) 360
4) 90

321 The conjugate of the complex expression \(-5x + 4i\) is

1) \(5x - 4i\)
2) \(5x + 4i\)
3) \(-5x - 4i\)
4) \(-5x + 4i\)

322 Which equation is graphed in the diagram below?

1) \(y = 3 \cos \left(\frac{\pi}{30} x\right) + 8\)
2) \(y = 3 \cos \left(\frac{\pi}{15} x\right) + 5\)
3) \(y = -3 \cos \left(\frac{\pi}{30} x\right) + 8\)
4) \(y = -3 \cos \left(\frac{\pi}{15} x\right) + 5\)

323 What is the solution set of the equation \(\frac{30}{x^2 - 9} + 1 = \frac{5}{x - 3}\)?

1) \(\{2, 3\}\)
2) \(\{2\}\)
3) \(\{3\}\)
4) \(\{\}\)

324 What is the sum of the roots of the equation \(-3x^2 + 6x - 2 = 0\)?

1) \(\frac{2}{3}\)
2) 2
3) \(\frac{2}{3}\)
4) -2
325 By law, a wheelchair service ramp may be inclined no more than 4.76°. If the base of a ramp begins 15 feet from the base of a public building, which equation could be used to determine the maximum height, \(h \), of the ramp where it reaches the building’s entrance?

1) \(\sin 4.76^\circ = \frac{h}{15} \)
2) \(\sin 4.76^\circ = \frac{15}{h} \)
3) \(\tan 4.76^\circ = \frac{h}{15} \)
4) \(\tan 4.76^\circ = \frac{15}{h} \)

326 What are the coordinates of the center of a circle whose equation is \(x^2 + y^2 - 16x + 6y + 53 = 0 \)?

1) \((-8, -3)\)
2) \((-8, 3)\)
3) \((8, -3)\)
4) \((8, 3)\)

327 A survey completed at a large university asked 2,000 students to estimate the average number of hours they spend studying each week. Every tenth student entering the library was surveyed. The data showed that the mean number of hours that students spend studying was 15.7 per week. Which characteristic of the survey could create a bias in the results?

1) the size of the sample
2) the size of the population
3) the method of analyzing the data
4) the method of choosing the students who were surveyed

328 An arithmetic sequence has a first term of 10 and a sixth term of 40. What is the 20th term of this sequence?

1) 105
2) 110
3) 124
4) 130

329 If \(\sin x = \sin y = a \) and \(\cos x = \cos y = b \), then \(\cos(x - y) \) is

1) \(b^2 - a^2 \)
2) \(b^2 + a^2 \)
3) \(2b - 2a \)
4) \(2b + 2a \)

330 The expression \(\sin(\theta + 90)^\circ \) is equivalent to

1) \(-\sin \theta \)
2) \(-\cos \theta \)
3) \(\sin \theta \)
4) \(\cos \theta \)

331 The expression \(\left(2 - 3\sqrt{x}\right)^2 \) is equivalent to

1) \(4 - 9x \)
2) \(4 - 3x \)
3) \(4 - 12\sqrt{x} + 9x \)
4) \(4 - 12\sqrt{x} + 6x \)
332 If \(x^2 + 2 = 6x \) is solved by completing the square, an intermediate step would be
1) \((x + 3)^2 = 7 \)
2) \((x - 3)^2 = 7 \)
3) \((x - 3)^2 = 11 \)
4) \((x - 6)^2 = 34 \)

336 When factored completely, \(x^3 + 3x^2 - 4x - 12 \) equals
1) \((x + 2)(x - 2)(x - 3) \)
2) \((x + 2)(x - 2)(x + 3) \)
3) \((x^2 - 4)(x + 3) \)
4) \((x^2 - 4)(x - 3) \)

337 Which transformation of \(y = f(x) \) moves the graph 7 units to the left and 3 units down?
1) \(y = f(x + 7) - 3 \)
2) \(y = f(x + 7) + 3 \)
3) \(y = f(x - 7) - 3 \)
4) \(y = f(x - 7) + 3 \)

338 A school math team consists of three juniors and five seniors. How many different groups can be formed that consist of one junior and two seniors?
1) 13
2) 15
3) 30
4) 60

339 When \(-3 - 2i\) is multiplied by its conjugate, the result is
1) \(-13\)
2) \(-5\)
3) \(5\)
4) \(13\)
340 On January 1, a share of a certain stock cost $180. Each month thereafter, the cost of a share of this stock decreased by one-third. If x represents the time, in months, and y represents the cost of the stock, in dollars, which graph best represents the cost of a share over the following 5 months?

1)

![Graph 1]

2)

![Graph 2]

3)

![Graph 3]

4)

![Graph 4]

341 Approximately how many degrees does five radians equal?

1) 286
2) 900
3) $\frac{\pi}{36}$
4) 5π

342 A math club has 30 boys and 20 girls. Which expression represents the total number of different 5-member teams, consisting of 3 boys and 2 girls, that can be formed?

1) $\binom{30}{3} \cdot \binom{20}{2}$
2) $\binom{30}{3} \cdot 20 \cdot \binom{2}{2}$
3) $\binom{30}{3} + 20 \cdot \binom{2}{2}$
4) $30 \cdot \binom{3}{3} + 20 \cdot \binom{2}{2}$

343 What is the domain of the function shown below?

1) $-1 \leq x \leq 6$
2) $-1 \leq y \leq 6$
3) $-2 \leq x \leq 5$
4) $-2 \leq y \leq 5$
344 If \(T = \frac{10x^2}{y} \), then \(\log T \) is equivalent to

1) \((1 + 2 \log x) - \log y \)
2) \(\log(1 + 2x) - \log y \)
3) \((1 - 2 \log x) + \log y \)
4) \(2(1 - \log x) + \log y \)

345 Which graph represents the equation \(y = \cos^{-1} x \)?

346 Which graph represents a one-to-one function?

347 In parallelogram \(BFLO \), \(OL = 3.8 \), \(LF = 7.4 \), and \(m \angle O = 126^\circ \). If diagonal \(BL \) is drawn, what is the area of \(\Delta BLF \)?

1) \(11.4 \)
2) \(14.1 \)
3) \(22.7 \)
4) \(28.1 \)
348 Which expression is equivalent to \(\frac{x^{-1}y^2}{x^2y^{-4}} \)?

1) \(\frac{x}{y^2} \)
2) \(\frac{x^3}{y^6} \)
3) \(\frac{y^2}{x} \)
4) \(\frac{y^6}{x^3} \)

349 A study compared the number of years of education a person received and that person's average yearly salary. It was determined that the relationship between these two quantities was linear and the correlation coefficient was 0.91. Which conclusion can be made based on the findings of this study?

1) There was a weak relationship.
2) There was a strong relationship.
3) There was no relationship.
4) There was an unpredictable relationship.

350 The expression \(\sqrt[3]{64a^{16}} \) is equivalent to

1) \(8a^4 \)
2) \(8a^8 \)
3) \(4a^{5.5} \sqrt{a} \)
4) \(4a^3 \sqrt{a^5} \)

351 The expression \((x+i)^2 - (x-i)^2\) is equivalent to

1) 0
2) -2
3) \(-2 + 4xi\)
4) \(4xi\)
353 What is the common difference in the sequence
\(2a + 1, 4a + 4, 6a + 7, 8a + 10, \ldots\)?
1) \(2a + 3\)
2) \(-2a - 3\)
3) \(2a + 5\)
4) \(-2a + 5\)

354 If \(x = 3i\), \(y = 2i\), and \(z = m + i\), the expression \(xy^2z\) equals
1) \(-12 - 12mi\)
2) \(-6 - 6mi\)
3) \(12 - 12mi\)
4) \(6 - 6mi\)

355 What is the value of \(\frac{1}{2} + x^6 + x^{-\frac{1}{4}}\) when \(x = 16\)?
1) \(7\frac{1}{2}\)
2) \(9\frac{1}{2}\)
3) \(16\frac{1}{2}\)
4) \(17\frac{1}{2}\)

356 What is the graph of the solution set of \(|2x - 1| > 5|\)?
1)
2)
3)
4)

357 As shown in the table below, a person’s target heart rate during exercise changes as the person gets older.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Target Heart Rate (beats per minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>135</td>
</tr>
<tr>
<td>25</td>
<td>132</td>
</tr>
<tr>
<td>30</td>
<td>129</td>
</tr>
<tr>
<td>35</td>
<td>125</td>
</tr>
<tr>
<td>40</td>
<td>122</td>
</tr>
<tr>
<td>45</td>
<td>119</td>
</tr>
<tr>
<td>50</td>
<td>115</td>
</tr>
</tbody>
</table>

Which value represents the linear correlation coefficient, rounded to the nearest thousandth, between a person’s age, in years, and that person’s target heart rate, in beats per minute?
1) \(-0.999\)
2) \(-0.664\)
3) \(0.998\)
4) \(1.503\)

358 The table of values below can be modeled by which equation?

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-2)</td>
<td>5</td>
</tr>
<tr>
<td>(-1)</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

1) \(f(x) = |x + 3|\)
2) \(f(x) = |x| + 3\)
3) \(f(y) = |y + 3|\)
4) \(f(y) = |y| + 3\)
359 In the diagram below, the length of which line segment is equal to the exact value of \(\sin \theta \)?

1) \(\overline{TO} \)
2) \(\overline{TS} \)
3) \(\overline{OR} \)
4) \(\overline{OS} \)

360 The table below shows five numbers and their frequency of occurrence.

<table>
<thead>
<tr>
<th>Number</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
</tr>
</tbody>
</table>

The interquartile range for these data is
1) 7
2) 5
3) 7 to 12
4) 6 to 13

361 If \(\tan \left(\arccos \frac{\sqrt{3}}{k} \right) = \frac{\sqrt{3}}{3} \), then \(k \) is

1) 1
2) 2
3) \(\sqrt{2} \)
4) \(3\sqrt{2} \)

362 How many distinct ways can the eleven letters in the word "TALLAHASSEE" be arranged?

1) 831,600
2) 1,663,200
3) 3,326,400
4) 5,702,400

363 For \(y = \frac{3}{\sqrt{x - 4}} \), what are the domain and range?

1) \(\{ x \mid x > 4 \} \) and \(\{ y \mid y > 0 \} \)
2) \(\{ x \mid x \geq 4 \} \) and \(\{ y \mid y > 0 \} \)
3) \(\{ x \mid x > 4 \} \) and \(\{ y \mid y \geq 0 \} \)
4) \(\{ x \mid x \geq 4 \} \) and \(\{ y \mid y \geq 0 \} \)

364 Two sides of a triangular-shaped sandbox measure 22 feet and 13 feet. If the angle between these two sides measures 55°, what is the area of the sandbox, to the nearest square foot?

1) 82
2) 117
3) 143
4) 234
365 Expressed in simplest form, $\sqrt{-18} - \sqrt{-32}$ is
1) $-\sqrt{2}$
2) $-7\sqrt{2}$
3) $-2i\sqrt{2}$
4) $7i\sqrt{2}$

366 How many different 11-letter arrangements are possible using the letters in the word “ARRANGEMENT”?
1) 2,494,800
2) 4,989,600
3) 19,958,400
4) 39,916,800

367 A spinner is divided into eight equal sections. Five sections are red and three are green. If the spinner is spun three times, what is the probability that it lands on red exactly twice?
1) $\frac{25}{64}$
2) $\frac{45}{512}$
3) $\frac{75}{512}$
4) $\frac{225}{512}$

368 When factored completely, the expression $3x^3 - 5x^2 - 48x + 80$ is equivalent to
1) $(x^2 - 16)(3x - 5)$
2) $(x^2 + 16)(3x - 5)(3x + 5)$
3) $(x + 4)(x - 4)(3x - 5)$
4) $(x + 4)(x - 4)(3x - 5)(3x + 5)$

369 What is the equation of the graph shown below?
1) $y = 2^x$
2) $y = 2^{-x}$
3) $x = 2^y$
4) $x = 2^{-y}$

370 What is $\frac{x}{x-1} - \frac{1}{2-2x}$ expressed as a single fraction?
1) $\frac{x+1}{x-1}$
2) $\frac{2x-1}{2-2x}$
3) $\frac{2x+1}{2(x-1)}$
4) $\frac{2x-1}{2(x-1)}$

371 The value of $\sin(180 + x)$ is equivalent to
1) $-\sin x$
2) $-\sin(90 - x)$
3) $\sin x$
4) $\sin(90 - x)$
372 The expression \(\frac{1 + \cos 2A}{\sin 2A} \) is equivalent to
1) \(\cot A \)
2) \(\tan A \)
3) \(\sec A \)
4) \(1 + \cot 2A \)

373 What is the period of the graph \(y = \frac{1}{2} \sin 6x \)?
1) \(\frac{\pi}{6} \)
2) \(\frac{\pi}{3} \)
3) \(\frac{\pi}{2} \)
4) \(6\pi \)

374 What is the fourth term of the sequence defined by
\[a_1 = 3xy^5 \]
\[a_n = \left(\frac{2x}{y} \right) a_{n-1} \]
1) \(12x^3y^3 \)
2) \(24x^3y^4 \)
3) \(24x^4y^2 \)
4) \(48x^5y^2 \)

375 A theater has 35 seats in the first row. Each row has four more seats than the row before it. Which expression represents the number of seats in the \(n \)th row?
1) \(35 + (n + 4) \)
2) \(35 + (4n) \)
3) \(35 + (n + 1)(4) \)
4) \(35 + (n - 1)(4) \)

376 Susie invests $500 in an account that is compounded continuously at an annual interest rate of 5%, according to the formula \(A = Pe^{rt} \), where \(A \) is the amount accrued, \(P \) is the principal, \(r \) is the rate of interest, and \(t \) is the time, in years. Approximately how many years will it take for Susie’s money to double?
1) \(1.4 \)
2) \(6.0 \)
3) \(13.9 \)
4) \(14.7 \)

377 The area of triangle \(ABC \) is 42. If \(AB = 8 \) and \(\angle B = 61 \), the length of \(BC \) is approximately
1) \(5.1 \)
2) \(9.2 \)
3) \(12.0 \)
4) \(21.7 \)

378 The value of \(\csc 138^\circ 23' \) rounded to four decimal places is
1) \(-1.3376 \)
2) \(-1.3408 \)
3) \(1.5012 \)
4) \(1.5057 \)

379 Given \(y \) varies inversely as \(x \), when \(y \) is multiplied by \(\frac{1}{2} \), then \(x \) is multiplied by
1) \(\frac{1}{2} \)
2) \(2 \)
3) \(-\frac{1}{2} \)
4) \(-2 \)
380 The expression \(x(3i^2)^3 + 2xi^{12} \) is equivalent to
1) \(2x + 27xi \)
2) \(-7x \)
3) \(-25x \)
4) \(-29x \)

381 Which equation is represented by the graph below?

1) \((x - 3)^2 + (y + 1)^2 = 5\)
2) \((x + 3)^2 + (y - 1)^2 = 5\)
3) \((x - 1)^2 + (y + 3)^2 = 13\)
4) \((x + 3)^2 + (y - 1)^2 = 13\)

382 If \(\log x^2 - \log 2a = \log 3a \), then \(\log x \) expressed in terms of \(\log a \) is equivalent to
1) \(\frac{1}{2} \log 5a \)
2) \(\frac{1}{2} \log 6 + \log a \)
3) \(\log 6 + \log a \)
4) \(\log 6 + 2 \log a \)

383 In a certain high school, a survey revealed the mean amount of bottled water consumed by students each day was 153 bottles with a standard deviation of 22 bottles. Assuming the survey represented a normal distribution, what is the range of the number of bottled waters that approximately 68.2% of the students drink?
1) 131 – 164
2) 131 – 175
3) 142 – 164
4) 142 – 175

384 The terminal side of an angle measuring \(\frac{4\pi}{5} \) radians lies in Quadrant
1) I
2) II
3) III
4) IV

385 Which expression is equivalent to \(\left(9x^2 y^6 \right)^{\frac{1}{2}} \)?
1) \(\frac{1}{3xy^3} \)
2) \(3xy^3 \)
3) \(\frac{3}{xy^3} \)
4) \(\frac{xy^5}{3} \)

386 How many full cycles of the function \(y = 3 \sin 2x \) appear in \(\pi \) radians?
1) 1
2) 2
3) 3
4) 4
387 If \(2x^3 = y \), then \(\log y \) equals
1) \(\log(2x) + \log 3 \)
2) \(3 \log(2x) \)
3) \(3 \log 2 + 3 \log x \)
4) \(\log 2 + 3 \log x \)

388 What is the product of \(\left(\frac{x}{4} - \frac{1}{3} \right) \) and \(\left(\frac{x}{4} + \frac{1}{3} \right) \)?
1) \(\frac{x^2}{8} - \frac{1}{9} \)
2) \(\frac{x^2}{16} - \frac{1}{9} \)
3) \(\frac{x^2}{8} - \frac{x}{6} - \frac{1}{9} \)
4) \(\frac{x^2}{16} - \frac{x}{6} + \frac{1}{9} \)

389 In the right triangle shown below, what is the measure of angle \(S \), to the nearest minute?

![Right Triangle Diagram]

1) 28°1'
2) 28°4'
3) 61°56'
4) 61°93'

390 What is the product of the roots of \(x^2 - 4x + k = 0 \) if one of the roots is 7?
1) 21
2) −11
3) −21
4) −77

391 If \(f(x) = 2x^2 + 1 \) and \(g(x) = 3x - 2 \), what is the value of \(f(g(-2)) \)?
1) −127
2) −23
3) 25
4) 129

392 The expression \(\frac{a + b}{c} \) is equivalent to
1) \(\frac{c + 1}{d - 1} \)
2) \(\frac{a + b}{d - b} \)
3) \(\frac{ac + b}{cd - b} \)
4) \(\frac{ac + 1}{cd - 1} \)

393 Which equation is represented by the graph below?

![Graph]

1) \(y = 2 \cos 3x \)
2) \(y = 2 \sin 3x \)
3) \(y = 2 \cos \frac{2\pi}{3} x \)
4) \(y = 2 \sin \frac{2\pi}{3} x \)
394 Which graph represents the solution set of \[\frac{x + 16}{x - 2} \leq 7? \]

1) \[\text{Graph A} \]
2) \[\text{Graph B} \]
3) \[\text{Graph C} \]
4) \[\text{Graph D} \]

395 Angle \(\theta \) is in standard position and \((-4,0)\) is a point on the terminal side of \(\theta \). What is the value of sec \(\theta \)?

1) \(-4\)
2) \(-1\)
3) 0
4) undefined

396 How many different six-letter arrangements can be made using the letters of the word “TATTOO”?

1) 60
2) 90
3) 120
4) 720

397 If \(\cos \theta = \frac{3}{4} \), then what is \(\cos 2\theta \)?

1) \(\frac{1}{8} \)
2) \(\frac{9}{16} \)
3) \(\frac{1}{8} \)
4) \(\frac{3}{2} \)

398 What is the common ratio of the geometric sequence shown below? \(-2, 4, -8, 16, \ldots\)

1) \(\frac{-1}{2} \)
2) 2
3) \(-2\)
4) \(-6\)

399 The exact value of \(\csc 120^\circ \) is

1) \(\frac{2\sqrt{3}}{3} \)
2) \(-2\)
3) \(\frac{-2\sqrt{3}}{3} \)
4) \(-2\)

400 Which ratio represents \(\csc A \) in the diagram below?

1) \(\frac{25}{24} \)
2) \(\frac{25}{7} \)
3) \(\frac{24}{7} \)
4) \(\frac{7}{24} \)
401 The function \(f(x) = \tan x \) is defined in such a way that \(f^{-1}(x) \) is a function. What can be the domain of \(f(x) \)?

1) \(\{x \mid 0 \leq x \leq \pi\} \)
2) \(\{x | 0 \leq x \leq 2\pi\} \)
3) \(\left\{x \mid -\frac{\pi}{2} < x < \frac{\pi}{2}\right\} \)
4) \(\left\{x \mid -\frac{\pi}{2} < x < \frac{3\pi}{2}\right\} \)

402 If \(\log 2 = a \) and \(\log 3 = b \), the expression \(\log \frac{9}{20} \) is equivalent to

1) \(2b - a + 1 \)
2) \(2b - a - 1 \)
3) \(b^2 - a + 10 \)
4) \(\frac{2b}{a + 1} \)

403 The expression \(\frac{2x + 4}{\sqrt{x + 2}} \) is equivalent to

1) \(\frac{(2x + 4)\sqrt{x - 2}}{x - 2} \)
2) \(\frac{(2x + 4)\sqrt{x - 2}}{x - 4} \)
3) \(2\sqrt{x - 2} \)
4) \(2\sqrt{x + 2} \)

404 If \(g(x) = \frac{1}{2} x + 8 \) and \(h(x) = \frac{1}{2} x - 2 \), what is the value of \(g(h(-8)) \)?

1) 0
2) 9
3) 5
4) 4

405 A sequence has the following terms: \(a_1 = 4 \), \(a_2 = 10 \), \(a_3 = 25 \), \(a_4 = 62.5 \). Which formula represents the \(n \)th term in the sequence?

1) \(a_n = 4 + 2.5n \)
2) \(a_n = 4 + 2.5(n - 1) \)
3) \(a_n = 4(2.5)^n \)
4) \(a_n = 4(2.5)^{n-1} \)
Algebra 2/Trigonometry 2 Point Regents Exam Questions

406 Find, to the nearest tenth of a square foot, the area of a rhombus that has a side of 6 feet and an angle of 50°.

407 Evaluate: \[\sum_{n=1}^{3} (-n^4 - n) \]

408 The probability of Ashley being the catcher in a softball game is \(\frac{2}{5} \). Calculate the exact probability that she will be the catcher in exactly five of the next six games.

409 Find the solution of the inequality \(x^2 - 4x > 5 \), algebraically.

410 Find the total number of different twelve-letter arrangements that can be formed using the letters in the word PENNSYLVANIA.

411 A committee of 5 members is to be randomly selected from a group of 9 teachers and 20 students. Determine how many different committees can be formed if 2 members must be teachers and 3 members must be students.

412 Express \(xi^8 - yi^6 \) in simplest form.

413 If \(x \) is a real number, express \(2xi(i - 4i^2) \) in simplest \(a + bi \) form.

414 The graph below represents the function \(y = f(x) \).

State the domain and range of this function.

415 Express the sum \(7 + 14 + 21 + 28 + \ldots + 105 \) using sigma notation.

416 Prove that the equation shown below is an identity for all values for which the functions are defined:
\[\csc \theta \cdot \sin^2 \theta \cdot \cot \theta = \cos \theta \]
417 Solve algebraically for \(x \): \(5^{4x} = 125^{x-1} \)

418 Write an equation of the circle shown in the graph below.

419 Find the third term in the recursive sequence \(a_{k+1} = 2a_k - 1 \), where \(a_1 = 3 \).

420 Use the discriminant to determine all values of \(k \) that would result in the equation \(x^2 - kx + 4 = 0 \) having equal roots.

421 If \(f(x) = x^2 - 6 \), find \(f^{-1}(x) \).

422 Solve the equation \(2\tan C - 3 = 3\tan C - 4 \) algebraically for all values of \(C \) in the interval \(0^\circ \leq C < 360^\circ \).

423 Howard collected fish eggs from a pond behind his house so he could determine whether sunlight had an effect on how many of the eggs hatched. After he collected the eggs, he divided them into two tanks. He put both tanks outside near the pond, and he covered one of the tanks with a box to block out all sunlight. State whether Howard's investigation was an example of a controlled experiment, an observation, or a survey. Justify your response.

424 Express in simplest form: \(\frac{3\sqrt{a^6 b^9}}{-64} \)

425 Find the number of possible different 10-letter arrangements using the letters of the word “STATISTICS.”

426 The following is a list of the individual points scored by all twelve members of the Webster High School basketball team at a recent game:

\[
2 \quad 2 \quad 3 \quad 4 \quad 6 \quad 7 \quad 9 \quad 10 \quad 10 \quad 11 \quad 12 \quad 14
\]

Find the interquartile range for this set of data.

427 Solve algebraically for \(x \): \(\sqrt{2x + 1} + 4 = 8 \)
428 Express the product of \(\left(\frac{1}{2}y^2 - \frac{1}{3}y \right) \) and \(\left(12y + \frac{3}{5} \right) \) as a trinomial.

429 Determine, to the nearest minute, the degree measure of an angle of \(\frac{5}{11} \pi \) radians.

430 Show that \(\sec \theta \sin \theta \cot \theta = 1 \) is an identity.

431 Solve \(|-4x + 5| < 13\) algebraically for \(x\).

432 Find, to the nearest tenth of a degree, the angle whose measure is 2.5 radians.

433 A cup of soup is left on a countertop to cool. The table below gives the temperatures, in degrees Fahrenheit, of the soup recorded over a 10-minute period.

<table>
<thead>
<tr>
<th>Time in Minutes ((x))</th>
<th>Temperature in °F ((y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>180.2</td>
</tr>
<tr>
<td>2</td>
<td>165.8</td>
</tr>
<tr>
<td>4</td>
<td>146.3</td>
</tr>
<tr>
<td>6</td>
<td>135.4</td>
</tr>
<tr>
<td>8</td>
<td>127.7</td>
</tr>
<tr>
<td>10</td>
<td>110.5</td>
</tr>
</tbody>
</table>

Write an exponential regression equation for the data, rounding all values to the nearest thousandth.

434 Solve \(\sec x - \sqrt{2} = 0 \) algebraically for all values of \(x\) in \(0^\circ \leq x < 360^\circ\).

435 Evaluate: \(10 + \sum_{n=1}^{5} (n^3 - 1)\)

436 The table below shows the concentration of ozone in Earth’s atmosphere at different altitudes. Write the exponential regression equation that models these data, rounding all values to the nearest thousandth.

<table>
<thead>
<tr>
<th>Altitude ((x))</th>
<th>Ozone Units ((y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.7</td>
</tr>
<tr>
<td>5</td>
<td>0.6</td>
</tr>
<tr>
<td>10</td>
<td>1.1</td>
</tr>
<tr>
<td>15</td>
<td>3.0</td>
</tr>
<tr>
<td>20</td>
<td>4.9</td>
</tr>
</tbody>
</table>

437 The area of a parallelogram is 594, and the lengths of its sides are 32 and 46. Determine, to the nearest tenth of a degree, the measure of the acute angle of the parallelogram.

438 Express \(\frac{\cot x \sin x}{\sec x} \) as a single trigonometric function, in simplest form, for all values of \(x\) for which it is defined.
439 Circle O shown below has a radius of 12 centimeters. To the nearest tenth of a centimeter, determine the length of the arc, x, subtended by an angle of $83^\circ 50'$.

440 On the unit circle shown in the diagram below, sketch an angle, in standard position, whose degree measure is 240 and find the exact value of $\sin 240^\circ$.

441 In a circle, an arc length of 6.6 is intercepted by a central angle of $\frac{2}{3}$ radians. Determine the length of the radius.

442 Express the product of $\cos 30^\circ$ and $\sin 45^\circ$ in simplest radical form.

443 On the axes below, for $-2 \leq x \leq 2$, graph $y = 2^{x+1} - 3$.

444 The formula for continuously compounded interest is $A = Pe^{rt}$, where A is the amount of money in the account, P is the initial investment, r is the interest rate, and t is the time in years. Using the formula, determine, to the nearest dollar, the amount in the account after 8 years if $750 is invested at an annual rate of 3%.

445 Solve algebraically for the exact value of x:

$$\log_4 16 = x + 1$$
446 Find, to the nearest tenth, the radian measure of 216°.

447 The probability of winning a game is $\frac{2}{3}$.
 Determine the probability, expressed as a fraction, of winning exactly four games if seven games are played.

448 Find, algebraically, the measure of the obtuse angle, to the nearest degree, that satisfies the equation $5\csc \theta = 8$.

449 Determine the sum of the first twenty terms of the sequence whose first five terms are 5, 14, 23, 32, 41.

450 In a study of 82 video game players, the researchers found that the ages of these players were normally distributed, with a mean age of 17 years and a standard deviation of 3 years. Determine if there were 15 video game players in this study over the age of 20. Justify your answer.

451 On a test that has a normal distribution of scores, a score of 57 falls one standard deviation below the mean, and a score of 81 is two standard deviations above the mean. Determine the mean score of this test.

452 Given the equation $3x^2 + 2x + k = 0$, state the sum and product of the roots.

453 Express $\frac{5}{3 - \sqrt{2}}$ with a rational denominator, in simplest radical form.

454 Multiply $x + yi$ by its conjugate, and express the product in simplest form.

455 Express $\frac{\sqrt{108x^5y^8}}{\sqrt{6xy^5}}$ in simplest radical form.

456 If $\sec(a + 15)° = \csc(2a)°$, find the smallest positive value of a, in degrees.

457 Solve algebraically for x: $4 - \sqrt{2x - 5} = 1$

458 The number of bacteria present in a Petri dish can be modeled by the function $N = 50e^{3t}$, where N is the number of bacteria present in the Petri dish after t hours. Using this model, determine, to the nearest hundredth, the number of hours it will take for N to reach 30,700.
459 The scores of one class on the Unit 2 mathematics test are shown in the table below.

<table>
<thead>
<tr>
<th>Test Score</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>92</td>
<td>2</td>
</tr>
<tr>
<td>84</td>
<td>5</td>
</tr>
<tr>
<td>80</td>
<td>3</td>
</tr>
<tr>
<td>76</td>
<td>6</td>
</tr>
<tr>
<td>72</td>
<td>3</td>
</tr>
<tr>
<td>68</td>
<td>2</td>
</tr>
</tbody>
</table>

Find the population standard deviation of these scores, to the nearest tenth.

460 Matt places $1,200 in an investment account earning an annual rate of 6.5%, compounded continuously. Using the formula \(V = P e^{rt} \), where \(V \) is the value of the account in \(t \) years, \(P \) is the principal initially invested, \(e \) is the base of a natural logarithm, and \(r \) is the rate of interest, determine the amount of money, to the nearest cent, that Matt will have in the account after 10 years.

461 Determine the sum and the product of the roots of the equation \(12x^2 + x - 6 = 0 \).

462 Express the exact value of \(\csc 60^\circ \), with a rational denominator.

463 Solve \(|2x - 3| > 5 \) algebraically.

464 If \(f(x) = x^2 - x \) and \(g(x) = x + 1 \), determine \(f(g(x)) \) in simplest form.

465 Express \(\left(\frac{2}{3}x - 1 \right)^2 \) as a trinomial.

466 The function \(f(x) \) is graphed on the set of axes below. On the same set of axes, graph \(f(x + 1) + 2 \).

467 Find, to the nearest minute, the angle whose measure is 3.45 radians.

468 Solve algebraically for the exact values of \(x \):

\[
\frac{5x}{2} = \frac{1}{x} + \frac{x}{4}
\]
469 Factor the expression $12t^8 - 75t^4$ completely.

470 Determine which set of data given below has the stronger linear relationship between x and y. Justify your choice.

Set A

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>51</td>
<td>70</td>
<td>88</td>
</tr>
</tbody>
</table>

Set B

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>81</td>
<td>64</td>
<td>49</td>
<td>36</td>
<td>25</td>
<td>16</td>
</tr>
</tbody>
</table>

471 Write an equation of the circle shown in the diagram below.

472 Assume that the ages of first-year college students are normally distributed with a mean of 19 years and standard deviation of 1 year. To the nearest integer, find the percentage of first-year college students who are between the ages of 18 years and 20 years, inclusive. To the nearest integer, find the percentage of first-year college students who are 20 years old or older.

473 If $\log_{x+1} 64 = 3$, find the value of x.

474 Convert 2.5 radians to degrees, and express the answer to the nearest minute.

475 If $g(x) = \left(ax \sqrt{1-x} \right)^2$, express $g(10)$ in simplest form.

476 The two sides and included angle of a parallelogram are 18, 22, and 60°. Find its exact area in simplest form.

477 Express $4xi + 5yi^8 + 6xi^3 + 2yi^4$ in simplest $a + bi$ form.

478 If $f(x) = x^2 - 6$ and $g(x) = 2^x - 1$, determine the value of $(g \circ f)(-3)$.

479 Determine the area, to the nearest integer, of $\triangle SRO$ shown below.

480 Convert 3 radians to degrees and express the answer to the nearest minute.
481 Find the difference when \(\frac{4}{3}x^3 - \frac{5}{8}x^2 + \frac{7}{9}x \) is subtracted from \(2x^3 + \frac{3}{4}x^2 - \frac{2}{9} \).

482 Show that \(\frac{\sec^2 x - 1}{\sec^2 x} \) is equivalent to \(\sin^2 x \).

483 Solve the equation \(6x^2 - 2x - 3 = 0 \) and express the answer in simplest radical form.

484 Express in simplest form:
\[
\frac{36 - x^2}{(x + 6)^2} \quad \frac{x - 3}{x^2 + 3x - 18}
\]

485 Determine how many eleven-letter arrangements can be formed from the word "CATTARAUGUS."

486 The probability that Kay and Joseph Dowling will have a redheaded child is 1 out of 4. If the Dowlings plan to have three children, what is the exact probability that only one child will have red hair?

487 Starting with \(\sin^2 A + \cos^2 A = 1 \), derive the formula \(\tan^2 A + 1 = \sec^2 A \).

488 Solve algebraically for \(x \): \(\log_{5x-1} 4 = \frac{1}{3} \)

489 Write an equation for the graph of the trigonometric function shown below.

For a given set of rectangles, the length is inversely proportional to the width. In one of these rectangles, the length is 12 and the width is 6. For this set of rectangles, calculate the width of a rectangle whose length is 9.

490 Determine the sum and the product of the roots of \(3x^2 = 11x - 6 \).

491 Factor completely: \(x^3 + 3x^2 + 2x + 6 \)

492 For a given set of rectangles, the length is inversely proportional to the width. In one of these rectangles, the length is 12 and the width is 6. For this set of rectangles, calculate the width of a rectangle whose length is 9.

493 Determine, to the nearest minute, the number of degrees in an angle whose measure is 2.5 radians.
494 The graph of the equation \(y = \left(\frac{1}{2} \right)^x \) has an asymptote. On the grid below, sketch the graph of \(y = \left(\frac{1}{2} \right)^x \) and write the equation of this asymptote.

495 Express \(5\sqrt{3x^3} - 2\sqrt{27x^3} \) in simplest radical form.

496 A blood bank needs twenty people to help with a blood drive. Twenty-five people have volunteered. Find how many different groups of twenty can be formed from the twenty-five volunteers.

497 Express \(\cos \theta (\sec \theta - \cos \theta) \), in terms of \(\sin \theta \).

498 Solve algebraically for \(x \): \(\log_{27} (2^x - 1) = \frac{4}{3} \)

499 Simplify the expression \(\frac{3x^4 \cdot y^5}{(2x^3y^7)^{-2}} \) and write the answer using only positive exponents.

500 Two sides of a parallelogram are 24 feet and 30 feet. The measure of the angle between these sides is \(57^\circ \). Find the area of the parallelogram, to the nearest square foot.

501 Factor completely: \(10ax^2 - 23ax - 5a \)

502 Determine algebraically the \(x \)-coordinate of all points where the graphs of \(xy = 10 \) and \(y = x + 3 \) intersect.

503 In an arithmetic sequence, \(a_4 = 19 \) and \(a_7 = 31 \). Determine a formula for \(a_n \), the \(n^{th} \) term of this sequence.

504 Solve for \(x \): \(\frac{1}{16} = 2^{3x - 1} \)
505 In a certain school, the heights of the population of girls are normally distributed, with a mean of 63 inches and a standard deviation of 2 inches. If there are 450 girls in the school, determine how many of the girls are shorter than 60 inches. Round the answer to the nearest integer.

506 Determine the value of \(n \) in simplest form:
\[
i^{13} + i^{18} + i^{31} + n = 0
\]

507 Solve for \(x \):
\[
\frac{4x}{x - 3} = 2 + \frac{12}{x - 3}
\]

508 A circle shown in the diagram below has a center of \((-5,3)\) and passes through point \((-1,7)\).

![Diagram of a circle with center (-5,3) and passing through (-1,7)]

Write an equation that represents the circle.

509 Factor completely: \(x^3 - 6x^2 - 25x + 150 \)

510 If \(p \) and \(q \) vary inversely and \(p \) is 25 when \(q \) is 6, determine \(q \) when \(p \) is equal to 30.

511 Express \(-130^\circ\) in radian measure, to the nearest hundredth.

512 Solve algebraically for \(x \): \(16^{2x+3} = 64^{x+2} \)

513 On a multiple-choice test, Abby randomly guesses on all seven questions. Each question has four choices. Find the probability, to the nearest thousandth, that Abby gets exactly three questions correct.

514 Solve \(e^{4x} = 12 \) algebraically for \(x \), rounded to the nearest hundredth.

515 Find the first four terms of the recursive sequence defined below.
\[
a_1 = -3 \\
a_n = a_{(n-1)} - n
\]

516 Express in simplest form:
\[
\frac{1 - 4}{2d} + \frac{3}{2d}
\]
517 The table below shows the number of new stores in a coffee shop chain that opened during the years 1986 through 1994.

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of New Stores</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>14</td>
</tr>
<tr>
<td>1987</td>
<td>27</td>
</tr>
<tr>
<td>1988</td>
<td>48</td>
</tr>
<tr>
<td>1989</td>
<td>80</td>
</tr>
<tr>
<td>1990</td>
<td>110</td>
</tr>
<tr>
<td>1991</td>
<td>153</td>
</tr>
<tr>
<td>1992</td>
<td>261</td>
</tr>
<tr>
<td>1993</td>
<td>403</td>
</tr>
<tr>
<td>1994</td>
<td>681</td>
</tr>
</tbody>
</table>

Using \(x = 1 \) to represent the year 1986 and \(y \) to represent the number of new stores, write the exponential regression equation for these data. Round all values to the nearest thousandth.

521 Simplify: \(\sum_{a=1}^{4} \left(x - a^2 \right) \).

522 If \(\theta \) is an angle in standard position and its terminal side passes through the point \((-3,2)\), find the exact value of \(\csc \theta \).

523 Find the sum and product of the roots of the equation \(5x^2 + 11x - 3 = 0 \).

524 The heights, in inches, of 10 high school varsity basketball players are 78, 79, 79, 72, 75, 71, 74, 74, 83, and 71. Find the interquartile range of this data set.

525 Determine the solution of the inequality \(|3 - 2x| \geq 7\). [The use of the grid below is optional.]
526 Solve \(x^3 + 5x^2 = 4x + 20 \) algebraically.

527 Express as a single fraction the exact value of \(\sin 75^\circ \).

528 Solve algebraically for all exact values of \(x \) in the interval \(0 \leq x < 2\pi \): \(2 \sin^2 x + 5 \sin x = 3 \)

529 The data collected by a biologist showing the growth of a colony of bacteria at the end of each hour are displayed in the table below.

<table>
<thead>
<tr>
<th>Time, hour, (x)</th>
<th>Population, (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>250</td>
</tr>
<tr>
<td>1</td>
<td>330</td>
</tr>
<tr>
<td>2</td>
<td>580</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
</tr>
<tr>
<td>4</td>
<td>1650</td>
</tr>
<tr>
<td>5</td>
<td>3000</td>
</tr>
</tbody>
</table>

Write an exponential regression equation to model these data. Round all values to the nearest thousandth. Assuming this trend continues, use this equation to estimate, to the nearest ten, the number of bacteria in the colony at the end of 7 hours.

530 Solve the equation \(8x^3 + 4x^2 - 18x - 9 = 0 \) algebraically for all values of \(x \).

531 Solve algebraically for all values of \(x \):
\[\log_{(x+4)}(17x - 4) = 2 \]

532 If \(\log_4 x = 2.5 \) and \(\log_5 125 = -\frac{3}{2} \), find the numerical value of \(\frac{x}{y} \), in simplest form.

533 The probability that the Stormville Sluggers will win a baseball game is \(\frac{2}{3} \). Determine the probability, to the nearest thousandth, that the Stormville Sluggers will win at least 6 of their next 8 games.

534 The periodic graph below can be represented by the trigonometric equation \(y = a \cos bx + c \) where \(a \), \(b \), and \(c \) are real numbers.

State the values of \(a \), \(b \), and \(c \), and write an equation for the graph.
535 Solve the equation \(\cos 2x = \cos x \) algebraically for all values of \(x \) in the interval \(0^\circ \leq x < 360^\circ \).

536 A ranch in the Australian Outback is shaped like triangle \(ACE \), with \(\angle A = 42^\circ \), \(\angle E = 103^\circ \), and \(AC = 15 \) miles. Find the area of the ranch, to the nearest square mile.

537 Find the exact roots of \(x^2 + 10x - 8 = 0 \) by completing the square.

538 A population of single-celled organisms was grown in a Petri dish over a period of 16 hours. The number of organisms at a given time is recorded in the table below.

<table>
<thead>
<tr>
<th>Time, hrs ((x))</th>
<th>Number of Organisms ((y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>85</td>
</tr>
<tr>
<td>10</td>
<td>104</td>
</tr>
<tr>
<td>12</td>
<td>142</td>
</tr>
<tr>
<td>16</td>
<td>260</td>
</tr>
</tbody>
</table>

Determine the exponential regression equation model for these data, rounding all values to the nearest ten-thousandth. Using this equation, predict the number of single-celled organisms, to the nearest whole number, at the end of the 18th hour.

539 Solve algebraically for \(x \):
\[
\frac{3}{x} + \frac{x}{x + 2} = -\frac{2}{x + 2}
\]

540 Solve the equation below algebraically, and express the result in simplest radical form:
\[
\frac{13}{x} = 10 - x
\]

541 The letters of any word can be rearranged. Carol believes that the number of different 9-letter arrangements of the word “TENNESSEE” is greater than the number of different 7-letter arrangements of the word “VERMONT.” Is she correct? Justify your answer.

542 In \(\triangle ABC \), \(\angle A = 32^\circ \), \(a = 12 \), and \(b = 10 \). Find the measures of the missing angles and side of \(\triangle ABC \). Round each measure to the nearest tenth.

543 The table below shows the results of an experiment involving the growth of bacteria.

<table>
<thead>
<tr>
<th>Time ((x)) (in minutes)</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Bacteria ((y))</td>
<td>2</td>
<td>25</td>
<td>81</td>
<td>175</td>
<td>310</td>
<td>497</td>
</tr>
</tbody>
</table>

Write a power regression equation for this set of data, rounding all values to three decimal places. Using this equation, predict the bacteria’s growth, to the nearest integer, after 15 minutes.
544 Solve $2x^2 - 12x + 4 = 0$ by completing the square, expressing the result in simplest radical form.

545 Express in simplest terms: \[
\frac{1 + \frac{3}{x}}{1 - \frac{5}{x} - \frac{24}{x^2}}
\]

546 Solve algebraically for x: \[
\frac{1}{x+3} - \frac{2}{3-x} = \frac{4}{x^2 - 9}
\]

547 As shown in the diagram below, fire-tracking station A is 100 miles due west of fire-tracking station B. A forest fire is spotted at F, on a bearing 47° northeast of station A and 15° northeast of station B. Determine, to the nearest tenth of a mile, the distance the fire is from both station A and station B. [N represents due north.]

548 Whenever Sara rents a movie, the probability that it is a horror movie is 0.57. Of the next five movies she rents, determine the probability, to the nearest hundredth, that no more than two of these rentals are horror movies.

549 During a particular month, a local company surveyed all its employees to determine their travel times to work, in minutes. The data for all 15 employees are shown below.

$\begin{array}{cccccc}
25 & 55 & 40 & 65 & 29 \\
45 & 59 & 35 & 25 & 37 \\
52 & 30 & 8 & 40 & 55 \\
\end{array}$

Determine the number of employees whose travel time is within one standard deviation of the mean.

550 Use the recursive sequence defined below to express the next three terms as fractions reduced to lowest terms.

\[
a_1 = 2 \\
a_n = 3(a_{n-1})^2
\]

551 The diagram below shows the plans for a cell phone tower. A guy wire attached to the top of the tower makes an angle of 65 degrees with the ground. From a point on the ground 100 feet from the end of the guy wire, the angle of elevation to the top of the tower is 32 degrees. Find the height of the tower, to the nearest foot.

552 Solve algebraically for x: \[|3x - 5| - x < 17\]
553 Circle O shown below has a radius of 12 centimeters. To the nearest tenth of a centimeter, determine the length of the arc, x, subtended by an angle of $83^\circ 50'$.

554 Solve the inequality $-3|6-x| < -15$ for x. Graph the solution on the line below.

555 Because Sam’s backyard gets very little sunlight, the probability that a geranium planted there will flower is 0.28. Sam planted five geraniums. Determine the probability, to the nearest thousandth, that at least four geraniums will flower.

556 In a triangle, two sides that measure 8 centimeters and 11 centimeters form an angle that measures 82°. To the nearest tenth of a degree, determine the measure of the smallest angle in the triangle.

557 Find the measure of the smallest angle, to the nearest degree, of a triangle whose sides measure 28, 47, and 34.

558 If $\tan A = \frac{2}{3}$ and $\sin B = \frac{5}{\sqrt{41}}$ and angles A and B are in Quadrant I, find the value of $\tan(A + B)$.

559 Write the binomial expansion of $(2x - 1)^5$ as a polynomial in simplest form.

560 The members of a men’s club have a choice of wearing black or red vests to their club meetings. A study done over a period of many years determined that the percentage of black vests worn is 60%. If there are 10 men at a club meeting on a given night, what is the probability, to the nearest thousandth, that at least 8 of the vests worn will be black?

561 The table below gives the relationship between x and y.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>4.2</td>
<td>33.5</td>
<td>113.1</td>
<td>268.1</td>
<td>523.6</td>
</tr>
</tbody>
</table>

Use exponential regression to find an equation for y as a function of x, rounding all values to the nearest hundredth. Using this equation, predict the value of x if y is 426.21, rounding to the nearest tenth. [Only an algebraic solution can receive full credit.]
Ten teams competed in a cheerleading competition at a local high school. Their scores were 29, 28, 39, 37, 45, 40, 41, 38, 37, and 48. How many scores are within one population standard deviation from the mean? For these data, what is the interquartile range?

A study shows that 35% of the fish caught in a local lake had high levels of mercury. Suppose that 10 fish were caught from this lake. Find, to the nearest tenth of a percent, the probability that at least 8 of the 10 fish caught did not contain high levels of mercury.

The table below shows the amount of a decaying radioactive substance that remained for selected years after 1990.

<table>
<thead>
<tr>
<th>Years After 1990 (x)</th>
<th>0</th>
<th>2</th>
<th>5</th>
<th>9</th>
<th>14</th>
<th>17</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount (y)</td>
<td>750</td>
<td>451</td>
<td>219</td>
<td>84</td>
<td>25</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

Write an exponential regression equation for this set of data, rounding all values to the nearest thousandth. Using this equation, determine the amount of the substance that remained in 2002, to the nearest integer.

Solve the equation $2x^3 - x^2 - 8x + 4 = 0$ algebraically for all values of x.

The probability that a professional baseball player will get a hit is $\frac{1}{3}$. Calculate the exact probability that he will get at least 3 hits in 5 attempts.

The measures of the angles between the resultant and two applied forces are 60° and 45°, and the magnitude of the resultant is 27 pounds. Find, to the nearest pound, the magnitude of each applied force.

A study shows that 35% of the fish caught in a local lake had high levels of mercury. Suppose that 10 fish were caught from this lake. Find, to the nearest tenth of a percent, the probability that at least 8 of the 10 fish caught did not contain high levels of mercury.

The table below shows the final examination scores for Mr. Spear’s class last year.

<table>
<thead>
<tr>
<th>Test Score</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>1</td>
</tr>
<tr>
<td>76</td>
<td>1</td>
</tr>
<tr>
<td>79</td>
<td>4</td>
</tr>
<tr>
<td>83</td>
<td>5</td>
</tr>
<tr>
<td>85</td>
<td>7</td>
</tr>
<tr>
<td>88</td>
<td>5</td>
</tr>
<tr>
<td>94</td>
<td>3</td>
</tr>
</tbody>
</table>

Find the population standard deviation based on these data, to the nearest hundredth. Determine the number of students whose scores are within one population standard deviation of the mean.

Express in simplest form: $\frac{4 - x^2}{x^2 + 7x + 12}$

Find all values of θ in the interval $0^\circ \leq \theta < 360^\circ$ that satisfy the equation $\sin 2\theta = \sin \theta$.
Algebra 2/Trigonometry 6 Point Regents Exam Questions

571 Solve algebraically for all values of x:
\[\frac{5x}{3} + 2x^2 = 27 \]

572 Two forces of 40 pounds and 28 pounds act on an object. The angle between the two forces is 65°. Find the magnitude of the resultant force, to the nearest pound. Using this answer, find the measure of the angle formed between the resultant and the smaller force, to the nearest degree.

573 In a triangle, two sides that measure 6 cm and 10 cm form an angle that measures 80°. Find, to the nearest degree, the measure of the smallest angle in the triangle.

574 A homeowner wants to increase the size of a rectangular deck that now measures 14 feet by 22 feet. The building code allows for a deck to have a maximum area of 800 square feet. If the length and width are increased by the same number of feet, find the maximum number of whole feet each dimension can be increased and not exceed the building code. [Only an algebraic solution can receive full credit.]

575 Solve algebraically, to the nearest hundredth, for all values of x:
\[\log_2(x^2 - 7x + 12) - \log_2(2x - 10) = 3 \]

576 Solve algebraically for all values of x:
\[\log_{(x+3)}(2x + 3) + \log_{(x+3)}(x + 5) = 2 \]

577 The temperature, T, of a given cup of hot chocolate after it has been cooling for t minutes can best be modeled by the function below, where T_0 is the temperature of the room and k is a constant.
\[\ln(T - T_0) = -kt + 4.718 \]
A cup of hot chocolate is placed in a room that has a temperature of 68°. After 3 minutes, the temperature of the hot chocolate is 150°. Compute the value of k to the nearest thousandth. [Only an algebraic solution can receive full credit.] Using this value of k, find the temperature, T, of this cup of hot chocolate if it has been sitting in this room for a total of 10 minutes. Express your answer to the nearest degree. [Only an algebraic solution can receive full credit.]

578 Solve algebraically for x:
\[\sqrt{x^2 + x - 1} + 11x = 7x + 3 \]

579 Solve algebraically for all values of x:
\[x^4 + 4x^3 + 4x^2 = -16x \]

580 Two forces of 25 newtons and 85 newtons acting on a body form an angle of 55°. Find the magnitude of the resultant force, to the nearest hundredth of a newton. Find the measure, to the nearest degree, of the angle formed between the resultant and the larger force.
581 Given: $DC = 10$, $AG = 15$, $BE = 6$, $FE = 10$, $m\angle ABG = 40$, $m\angle GBD = 90$, $m\angle C < 90$, $BE \cong ED$, and $GF \cong FB$

Find $m\angle A$ to the nearest tenth. Find BC to the nearest tenth.

582 Solve the following systems of equations algebraically:

$$5 = y - x$$
$$4x^2 = -17x + y + 4$$

583 Perform the indicated operations and simplify completely:

$$\frac{x^3 - 3x^2 + 6x - 18}{x^2 - 4x} \cdot \frac{2x - 4}{x^4 - 3x^3} \div \frac{x^2 + 2x - 8}{16 - x^2}$$

584 In the interval $0^\circ \leq \theta < 360^\circ$, solve the equation $5 \cos \theta = 2 \sec \theta - 3$ algebraically for all values of θ, to the nearest tenth of a degree.

585 Solve algebraically for x: $\log_{x+3} \frac{x^3 + x - 2}{x} = 2$
Algebra 2/Trigonometry Multiple Choice Regents Exam Questions
Answer Section

1 ANS: 3 PTS: 2 REF: fall0910a2 STA: A2.A.76
TOP: Angle Sum and Difference Identities KEY: simplifying

2 ANS: 4 PTS: 2 REF: 061112a2 STA: A2.A.39
TOP: Domain and Range KEY: real domain, quadratic

3 ANS: 2 PTS: 2 REF: 061301a2 STA: A2.S.1
TOP: Analysis of Data

4 ANS: 2 PTS: 2 REF: 061122a2 STA: A2.A.24
TOP: Solving Quadratics KEY: completing the square

5 ANS: 2
\[\frac{2\pi}{b} = \frac{2\pi}{3} \]
PTS: 2 REF: 061111a2 STA: A2.A.69
TOP: Properties of Graphs of Trigonometric Functions KEY: period

6 ANS: 1
\[\sqrt{12^2 - 6^2} = \sqrt{108} = \sqrt{36 \cdot 3} = 6\sqrt{3}. \quad \cot J = \frac{A}{O} = \frac{6}{6\sqrt{3}} = \frac{\sqrt{3}}{3} \]
PTS: 2 REF: 011120a2 STA: A2.A.55 TOP: Trigonometric Ratios

7 ANS: 4 PTS: 2 REF: 011111a2 STA: A2.N.8
TOP: Conjugates of Complex Numbers

8 ANS: 2 PTS: 2 REF: 061218a2 STA: A2.A.43
TOP: Defining Functions

9 ANS: 1
\[-300^\circ + 360^\circ = 60^\circ, \text{ which terminates in Quadrant I.} \]
PTS: 2 REF: 011160a2 STA: A2.A.60 TOP: Unit Circle

10 ANS: 4 PTS: 2 REF: 061427a2 STA: A2.A.63
TOP: Domain and Range

11 ANS: 4 PTS: 2 REF: 011406a2 STA: A2.S.1
TOP: Analysis of Data

12 ANS: 1
\[2i^2 + 3i^3 = 2(-1) + 3(-i) = -2 - 3i \]
PTS: 2 REF: 081004a2 STA: A2.N.7 TOP: Imaginary Numbers

13 ANS: 4
\[(3 + \sqrt{5})(3 - \sqrt{5}) = 9 - \sqrt{25} = 4 \]
PTS: 2 REF: 081001a2 STA: A2.N.4 TOP: Operations with Irrational Expressions
KEY: without variables | index = 2
14 ANS: 3
\[a_n = 5(-2)^{n-1} \]
\[a_{15} = 5(-2)^{15-1} = 81,920 \]

PTS: 2 REF: 011105a2 STA: A2.A.32 TOP: Sequences

15 ANS: 1 PTS: 2 REF: 061004a2 STA: A2.A.52
TOP: Identifying the Equation of a Graph

16 ANS: 2
\[\frac{11\pi}{12} \cdot \frac{180}{\pi} = 165 \]

PTS: 2 REF: 061002a2 STA: A2.M.2 TOP: Radian Measure
KEY: degrees

17 ANS: 4 PTS: 2 REF: 011219a2 STA: A2.A.52
TOP: Properties of Graphs of Functions and Relations

18 ANS: 2
\[6(x^2 - 5) = 6x^2 - 30 \]

PTS: 2 REF: 011109a2 STA: A2.A.42 TOP: Compositions of Functions
KEY: variables

19 ANS: 2
\[f(10) = \frac{-10}{(-10)^2 - 16} = \frac{-10}{84} = -\frac{5}{42} \]

PTS: 2 REF: 061102a2 STA: A2.A.41 TOP: Functional Notation

20 ANS: 2
\[(-5)^2 - 4(1)(4) = 9 \]

PTS: 2 REF: 011506a2 STA: A2.A.2 TOP: Using the Discriminant

21 ANS: 2
\[x^3 + x^2 - 2x = 0 \]
\[x(x^2 + x - 2) = 0 \]
\[x(x + 2)(x - 1) = 0 \]
\[x = 0, -2, 1 \]

PTS: 2 REF: 011103a2 STA: A2.A.26 TOP: Solving Polynomial Equations

22 ANS: 1 PTS: 2 REF: 061401a2 STA: A2.S.2
TOP: Analysis of Data
23 ANS: 3

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n^2 + 2^n)</td>
<td>0(^2 + 2^0 = 1)</td>
<td>1(^2 + 2^2 = 3)</td>
<td>2(^2 + 2^2 = 8)</td>
<td>12</td>
</tr>
</tbody>
</table>

\[2 \times 12 = 24 \]

PTS: 2 REF: fall0911a2 STA: A2.N.10 TOP: Sigma Notation

KEY: basic

24 ANS: 1 PTS: 2 REF: 011505a2 STA: A2.A.53

TOP: Graphing Exponential Functions

25 ANS: 2

\[
4^{2x+5} = 8^{3x}.
\]

\[
\left(2^2\right)^{2x+5} = \left(2^3\right)^{3x}
\]

\[
2^{4x+10} = 2^{9x}
\]

\[4x + 10 = 9x \]

\[10 = 5x \]

\[2 = x \]

PTS: 2 REF: 061105a2 STA: A2.A.27 TOP: Exponential Equations

KEY: common base not shown

26 ANS: 3 PTS: 2 REF: 011616a2 STA: A2.S.8

TOP: Correlation Coefficient

27 ANS: 2 PTS: 2 REF: 061205a2 STA: A2.A.34

TOP: Sigma Notation

28 ANS: 1 PTS: 2 REF: 061408a2 STA: A2.A.24

TOP: Solving Quadratics KEY: completing the square

29 ANS: 4

\[
\frac{2\pi}{b} = \frac{2\pi}{\frac{1}{3}} = 6\pi
\]

30 ANS: 1

\[
^{10}_C_4 = 210
\]

PTS: 2 REF: 061113a2 STA: A2.S.11 TOP: Combinations
31 ANS: 3
\[x^2 - 3x - 10 > 0 \quad \text{or} \]
\[(x - 5)(x + 2) > 0 \quad x - 5 < 0 \quad \text{and} \quad x + 2 < 0 \]
\[x - 5 > 0 \quad \text{and} \quad x + 2 > 0 \quad x < 5 \quad \text{and} \quad x < -2 \]
\[x > 5 \quad \text{and} \quad x < -2 \quad x < -2 \]
\[x > 5 \]

PTS: 2 REF: 011115a2 STA: A2.A.4 TOP: Quadratic Inequalities
KEY: one variable

32 ANS: 4
\[4ab\sqrt{2b} - 3a\sqrt{9b^2} - \sqrt{2b} + 7ab\sqrt{6b} = 4ab\sqrt{2b} - 9ab\sqrt{2b} + 7ab\sqrt{6b} = -5ab\sqrt{2b} + 7ab\sqrt{6b} \]

PTS: 2 REF: fall0918a2 STA: A2.A.14 TOP: Operations with Radicals
KEY: with variables | index = 2

33 ANS: 4
\[\frac{13}{\sin 40°} = \frac{20}{\sin M} \quad 81 + 40 < 180. \quad (180 - 81) + 40 < 180 \]
\[M \approx 81 \]

PTS: 2 REF: 061327a2 STA: A2.A.75 TOP: Law of Sines - The Ambiguous Case

34 ANS: 4 PTS: 2 REF: fall0925a2 STA: A2.S.10
TOP: Permutations

35 ANS: 3
\[68\% \times 50 = 34 \]

PTS: 2 REF: 081013a2 STA: A2.S.5 TOP: Normal Distributions
KEY: predict

36 ANS: 4
\[2 \log_4 (5x) = 3 \]
\[\log_4 (5x) = \frac{3}{2} \]
\[5x = 4^{\frac{3}{2}} \]
\[5x = 8 \]
\[x = \frac{8}{5} \]

PTS: 2 REF: fall0921a2 STA: A2.A.28 TOP: Logarithmic Equations
KEY: advanced
37 ANS: 2
\[
\frac{x}{4} - \frac{1}{x} = \frac{x^2 - 4}{4x} = \frac{(x + 2)(x - 2)}{4x} \times \frac{8x}{2(x + 2)} = x - 2
\]

PTS: 2 REF: fall0920a2 STA: A2.A.17 TOP: Complex Fractions

38 ANS: 1
common difference is 2. \(b_n = x + 2n \)

\[
10 = x + 2(1)
\]
\[
8 = x
\]

PTS: 2 REF: 081014a2 STA: A2.A.29 TOP: Sequences

39 ANS: 1
\[
\frac{9}{\sin A} = \frac{10}{\sin 70^\circ}
\]

\[58^\circ + 70^\circ\] is possible. \(122^\circ + 70^\circ\) is not possible.

\[A \approx 58\]

PTS: 2 REF: 011210a2 STA: A2.A.75 TOP: Law of Sines - The Ambiguous Case

40 ANS: 4
\[
12x^4 + 10x^3 - 12x^2 = 2x^2(6x^2 + 5x - 6) = 2x^2(2x + 3)(3x - 2)
\]

PTS: 2 REF: 061008a2 STA: A2.A.7 TOP: Factoring Polynomials

KEY: single variable

41 ANS: 4 PTS: 2 REF: 081526a2 STA: A2.S.9 TOP: Differentiating Permutations and Combinations

42 ANS: 2
\[15_C_8 = 6,435\]

PTS: 2 REF: 081012a2 STA: A2.S.11 TOP: Combinations

43 ANS: 1

PTS: 2 REF: fall0914a2 STA: A2.A.9 TOP: Negative and Fractional Exponents

44 ANS: 1
\[
\frac{6}{\sin 35^\circ} = \frac{10}{\sin N}
\]

\[N \approx 73\]

\[73 + 35 < 180\]

\[(180 - 73) + 35 < 180\]

PTS: 2 REF: 061226a2 STA: A2.A.75 TOP: Law of Sines - The Ambiguous Case
ANS: 1

PTS: 2 REF: fall0915a2 STA: A2.S.5 TOP: Normal Distributions

KEY: interval

\[r = \sqrt{(6 - 2)^2 + (2 - 3)^2} = \sqrt{16 + 25} = \sqrt{41} \]

ANS: 3

TOP: Domain and Range

ANS: 3

\[\frac{-7 \pm \sqrt{7^2 - 4(2)(-3)}}{2(2)} = \frac{-7 \pm \sqrt{73}}{4} \]

PTS: 2 REF: 081009a2 STA: A2.A.25 TOP: Solving Quadratics

KEY: quadratic formula

ANS: 3

\[\frac{4}{5 - \sqrt{13}} \cdot \frac{5 + \sqrt{13}}{5 + \sqrt{13}} = \frac{4(5 + \sqrt{13})}{25 - 13} = \frac{5 + \sqrt{13}}{3} \]

PTS: 2 REF: 061116a2 STA: A2.N.5 TOP: Rationalizing Denominators

ANS: 4

\[4x^2 + 3x - 4 = 0 \quad b^2 - 4ac = 3^2 - 4(4)(-4) = 9 + 64 = 73 \]

PTS: 2 REF: 011618a2 STA: A2.A.2 TOP: Using the Discriminant

KEY: determine nature of roots given equation

ANS: 3

As originally written, alternatives (2) and (3) had no domain restriction, so that both were correct.

PTS: 2 REF: 061405a2 STA: A2.A.52 TOP: Properties of Graphs of Functions and Relations

TOP: Domain and Range

ANS: 4 PTS: 2 REF: 011622a2 STA: A2.A.63

TOP: Domain and Range

ANS: 3

If \(\csc P > 0 \), \(\sin P > 0 \). If \(\cot P < 0 \) and \(\sin P > 0 \), \(\cos P < 0 \)

PTS: 2 REF: 061320a2 STA: A2.A.60 TOP: Finding the Terminal Side of an Angle
54 ANS: 2
\[
\frac{x^{-1} - 1}{x - 1} = \frac{\frac{1}{x} - 1}{x - 1} = \frac{1-x}{x(x-1)} = \frac{-(x-1)}{x(x-1)} = \frac{1}{x}
\]

PTS: 2 REF: 081018a2 STA: A2.A.9 TOP: Negative Exponents

55 ANS: 1
\[
\sqrt[3]{27a^{-6}b^3} c^2 = 3a^{-2}bc^\frac{2}{3} = \frac{3bc^\frac{2}{3}}{a^2}
\]

PTS: 2 REF: 011606a2 STA: A2.A.11 TOP: Radicals as Fractional Exponents

56 ANS: 2
\[
(3-7i)(3-7i) = 9 - 21i - 21i + 49i^2 = 9 - 42i - 49 = -40 - 42i
\]

PTS: 2 REF: fall0901a2 STA: A2.N.9 TOP: Multiplication and Division of Complex Numbers

57 ANS: 1
\[
\frac{2\pi}{b} = 4\pi
\]
\[
b = \frac{1}{2}
\]

58 ANS: 1
\[
13^2 = 15^2 + 14^2 - 2(15)(14)\cos C
\]
\[
169 = 421 - 420\cos C
\]
\[
-252 = -420\cos C
\]
\[
\frac{252}{420} = \cos C
\]
\[
53 \approx C
\]

59 ANS: 3
\[
\sqrt{-300} = \sqrt{100} \sqrt{-1} \sqrt{3}
\]

PTS: 2 REF: 061006a2 STA: A2.N.6 TOP: Square Roots of Negative Numbers

60 ANS: 2
PTS: 2 REF: 061108a2 STA: A2.A.52 TOP: Families of Functions
61 ANS: 1

62 ANS: 4

63 ANS: 3

64 ANS: 3

65 ANS: 4

66 ANS: 1

67 ANS: 2

68 ANS: 3

PTS: 2 REF: 011123a2 STA: A2.A.71 TOP: Graphing Trigonometric Functions

PTS: 2 REF: 061026a2 STA: A2.A.29 TOP: Sequences

PTS: 2 REF: 011625a2 STA: A2.A.58 TOP: Cofunction Trigonometric Relationships

PTS: 2 REF: 061015a2 STA: A2.A.27 TOP: Exponential Equations

PTS: 2 REF: fall0922a2 STA: A2.A.61 TOP: Arc Length

PTS: 2 REF: 061317a2 STA: A2.S.9 TOP: Differentiating Permutations and Combinations

PTS: 2 REF: 011126a2 STA: A2.A.49 TOP: Equations of Circles

PTS: 2 REF: 081006a2 STA: A2.A.75 TOP: Law of Sines - The Ambiguous Case
69 ANS: 3

\[\frac{3^{-2}}{(-2)^{-3}} = \frac{\frac{1}{9}}{\frac{1}{8}} = \frac{8}{9} \]

PTS: 2 REF: 061003a2 STA: A2.N.1 TOP: Negative and Fractional Exponents

70 ANS: 2 PTS: 2 REF: 011225a2 STA: A2.A.43

TOP: Defining Functions

71 ANS: 4

\[S_n = \frac{n}{2} [2a + (n - 1)d] = \frac{21}{2} [2(18) + (21 - 1)2] = 798 \]

PTS: 2 REF: 061103a2 STA: A2.A.35 TOP: Series

KEY: arithmetic

72 ANS: 2

\[\frac{10}{\sin 35^\circ} = \frac{13}{\sin B} \cdot \frac{35 + 48}{180} = \frac{35 + 132}{180} \approx 48, 132 \]

PTS: 2 REF: 011113a2 STA: A2.A.75 TOP: Law of Sines - The Ambiguous Case

73 ANS: 3 PTS: 2 REF: 081007a2 STA: A2.A.64

TOP: Using Inverse Trigonometric Functions KEY: basic

74 ANS: 4 PTS: 2 REF: 061303a2 STA: A2.A.43

TOP: Defining Functions

75 ANS: 4 PTS: 2 REF: 061120a2 STA: A2.A.19

TOP: Properties of Logarithms KEY: splitting logs

76 ANS: 3

\begin{array}{|c|c|}
\hline
\text{i-Var Stats L1,L2} & 0x^2 \\
\hline
\text{67.31102041} & \\
\hline
\end{array}

PTS: 2 REF: fall0924a2 STA: A2.S.4 TOP: Dispersion

KEY: basic, group frequency distributions

77 ANS: 4 PTS: 2 REF: 011605a2 STA: A2.S.15

TOP: Binomial Probability KEY: modeling

78 ANS: 1 PTS: 2 REF: 081022a2 STA: A2.A.46

TOP: Transformations with Functions

79 ANS: 2

\[K = \frac{1}{2} (10)(18) \sin 120 = 45\sqrt{3} \approx 78 \]

PTS: 2 REF: fall0907a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area

KEY: basic
\[\sin^2 x \left(1 + \frac{\cos^2 x}{\sin^2 x} \right) = \sin^2 x + \cos^2 x = 1 \quad \cos^2 x = 1 \quad \cos^2 x = 1 \quad \text{and} \quad \sin^2 x - \cos^2 x \neq 1 \]

\[\cos^2 x \left(\frac{1}{\cos^2 x} - 1 \right) = \frac{\cos^2 x}{\sin^2 x} = \csc^2 x - \cot x = 1 \]

PTS: 2 REF: 011515a2 STA: A2.A.58 TOP: Reciprocal Trigonometric Relationships

82 ANS: 1
\(C^6_a (4b)^3 = -5376a^6b^3 \)

PTS: 2 REF: 061126a2 STA: A2.A.36 TOP: Binomial Expansions

83 ANS: 3
\[r = \sqrt{(3-0)^2 + (-5-(-2))^2} = \sqrt{9+9} = \sqrt{18} \]

PTS: 2 REF: 011624a2 STA: A2.A.48 TOP: Equations of Circles

84 ANS: 2
The roots are \(-1,2,3\).

PTS: 2 REF: 081023a2 STA: A2.A.50 TOP: Zeros of Polynomials

85 ANS: 3 PTS: 2 REF: fall0923a2 STA: A2.A.39 TOP: Domain and Range KEY: real domain, radical

86 ANS: 1
\(C^3_a (3x)^2 (-2)^3 = 10 \cdot 9x^2 \cdot -8 = -720x^2 \)

PTS: 2 REF: 011624a2 STA: A2.A.36 TOP: Binomial Expansions

87 ANS: 4
\[x^{-\frac{2}{3}} = \frac{1}{x^{\frac{2}{3}}} = \frac{1}{\sqrt[3]{x^2}} \]

PTS: 2 REF: 011118a2 STA: A2.A.10 TOP: Fractional Exponents as Radicals

88 ANS: 3 PTS: 2 REF: 011604a2 STA: A2.A.38 TOP: Defining Functions KEY: ordered pairs

89 ANS: 3

PTS: 2 REF: 011207a2 STA: A2.A.71 TOP: Graphing Trigonometric Functions
Since the coefficient of \(t \) is greater than 0, \(r > 0 \).

\[
\frac{3 \pm \sqrt{(-3)^2 - 4(1)(-9)}}{2(1)} = \frac{3 \pm \sqrt{45}}{2} = \frac{3 \pm 3\sqrt{5}}{2}
\]

\(r \) is greater than 0.

\(2! \times 2! \times 2! = 8 \)

\[
r = \frac{64}{27}
\]

\[
r = \frac{4}{3}
\]

\(6n^{-1} < 4n^{-1} \). Flip sign when multiplying each side of the inequality by \(n \), since a negative number.

\[
\frac{6}{n} < \frac{4}{n}
\]

\(6 > 4 \)

\[
r = \sqrt{(6 - 3)^2 + (5 - (-4))^2} = \sqrt{9 + 81} = \sqrt{90}
\]

\[
P = \frac{c}{a} = \frac{-12}{3} = -4
\]
\[
S = \frac{-b}{a} = \frac{-(-3)}{4} = \frac{3}{4}, \quad P = \frac{c}{a} = \frac{-8}{4} = -2
\]

PTS: 2 REF: fall0912a2 STA: A2.A.21 TOP: Roots of Quadratics

KEY: basic

\[
\left(\frac{2}{3} \right)^2 + \cos^2 A = 1 \quad \sin 2A = 2 \sin A \cos A
\]

\[
\cos^2 A = \frac{5}{9} \quad = 2 \left(\frac{2}{3} \right) \left(\frac{\sqrt{5}}{3} \right)
\]

\[
\cos A = \frac{\sqrt{5}}{3}, \quad \sin A \text{ is acute.} \quad = \frac{4 \sqrt{5}}{9}
\]

PTS: 2 REF: 011107a2 STA: A2.A.77 TOP: Double Angle Identities

KEY: evaluating

\[
2 \pi \cdot \frac{5}{12} = \frac{10 \pi}{12} = \frac{5 \pi}{6}
\]

PTS: 2 REF: 061125a2 STA: A2.M.1 TOP: Radian Measure

101 ANS: 3 PTS: 2 REF: 011305a2 STA: A2.A.37

TOP: Defining Functions KEY: ordered pairs

102 ANS: 2

\[
\tan(126^\circ 43') = -1.340788784
\]

PTS: 2 REF: 061115a2 STA: A2.A.66 TOP: Determining Trigonometric Functions

103 ANS: 4 PTS: 2 REF: 011504a2 STA: A2.A.34

TOP: Sigma Notation

104 ANS: 3

\[
x^2 = 12x - 7
\]

\[
x^2 - 12x = -7
\]

\[
x^2 - 12x + 36 = -7 + 36
\]

\[
(x - 6)^2 = 29
\]

PTS: 2 REF: 061505a2 STA: A2.A.24 TOP: Solving Quadratics

KEY: completing the square

105 ANS: 3 PTS: 2 REF: 061127a2 STA: A2.S.6

TOP: Regression
106 ANS: 1
TOP: Binomial Probability
KEY: modeling
PTS: 2
REF: 061223a2 STA: A2.S.15

107 ANS: 3
f(4) = \frac{1}{2}(4) - 3 = -1. g(-1) = 2(-1) + 5 = 3
PTS: 2
REF: fall0902a2 STA: A2.A.42 TOP: Compositions of Functions
KEY: numbers

108 ANS: 4
PTS: 2
REF: 011201a2 STA: A2.S.2 TOP: Analysis of Data

109 ANS: 1
2 \log x - (3 \log y + \log z) = \log x^2 - \log y^3 - \log z = \log \frac{x^2}{y^3z}
PTS: 2
REF: 061010a2 STA: A2.A.19 TOP: Properties of Logarithms

110 ANS: 4
6x - x^3 - x^2 = -x(x^2 + x - 6) = -x(x + 3)(x - 2)
PTS: 2
REF: fall0917a2 STA: A2.A.7 TOP: Factoring Polynomials
KEY: single variable

111 ANS: 3
PTS: 2
REF: 011422a2 STA: A2.A.54 TOP: Graphing Logarithmic Functions

112 ANS: 2
f^{-1}(x) = \log_4 x
PTS: 2
REF: fall0916a2 STA: A2.A.54 TOP: Graphing Logarithmic Functions

113 ANS: 2
b^2 - 4ac = (-9)^2 - 4(2)(4) = 81 - 32 = 49
PTS: 2
REF: 011411a2 STA: A2.A.2 TOP: Using the Discriminant
KEY: determine nature of roots given equation

114 ANS: 1
4a + 6 = 4a - 10. 4a + 6 = -4a + 10. \left| 4\left(\frac{1}{2}\right) + 6 \right| - 4\left(\frac{1}{2}\right) = -10
6 \neq -10 \quad 8a = 4 \quad 8 - 2 \neq -10
\frac{a}{8} = \frac{1}{2}
PTS: 2
REF: 011106a2 STA: A2.A.1 TOP: Absolute Value Equations

115 ANS: 3
PTS: 2
REF: 061501a2 STA: A2.A.43 TOP: Defining Functions

116 ANS: 3
PTS: 2
REF: 061007a2 STA: A2.S.9 TOP: Differentiating Permutations and Combinations
117 ANS: 3
period = \(\frac{2\pi}{b} = \frac{2\pi}{3\pi} = \frac{2}{3} \)

PTS: 2 REF: 081026a2 STA: A2.A.70 TOP: Graphing Trigonometric Functions
KEY: recognize

118 ANS: 3
\(\frac{-b}{a} = \frac{-6}{2} = -3 \)
\(\frac{c}{a} = \frac{4}{2} = 2 \)

PTS: 2 REF: 011121a2 STA: A2.A.21 TOP: Roots of Quadratics
KEY: basic

119 ANS: 4
\(9^{3x+1} = 27^{x+2} \)
\((3^2)^{3x+1} = (3^3)^{x+2} \)
\(3^{6x+2} = 3^{3x+6} \)
\(6x + 2 = 3x + 6 \)
\(3x = 4 \)
\(x = \frac{4}{3} \)

PTS: 2 REF: 081008a2 STA: A2.A.27 TOP: Exponential Equations
KEY: common base not shown

120 ANS: 2
8^2 = 64

PTS: 2 REF: fall0909a2 STA: A2.A.18 TOP: Evaluating Logarithmic Expressions

121 ANS: 2
8^2 = 64

PTS: 2 REF: 081003a2 STA: A2.A.51 TOP: Domain and Range
KEY: graph

122 ANS: 1
(4) shows the strongest linear relationship, but if \(r < 0, b < 0 \). The Regents announced that a correct solution was not provided for this question and all students should be awarded credit.

PTS: 2 REF: 011223a2 STA: A2.S.8 TOP: Correlation Coefficient

123 ANS: 1

PTS: 2 REF: 011121a2 STA: A2.A.38 TOP: Defining Functions
KEY: graphs

124 ANS: 4
3 \(\binom{12}{4} \)

PTS: 2 REF: 011409a2 STA: A2.S.10 TOP: Permutations

125 ANS: 2
3 \(\binom{12}{4} \)

PTS: 2 REF: 011507a2 STA: A2.A.38 TOP: Defining Functions
KEY: graphs

126 ANS: 1
5 \(\binom{12}{5} \)

PTS: 2 REF: 061316a2 STA: A2.S.8 TOP: Correlation Coefficient
127 ANS: 1

<table>
<thead>
<tr>
<th>n</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-r^2 + r$</td>
<td>$-3^2 + 3 = -6$</td>
<td>$-4^2 + 4 = -12$</td>
<td>$-5^2 + 5 = -20$</td>
<td>-38</td>
</tr>
</tbody>
</table>

PTS: 2 REF: 061118a2 STA: A2.N.10 TOP: Sigma Notation
KEY: basic

128 ANS: 1

$\cos^2 \theta - \cos 2\theta = \cos^2 \theta - (\cos^2 \theta - \sin^2 \theta) = \sin^2 \theta$

PTS: 2 REF: 061024a2 STA: A2.A.77 TOP: Double Angle Identities
KEY: simplifying

129 ANS: 4

$7^2 = 3^2 + 5^2 - 2(3)(5) \cos A$

$49 = 34 - 30 \cos A$

$15 = -30 \cos A$

$\frac{1}{2} = \cos A$

$120 = A$

PTS: 2 REF: 081017a2 STA: A2.A.73 TOP: Law of Cosines
KEY: angle, without calculator

130 ANS: 2 PTS: 2 REF: 061322a2 STA: A2.A.73 TOP: Law of Sines
KEY: modeling

131 ANS: 3

$\frac{\sin^2 \theta + \cos^2 \theta}{1 - \sin^2 \theta} = \frac{1}{\cos^2 \theta} = \sec^2 \theta$

PTS: 2 REF: 061123a2 STA: A2.A.58 TOP: Reciprocal Trigonometric Relationships

132 ANS: 2 PTS: 2 REF: fall0926a2 STA: A2.A.46 TOP: Graphing Quadratic Functions

133 ANS: 1 PTS: 2 REF: 061211a2 STA: A2.A.54 TOP: Graphing Logarithmic Functions

134 ANS: 3 PTS: 2 REF: 011104a2 STA: A2.A.64 TOP: Using Inverse Trigonometric Functions
KEY: unit circle

15
135 ANS: 3

\[3x + 16 = (x + 2)^2\] is an extraneous solution.

\[3x + 16 = x^2 + 4x + 4\]
\[0 = x^2 + x - 12\]
\[0 = (x + 4)(x - 3)\]
\[x = -4 \quad x = 3\]

PTS: 2 REF: 061121a2 STA: A2.A.22 TOP: Solving Radicals

KEY: extraneous solutions

136 ANS: 2 PTS: 2 REF: 081523a2 STA: A2.A.44

TOP: Inverse of Functions KEY: ordered pairs

137 ANS: 1

\[\cos K = \frac{5}{6}\]

\[K = \cos^{-1} \frac{5}{6}\]

\[K \approx 33^\circ 33'\]

PTS: 2 REF: 061023a2 STA: A2.A.55 TOP: Trigonometric Ratios

138 ANS: 3 PTS: 2 REF: 061001a2 STA: A2.A.30

TOP: Sequences

139 ANS: 4 PTS: 2 REF: 011124a2 STA: A2.A.18

TOP: Evaluating Logarithmic Expressions

140 ANS: 1

\[
\frac{\sqrt{3} + 5}{\sqrt{3} - 5} \cdot \frac{\sqrt{3} + 5}{\sqrt{3} + 5} = \frac{3 + 5\sqrt{3} + 5\sqrt{3} + 25}{3 - 25} = \frac{28 + 10\sqrt{3}}{-22} = \frac{14 + 5\sqrt{3}}{11}
\]

PTS: 2 REF: 061012a2 STA: A2.N.5 TOP: Rationalizing Denominators
\[\frac{\frac{\pi}{3} + \frac{\pi}{3}}{2\pi} = \frac{2\pi}{3} = \frac{1}{3} \]

PTS: 2 REF: 011108a2 STA: A2.S.13 TOP: Geometric Probability

142 ANS: 1
\[-420 \left(\frac{\pi}{180} \right) = \frac{7\pi}{3} \]

PTS: 2 REF: 081002a2 STA: A2.M.2 TOP: Radian Measure
KEY: radians

143 ANS: 1
\[4\sqrt{81x^2y^4} = 81x^\frac{2}{4}y^\frac{5}{4} = 3x^\frac{1}{2}y^{\frac{5}{4}} \]

PTS: 2 REF: 081504a2 STA: A2.A.11 TOP: Radicals as Fractional Exponents

144 ANS: 1 PTS: 2 REF: 011117a2 STA: A2.S.9
TOP: Differentiating Permutations and Combinations

145 ANS: 2
\[x^2 - x - 6 = 3x - 6 \]
\[x^2 - 4x = 0 \]
\[x(x - 4) = 0 \]
\[x = 0, 4 \]

PTS: 2 REF: 081015a2 STA: A2.A.3 TOP: Quadratic-Linear Systems
KEY: algebraically
\[
tan \theta - \sqrt{3} = 0 \]

\[
tan \theta = \sqrt{3}
\]

\[
\theta = \tan^{-1} \sqrt{3}
\]

\[
\theta = 60, 240
\]

PTS: 2 REF: fall0903a2 STA: A2.A.68 TOP: Trigonometric Equations
KEY: basic

ANS: 4 PTS: 2 REF: 061124a2 STA: A2.S.3
TOP: Average Known with Missing Data

ANS: 3

PTS: 2 REF: 061020a2 STA: A2.A.71 TOP: Graphing Trigonometric Functions

ANS: 4

\[
\frac{x}{x - \sqrt{x}} \times \frac{x + \sqrt{x}}{x + \sqrt{x}} = \frac{x^2 + x\sqrt{x}}{x^2 - x} = \frac{x(x + \sqrt{x})}{x(x - 1)} = \frac{x + \sqrt{x}}{x - 1}
\]

PTS: 2 REF: 061325a2 STA: A2.A.15 TOP: Rationalizing Denominators
KEY: index = 2

ANS: 2

\[
\left(\frac{w^{-5}}{w^9}\right)^{\frac{1}{2}} = (w^4)^{\frac{1}{2}} = w^2
\]

PTS: 2 REF: 081011a2 STA: A2.A.8 TOP: Negative and Fractional Exponents

ANS: 2 PTS: 2 REF: 011114a2 STA: A2.N.3
TOP: Operations with Polynomials KEY: subtraction

ANS: 2 PTS: 2 REF: 081024a2 STA: A2.N.8
TOP: Conjugates of Complex Numbers

ANS: 2 PTS: 2 REF: 081515a2 STA: A2.A.57
TOP: Reference Angles

ANS: 1 PTS: 2 REF: 061420a2 STA: A2.A.34
TOP: Sigma Notation
8 \times 8 \times 7 \times 1 = 448. The first digit cannot be 0 or 5. The second digit cannot be 5 or the same as the first digit. The third digit cannot be 5 or the same as the first or second digit.

\[a_n = -\sqrt{5}(-\sqrt{2})^{n-1} \]
\[a_{15} = -\sqrt{5}(-\sqrt{2})^{15-1} = -\sqrt{5}(-\sqrt{2})^{14} = -\sqrt{5} \cdot 2^7 = -128\sqrt{5} \]

\[75000 = 25000e^{.0475t} \]
\[3 = e^{.0475t} \]
\[\ln 3 = \ln e^{.0475t} \]
\[\ln 3 = .0475 \cdot \ln e \]
\[.0475 = \ln 3 \]
\[23.1 \approx t \]

\[x = 5^4 = 625 \]

\[\cos\left(\frac{5\pi}{6}\right) \]
\[-\frac{1}{2} \]

\[x = 5^4 = 625 \]

19
\[3x^2 + x - 14 = 0 \quad 1^2 - 4(3)(-14) = 1 + 168 = 169 = 13^2\]

166 ANS: 3

PTS: 2 REF: 061524a2 STA: A2.A.2 TOP: Using the Discriminant
KEY: determine nature of roots given equation

167 ANS: 2 PTS: 2 REF: 011208a2 STA: A2.A.67

TOP: Simplifying Trigonometric Expressions

168 ANS: 4 PTS: 2 REF: 061518a2 STA: A2.A.51

TOP: Domain and Range
KEY: graph

169 ANS: 3

\((-5)^2 - 4(2)(0) = 25\)

PTS: 2 REF: 061423a2 STA: A2.A.2 TOP: Using the Discriminant
KEY: determine equation given nature of roots

170 ANS: 1

\[
6x - 7 \leq 5 \quad 6x - 7 \geq -5 \\
6x \leq 12 \quad 6x \geq 2 \\
x \leq 2 \quad x \geq \frac{1}{3}
\]

PTS: 2 REF: fall0905a2 STA: A2.A.1 TOP: Absolute Value Inequalities
KEY: graph

171 ANS: 1 PTS: 2 REF: 061409a2 STA: A2.A.38

TOP: Defining Functions
KEY: graphs
Algebra 2/Trigonometry Multiple Choice Regents Exam Questions
Answer Section

172 ANS: 4 PTS: 2 REF: 011513a2 STA: A2.A.49
TOP: Equations of Circles

173 ANS: 1 PTS: 2 REF: 061025a2 STA: A2.A.34
TOP: Sigma Notation

174 ANS: 2
sum: $\frac{-b}{a} = \frac{4}{6} = \frac{2}{3}$, product: $\frac{c}{a} = \frac{-12}{6} = -2$

PTS: 2 REF: 011209a2 STA: A2.A.20 TOP: Roots of Quadratics

175 ANS: 2 PTS: 2 REF: 011213a2 STA: A2.N.8 TOP: Conjugates of Complex Numbers

176 ANS: 2

$52a - 3b^4 = \frac{25b^4}{a^3}$

PTS: 2 REF: 011514a2 STA: A2.A.9 TOP: Negative Exponents

177 ANS: 2

$\cos(-305^\circ + 360^\circ) = \cos(55^\circ)$

PTS: 2 REF: 061104a2 STA: A2.A.57 TOP: Reference Angles

178 ANS: 4

$\frac{\sqrt{34}}{\sin 30} = \frac{12}{\sin B}$

$B = \sin^{-1} \left(\frac{12 \sin 30}{\sqrt{34}} \right)$

$\approx \sin^{-1} \frac{6}{5.8}$

PTS: 2 REF: 011523a2 STA: A2.A.75 TOP: Law of Sines - The Ambiguous Case

180 ANS: 3

$\frac{4x - 5}{3} > 1$ or $\frac{4x - 5}{3} < -1$

$4x - 5 > 3$ $4x - 5 < -3$

$4x > 8$ $4x < 2$

$x > 2$ $x < \frac{1}{2}$

PTS: 2 REF: 061209a2 STA: A2.A.1 TOP: Absolute Value Inequalities KEY: graph
\(\sqrt{-180x^{16}} = 6x^8i\sqrt{5} \)

\[\cot x = \frac{\cos x}{\sin x} \quad \csc x = \frac{1}{\sin x} = \cos x \]

\[\cos 2A = 1 - 2\sin^2 A = 1 - 2\left(\frac{1}{3}\right)^2 = 1 - \frac{2}{9} = \frac{7}{9} \]

\[\log x = \log a^2 + \log b \]

\[\log x = \log a^2 b \]

\[x = a^2 b \]
192 \text{ANS: } 3 \\
\theta r = \frac{4\pi}{3} \cdot \frac{24}{2} = 16\pi \\
\text{PTS: } 2 \quad \text{REF: } 011611a2 \quad \text{STA: } A2.A.61 \quad \text{TOP: Arc Length} \\
\text{KEY: arc length}

193 \text{ANS: } 3 \\
34.1\% + 19.1\% = 53.2\% \\
\text{PTS: } 2 \quad \text{REF: } 011212a2 \quad \text{STA: } A2.S.5 \quad \text{TOP: Normal Distributions} \\
\text{KEY: probability}

194 \text{ANS: } 2 \\
x = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \quad y = 2 \cdot \frac{1}{2} = 1 \\
\text{PTS: } 2 \quad \text{REF: } 061525a2 \quad \text{STA: } A2.A.62 \quad \text{TOP: Determining Trigonometric Functions}

195 \text{ANS: } 1 \\
\frac{3}{4} = \frac{3}{2} \\
\frac{1}{2} = \frac{3}{2} \\
\text{PTS: } 2 \quad \text{REF: } 011508a2 \quad \text{STA: } A2.A.31 \quad \text{TOP: Sequences}

196 \text{ANS: } 4 \\
\frac{3 - \sqrt{8}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{3\sqrt{3} - \sqrt{24}}{3} = \frac{3\sqrt{3} - 2\sqrt{6}}{3} = \sqrt{3} - \frac{2}{3}\sqrt{6} \\
\text{PTS: } 2 \quad \text{REF: } 081518a2 \quad \text{STA: } A2.N.5 \quad \text{TOP: Rationalizing Denominators}

197 \text{ANS: } 4 \\
x = 2y \quad y^2 - (3y)^2 + 32 = 0 \quad x = 3(-2) = -6 \\
y^2 - 9y^2 = -32 \\
-8y^2 = -32 \\
y^2 = 4 \\
y = \pm 2 \\
\text{PTS: } 2 \quad \text{REF: } 061312a2 \quad \text{STA: } A2.A.3 \quad \text{TOP: Quadratic-Linear Systems} \\
\text{KEY: equations}

198 \text{ANS: } 4 \quad \text{PTS: } 2 \quad \text{REF: } 061206a2 \quad \text{STA: } A2.A.60 \\
\text{TOP: Unit Circle}

199 \text{ANS: } 4 \quad \text{PTS: } 1 \quad \text{REF: } 011312a2 \quad \text{STA: } A2.A.56 \\
\text{TOP: Determining Trigonometric Functions} \\
\text{KEY: degrees, common angles}
200 ANS: 4
\[b^2 - 4ac = 3^2 - 4(9)(-4) = 9 + 144 = 153 \]
PTS: 2 REF: 081016a2 STA: A2.A.2 TOP: Using the Discriminant
KEY: determine nature of roots given equation

201 ANS: 4
\[
(a - 1)^2 + (a - 2)^2 + (a - 3)^2 + (a - 4)^2 \\
(a^2 - 2a + 1) + (a^2 - 4a + 4) + (a^2 - 6a + 9) + (a^2 - 8a + 16) \\
4a^2 - 20a + 30
\]
PTS: 2 REF: 011414a2 STA: A2.N.10 TOP: Sigma Notation
KEY: advanced

202 ANS: 2
\[
A = 50 \left(1 + \frac{0.0325}{4} \right)^{4\cdot12} = 50(1.008125)^{48} \approx 73.73
\]
PTS: 2 REF: 081511a2 STA: A2.A.12 TOP: Evaluating Functions

203 ANS: 4

204 ANS: 1 PTS: 2 REF: 011112a2 STA: A2.A.50 TOP: Solving Polynomial Equations

205 ANS: 4 PTS: 2 REF: 011101a2 STA: A2.A.38 TOP: Defining Functions

206 ANS: 4
\[
x^2 + 9x - 22 \\
x^2 - 121
\]
\[
\frac{x^2 + 9x - 22}{x^2 - 121} = \frac{(x + 11)(x - 2)}{(x + 11)(x - 11)} \cdot \frac{-1}{x - 2} = \frac{-1}{x - 11}
\]
PTS: 2 REF: 011423a2 STA: A2.A.16 TOP: Multiplication and Division of Rationals
KEY: division

207 ANS: 3
\[
f(x + 3) = 2(x + 3)^2 - 3(x + 3) + 4 = 2x^2 + 12x + 18 - 3x - 9 + 4 = 2x^2 + 9x + 13
\]
PTS: 2 REF: 011619a2 STA: A2.A.41 TOP: Functional Notation

208 ANS: 3 PTS: 2 REF: 061418a2 STA: A2.A.51 TOP: Domain and Range
KEY: graph
209 ANS: 4
\[
A = 5000e^{0.04(18)} \approx 10272.17
\]

PTS: 2 REF: 011607a2 STA: A2.A.12 TOP: Evaluating Exponential Expressions

210 ANS: 4
\[
\left(\frac{3}{27x^2}\right)\left(\frac{1}{16x^4}\right) = \frac{3^3 \cdot 2^4 \cdot x^6}{x^3 \sqrt{2}} = 3 \cdot 2 \cdot x^3 \sqrt{2} = 6x^{2.5} \sqrt{2}
\]

PTS: 2 REF: 011421a2 STA: A2.N.2 TOP: Operations with Radicals

211 ANS: 1
\[
\frac{4\sqrt{16x^2 y^7}}{16x^4 y^4} = \frac{\frac{1}{2} \cdot \frac{7}{4}}{2x^2 y^4} = \frac{7}{4}
\]

PTS: 2 REF: 061107a2 STA: A2.A.11 TOP: Radicals as Fractional Exponents

212 ANS: 3
\[
S_8 = \frac{3(1 - (-4)^8)}{1 - (-4)} = \frac{196,605}{5} = -39,321
\]

PTS: 2 REF: 061304a2 STA: A2.A.35 TOP: Summations KEY: geometric

213 ANS: 2 PTS: 2 REF: 061521a2 STA: A2.A.44 TOP: Inverse of Functions KEY: equations

214 ANS: 4
\[
_{15}C_3 = 3,003.
_{25}C_5 = _{25}C_{20} = 53,130.
{25}C{15} = 3,268,760.
\]

PTS: 2 REF: 061227a2 STA: A2.S.11 TOP: Combinations

215 ANS: 1
If \(\sin x = 0.8\), then \(\cos x = 0.6\). \(\tan \frac{1}{2}x = \sqrt{\frac{1 - 0.6}{1 + 0.6}} = \sqrt{\frac{0.4}{1.6}} = 0.5\).

PTS: 2 REF: 061220a2 STA: A2.A.77 TOP: Half Angle Identities

216 ANS: 2
\[
2^2 \cdot 3 = 12.
6^2 \cdot d = 12
\]
\[
4^2 \cdot \frac{3}{4} = 12
36d = 12
\]
\[
d = \frac{1}{3}
\]

PTS: 2 REF: 061310a2 STA: A2.A.5 TOP: Inverse Variation

217 ANS: 4
\[
3 \cdot 400 = 8x
150 = x
\]

PTS: 2 REF: 081507a2 STA: A2.A.5 TOP: Inverse Variation
218 ANS: 4

\[x^2(x + 2) - (x + 2) \]
\[(x^2 - 1)(x + 2) \]
\[(x + 1)(x - 1)(x + 2) \]

PTS: 2 REF: 011426a2 STA: A2.A.7 TOP: Factoring by Grouping

220 ANS: 1

\[5x + 29 = (x + 3)^2 \]
\[(-5) + 3 \text{ shows an extraneous solution.} \]

\[5x + 29 = x^2 + 6x + 9 \]
\[0 = x^2 + x - 20 \]
\[0 = (x + 5)(x - 4) \]
\[x = -5, 4 \]

PTS: 2 REF: 061213a2 STA: A2.A.22 TOP: Solving Radicals KEY: extraneous solutions

221 ANS: 3

\[\frac{c}{a} = -\frac{3}{4} \]

PTS: 2 REF: 011517a2 STA: A2.A.20 TOP: Roots of Quadratics

222 ANS: 2

Top 6.7% = 1.5 s.d.
\[+ \sigma = 1.5(104) + 576 = 732 \]

PTS: 2 REF: 011420a2 STA: A2.S.5 TOP: Normal Distributions KEY: predict

223 ANS: 2

\[\frac{3 \cdot a^3 b^4}{32} = \frac{6b}{a^2} \]
\[\frac{1 \cdot a^5 b^3}{64} \]

PTS: 2 REF: 061326a2 STA: A2.A.31 TOP: Sequences

224 ANS: 2

\[4|2x + 6| < 32 \text{ } 2x + 6 < 8 \text{ } 2x + 6 > -8 \]
\[|2x + 6| < 8 \text{ } 2x < 2 \text{ } 2x > -14 \]
\[x < 1 \text{ } x > -7 \]

PTS: 2 REF: 011612a2 STA: A2.A.1 TOP: Absolute Value Inequalities KEY: graph

225 ANS: 4 PTS: 2 REF: 061402a2 STA: A2.A.8 TOP: Negative and Fractional Exponents
\[\frac{8\pi \cdot 180}{5 \cdot \pi} = 288 \]

PTS: 2 REF: 061302a2 STA: A2.M.2 TOP: Radian Measure

KEY: degrees

\[5 C_2 (2x)^{5-2}(-3)^2 = 720x^3 \]

PTS: 2 REF: 011519a2 STA: A2.A.36 TOP: Binomial Expansions

TOP: Dispersion KEY: basic, group frequency distributions

\[3 \sqrt[3]{6a^4b^2} + \sqrt[3]{(27 \cdot 6)a^4b^2} \]

\[a^3 \sqrt[3]{6ab^2} + 3a \sqrt[3]{6ab^2} \]

\[4a^3 \sqrt[3]{6ab^2} \]

PTS: 2 REF: 011319a2 STA: A2.N.2 TOP: Operations with Radicals

\[9 C_3 = 84 \]

PTS: 2 REF: 081513a2 STA: A2.S.11 TOP: Combinations

\[f(a + 1) = 4(a + 1)^2 - (a + 1) + 1 \]

\[= 4a^2 + 2a + 1 - a \]

\[= 4a^2 + 8a + 4 - a \]

\[= 4a^2 + 7a + 4 \]

PTS: 2 REF: 011527a2 STA: A2.A.41 TOP: Functional Notation
232 ANS: 2

\[
320 = 10(2) \quad \frac{t}{60}
\]

\[
32 = (2) \quad \frac{t}{60}
\]

\[
\log 32 = \log(2) \quad \frac{t}{60}
\]

\[
\log 32 = \frac{t \log 2}{60}
\]

\[
\frac{60 \log 32}{\log 2} = t
\]

\[
300 = t
\]

PTS: 2 REF: 011205a2 STA: A2.A.6 TOP: Exponential Growth

233 ANS: 4

\[
8^{3k+4} = 4^{2k-1}
\]

\[
(2^3)^{3k+4} = (2^2)^{2k-1}
\]

\[
2^{9k+12} = 2^{4k-2}
\]

\[
k = \frac{-14}{5}
\]

PTS: 2 REF: 011309a2 STA: A2.A.27 TOP: Exponential Equations

KEY: common base not shown

KEY: period

235 ANS: 1

\[
\frac{3}{27a^3} \cdot \frac{4}{\sqrt[4]{16b^8}} = 3a \cdot 2b^2 = 6ab^2
\]

KEY: with variables | index > 2

236 ANS: 1 PTS: 2 REF: 081501a2 STA: A2.A.50 TOP: Zeros of Polynomials

237 ANS: 3

\[
20 \cdot 2 = -5t
\]

\[
-8 = t
\]

PTS: 2 REF: 011412a2 STA: A2.A.5 TOP: Inverse Variation

8
238 ANS: 1
\[y \geq x^2 - x - 6 \]
\[y \geq (x - 3)(x + 2) \]

PTS: 2 REF: 061017a2 STA: A2.A.4 TOP: Quadratic Inequalities
KEY: two variables

239 ANS: 2
\[(2 \sin x - 1)(\sin x + 1) = 0 \]
\[\sin x = \frac{1}{2}, -1 \]
\[x = 30, 150, 270 \]

PTS: 2 REF: 081514a2 STA: A2.A.68 TOP: Trigonometric Equations
KEY: quadratics

240 ANS: 3
\[\frac{2\pi}{2} = \pi \]

PTS: 2 REF: 081519a2 STA: A2.A.69 TOP: Properties of Graphs of Trigonometric Functions
KEY: period

241 ANS: 1
\[\sqrt[3]{64a^5b^6} = \sqrt[3]{4^3a^3a^2b^6} = 4ab^2 \sqrt[3]{a^2} \]

PTS: 2 REF: 011516a2 STA: A2.N.2 TOP: Operations with Radicals

242 ANS: 3
\[\sum C_3 \cdot x^{8-3} \cdot (-2)^3 = 56x^5 \cdot (-8) = -448x^5 \]

PTS: 2 REF: 011308a2 STA: A2.A.36 TOP: Binomial Expansions

243 ANS: 4
\[2x^2 - 7x - 5 = 0 \]
\[\frac{c}{a} = \frac{-5}{2} \]

PTS: 2 REF: 061414a2 STA: A2.A.20 TOP: Roots of Quadratics

244 ANS: 2
\[60 = -16t^2 + 5t + 105 \]
\[t = \frac{-5 \pm \sqrt{5^2 - 4(-16)(45)}}{2(-16)} \approx \frac{-5 \pm 53.89}{-32} \approx 1.84 \]
\[0 = -16t^2 + 5t + 45 \]

PTS: 2 REF: 061424a2 STA: A2.A.25 TOP: Solving Quadratics
KEY: quadratic formula
245 ANS: 1
The binomials are conjugates, so use FL.

246 ANS: 3
PT: 2
REF: 011110a2
STA: A2.A.30
TOP: Sequences

247 ANS: 1
PT: 2
REF: 081520a2
STA: A2.A.33
TOP: Sequences

248 ANS: 3
PT: 2
REF: 061308a2
TOP: Domain and Range
KEY: graph

249 ANS: 1
PT: 2
REF: 061324a2
STA: A2.A.9
TOP: Negative Exponents

250 ANS: 2

If \(\sin A = -\frac{7}{25}, \cos A = \frac{24}{25} \), and \(\tan A = \frac{\sin A}{\cos A} = \frac{\frac{7}{25}}{\frac{24}{25}} = -\frac{7}{24} \).

251 ANS: 4
PT: 2
REF: 011127a2
STA: A2.S.1
TOP: Analysis of Data

252 ANS: 3

\[
\cos 2A = 1 - 2 \sin^2 A = 1 - 2 \left(\frac{3}{8} \right)^2 = 1 - 2 \left(\frac{9}{32} \right) = \frac{23}{32}
\]

253 ANS: 3

\[
3x^5 - 48x = 0 \\
3x(x^4 - 16) = 0 \\
3x(x^2 + 4)(x^2 - 4) = 0 \\
3x(x^2 + 4)(x + 2)(x - 2) = 0
\]
254 ANS: 2
\[2x^2 - (x + 2)^2 = 8\]
\[2x^2 - (x^2 + 4x + 4) - 8 = 0\]
\[x^2 - 4x - 12 = 0\]
\[(x - 6)(x + 2) = 0\]
\[x = 6, -2\]

PTS: 2 REF: 011609a2 STA: A2.A.3 TOP: Quadratic-Linear Systems
KEY: equations

255 ANS: 4
\[
\left(\frac{3}{2}x - 1\right)\left(\frac{3}{2}x + 1\right) - \left(\frac{3}{2}x - 1\right) = \left(\frac{3}{2}x - 1\right)(2) = 3x - 2
\]

PTS: 2 REF: 011524a2 STA: A2.N.3 TOP: Operations with Polynomials
KEY: multiplication

256 ANS: 3
\[
\binom{3}{2} = 3
\]
\[
\left(\frac{x}{2}\right)^3 = 20 \cdot \frac{x^3}{8} \cdot (-8y^3) = -20x^3y^3
\]

PTS: 2 REF: 061215a2 STA: A2.A.36 TOP: Binomial Expansions

257 ANS: 3 PTS: 2 REF: 061515a2 STA: A2.N.3 TOP: Operations with Polynomials
KEY: subtraction

258 ANS: 4
\[
\frac{91 - 82}{3.6} = 2.5 \text{ sd}
\]

PTS: 2 REF: 081521a2 STA: A2.S.5 TOP: Normal Distributions
KEY: interval

259 ANS: 1 PTS: 2 REF: 061013a2 STA: A2.A.38 TOP: Defining Functions

260 ANS: 1
\[
\binom{9}{2} = \frac{9!}{2! \cdot 2!} = \frac{362,880}{96} = 3,780
\]

PTS: 2 REF: 061511a2 STA: A2.S.10 TOP: Permutations

261 ANS: 3 PTS: 2 REF: 061306a2 STA: A2.A.72 TOP: Identifying the Equation of a Trigonometric Graph

262 ANS: 4
\(4\) fails the horizontal line test. Not every element of the range corresponds to only one element of the domain.

PTS: 2 REF: fall0906a2 STA: A2.A.43 TOP: Defining Functions
263 ANS: 4
\[y - 2\sin \theta = 3 \]
\[y = 2\sin \theta + 3 \]
\[f(\theta) = 2\sin \theta + 3 \]

PTS: 2 REF: fall0927a2 STA: A2.A.40 TOP: Functional Notation

264 ANS: 3
\[3C_2(2x^4)^1(-y)^2 = 6x^4y^2 \]

PTS: 2 REF: 011215a2 STA: A2.A.36 TOP: Binomial Expansions

265 ANS: 3 PTS: 2 REF: 081525a2 STA: A2.A.36 TOP: Binomial Expansions

266 ANS: 1
\[a_2 = \frac{1}{2}(-6) - 2 = -5 \]
\[a_3 = \frac{1}{2}(-5) - 3 = -\frac{11}{2} \]

PTS: 2 REF: 011623a2 STA: A2.A.33 TOP: Sequences

267 ANS: 1
\[c = \sqrt{(x + \sqrt{2})^2 + (x - \sqrt{2})^2} = \sqrt{x^2 + 2\sqrt{2}x + 2 + x^2 - 2\sqrt{2}x + 2} = \sqrt{2x^2 + 4} \]

268 ANS: 3
\[s = \theta r = \frac{2\pi}{8} \cdot 6 = \frac{3\pi}{2} \]

PTS: 2 REF: 061212a2 STA: A2.A.61 TOP: Arc Length KEY: arc length

269 ANS: 3
\[\text{sum of the roots, } \frac{-b}{a} = \frac{-(-9)}{4} = \frac{9}{4} \quad \text{product of the roots, } \frac{c}{a} = \frac{3}{4} \]

PTS: 2 REF: 061208a2 STA: A2.A.21 TOP: Roots of Quadratics KEY: basic

270 ANS: 3
Cofunctions tangent and cotangent are complementary

PTS: 2 REF: 061014a2 STA: A2.A.58 TOP: Cofunction Trigonometric Relationships
271 ANS: 4
\[4 + 3(2 - x) + 3(3 - x) + 3(4 - x) + 3(5 - x)\]
\[4 + 6 - 3x + 9 - 3x + 12 - 3x + 15 - 3x\]
\[46 - 12x\]

PTS: 2 REF: 061315a2 STA: A2.N.10 TOP: Sigma Notation
KEY: advanced

272 ANS: 4
\[g\left(\frac{1}{2}\right) = \frac{1}{2} = 2.\] \[f(2) = 4(2) - 2^2 = 4\]

PTS: 2 REF: 011204a2 STA: A2.A.42 TOP: Compositions of Functions
KEY: numbers

273 ANS: 2
\[\frac{60 - 50}{5} = 2\] standards above the mean or 2.3% \[2.3\% \cdot 1000 = 23\]

PTS: 2 REF: 011614a2 STA: A2.S.5 TOP: Normal Distributions
KEY: predict

274 ANS: 3
\[x + y = 5\]
\[-5 + y = 5\]
\[y = -x + 5\]
\[y = 10\]
\[(x + 3)^2 + (-x + 5 - 3)^2 = 53\]
\[x^2 + 6x + 9 + x^2 - 4x + 4 = 53\]
\[2x^2 + 2x - 40 = 0\]
\[x^2 + x - 20 = 0\]
\[(x + 5)(x - 4) = 0\]
\[x = -5, 4\]

PTS: 2 REF: 011302a2 STA: A2.A.3 TOP: Quadratic-Linear Systems
KEY: circle

275 ANS: 2
\[K = 8 \cdot 12 \sin 120 = 96 \cdot \frac{\sqrt{3}}{2} = 48\sqrt{3}\]

PTS: 2 REF: 061508a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: parallelograms
276 ANS: 2

\[9 - x^2 < 0 \quad \text{or} \quad x + 3 < 0 \quad \text{and} \quad x - 3 < 0 \]

\[x^2 - 9 > 0 \quad \Rightarrow \quad x < -3 \quad \text{and} \quad x < 3 \]

\[(x + 3)(x - 3) > 0 \quad \Rightarrow \quad x < -3 \]

\[x + 3 > 0 \quad \text{and} \quad x - 3 > 0 \]

\[x > -3 \quad \text{and} \quad x > 3 \]

\[x > 3 \]

PTS: 2 REF: 061507a STA: A2-A4 TOP: Quadratic Inequalities

KEY: one variable

277 ANS: 2

\[x - 2 = 3x + 10 - 6 \quad \text{is extraneous.} \quad x - 2 = -3x - 10 \]

\[-12 = 2x \]

\[4x = -8 \]

\[-6 = x \]

\[x = -2 \]

PTS: 2 REF: 061513a STA: A2-A1 TOP: Absolute Value Equations

278 ANS: 1

\[
\frac{5}{4 - \sqrt{11}} \cdot \frac{4 + \sqrt{11}}{4 + \sqrt{11}} = \frac{5(4 + \sqrt{11})}{16 - 11} = \frac{5(4 + \sqrt{11})}{5} = 4 + \sqrt{11}
\]

PTS: 2 REF: 061509a STA: A2-N5 TOP: Rationalizing Denominators

279 ANS: 1 PTS: 2 REF: 011314a STA: A2-N3

TOP: Operations with Polynomials KEY: subtraction

280 ANS: 2

\[x^2 - 2x + y^2 + 6y = -3 \]

\[x^2 - 2x + 1 + y^2 + 6y + 9 = -3 + 1 + 9 \]

\[(x - 1)^2 + (y + 3)^2 = 7 \]

PTS: 2 REF: 061016a STA: A2-A47 TOP: Equations of Circles

281 ANS: 1

If \(\sin \theta = \frac{15}{17} \), then \(\cos \theta = \frac{8}{17} \quad \text{and} \quad \tan \theta = \frac{8}{15} = \frac{8}{15} \)

PTS: 2 REF: 081508a STA: A2-A64 TOP: Using Inverse Trigonometric Functions

KEY: advanced
282 ANS: 1

\[20(-2) = x(-2x + 2)\]

\[-40 = -2x^2 + 2x\]

\[2x^2 - 2x - 40 = 0\]

\[x^2 - x - 20 = 0\]

\[(x + 4)(x - 5) = 0\]

\[x = -4, 5\]

PTS: 2	REF: 011321a2	STA: A2.A.5	TOP: Inverse Variation

283 ANS: 2

\[\frac{1 - \frac{4}{x}}{\frac{2}{x} - \frac{8}{x^2}} \times \frac{x^2}{x^2} = \frac{x^2 - 4x}{x^2 - 2x - 8} = \frac{x(x - 4)}{(x - 4)(x + 2)} = \frac{x}{x + 2}\]

PTS: 2	REF: 061305a2	STA: A2.A.17	TOP: Complex Fractions

284 ANS: 4

PTS: 2	REF: 061207a2	STA: A2.A.19

TOP: Properties of Logarithms	KEY: antilogarithms

285 ANS: 4

PTS: 2	REF: 061101a2	STA: A2.S.1

TOP: Analysis of Data

286 ANS: 2

PTS: 2	REF: 011610a2	STA: A2.A.30

TOP: Sequences

287 ANS: 1

\[\frac{1}{7 - \sqrt{11}} \cdot 7 + \sqrt{11} = \frac{7 + \sqrt{11}}{49 - 11} = \frac{7 + \sqrt{11}}{38}\]

PTS: 2	REF: 011404a2	STA: A2.N.5	TOP: Rationalizing Denominators

288 ANS: 3

\[5000 \left(1 + \frac{0.03}{4}\right)^{4.5} = 5000(1.0075)^{20} \approx 5805.92\]

PTS: 2	REF: 011410a2	STA: A2.A.12	TOP: Evaluating Functions

289 ANS: 3

PTS: 2	REF: 061114a2	STA: A2.A.38

TOP: Defining Functions	KEY: graphs

290 ANS: 4

PTS: 2	REF: 081005a2	STA: A2.A.60

TOP: Unit Circle

291 ANS: 2

PTS: 2	REF: 011521a2	STA: A2.A.39

TOP: Domain and Range	KEY: real domain, rational
(x + 2)^2 = -9
x + 2 = \pm \sqrt{-9}
x = -2 \pm 3i

\text{PTS: 2} \quad \text{REF: 011408a2} \quad \text{STA: A2.A.24} \quad \text{TOP: Solving Quadratics}

\text{KEY: completing the square}

f(g(x)) = 2(x + 5)^2 - 3(x + 5) + 1 = 2(x^2 + 10x + 25) - 3x - 15 + 1 = 2x^2 + 17x + 36

\text{PTS: 2} \quad \text{REF: 061419a2} \quad \text{STA: A2.A.42} \quad \text{TOP: Compositions of Functions}

\text{KEY: variables}

b^2 - 4ac = (-10)^2 - 4(1)(25) = 100 - 100 = 0

\text{PTS: 2} \quad \text{REF: 011102a2} \quad \text{STA: A2.A.2} \quad \text{TOP: Using the Discriminant}

\text{KEY: determine nature of roots given equation}

\text{PTS: 2} \quad \text{REF: 061527a2} \quad \text{STA: A2.A.12} \quad \text{TOP: Functional Notation}

\text{KEY: advanced}

s = \theta r = \frac{2\pi}{5} \cdot 18 \approx 23

\text{PTS: 2} \quad \text{REF: 011526a2} \quad \text{STA: A2.A.61} \quad \text{TOP: Arc Length}

\text{KEY: arc length}

_{20} C_4 = 4,845

\text{PTS: 2} \quad \text{REF: 011509a2} \quad \text{STA: A2.S.11} \quad \text{TOP: Combinations}

\text{ANS: 3}

\frac{5}{\sin 32} = \frac{8}{\sin E}
57.98 + 32 < 180
E \approx 57.98 \quad (180 - 57.98) + 32 < 180

\text{PTS: 2} \quad \text{REF: 011419a2} \quad \text{STA: A2.A.75} \quad \text{TOP: Law of Sines - The Ambiguous Case}

\text{TOP: Differentiating Permutations and Combinations}
301. \(S_n = \frac{n}{2} [2a + (n - 1)d] = \frac{19}{2} [2(3) + (19 - 1)7] = 1254 \)

PTS: 2 REF: 011202a2 STA: A2.A.35 TOP: Summations

302. \(10 \cdot \frac{3}{2} = \frac{3}{5}p \)
\(15 = \frac{3}{5}p \)
\(25 = p \)

PTS: 2 REF: 011226a2 STA: A2.A.5 TOP: Inverse Variation

303. \(\frac{x^{-1} + 1}{x + 1} = \frac{\frac{1}{x} + 1}{x + 1} = \frac{1 + x}{x(x + 1)} = \frac{1}{x} \)

PTS: 2 REF: 011211a2 STA: A2.A.9 TOP: Negative Exponents

304. \(\frac{4 \cdot 0 + 6 \cdot 1 + 10 \cdot 2 + 0 \cdot 3 + 4k + 2 \cdot 5}{4 + 6 + 10 + 0 + k + 2} = 2 \)
\(\frac{4k + 36}{k + 22} = 2 \)
\(4k + 36 = 2k + 44 \)
\(2k = 8 \)
\(k = 4 \)

PTS: 2 REF: 061221a2 STA: A2.S.3 TOP: Average Known with Missing Data

305. \(\frac{5x}{x(x - 3)} - \frac{2(x - 3)}{x(x - 3)} = \frac{x(x - 3)}{x(x - 3)} \)
\(5x - 2x + 6 = x^2 - 3x \)
\(0 = x^2 - 6x - 6 \)

PTS: 2 REF: 011522a2 STA: A2.A.23 TOP: Solving Rationals

KEY: irrational and complex solutions

306. ANS: 3 PTS: 2 REF: 061416a2 STA: A2.A.12 TOP: Evaluating Exponential Expressions

307. ANS: 1 PTS: 2 REF: 061210a2 STA: A2.A.9 TOP: Negative Exponents
\[\log 4m^2 = \log 4 + \log m^2 = \log 4 + 2 \log m \]

KEY: splitting logs

\[(3 - 2a)^0 + (3 - 2a)^1 + (3 - 2a)^2 = 1 + 3 - 2a + 9 - 12a + 4a^2 = 4a^2 - 14a + 13 \]

PTS: 2 REF: 061526a2 STA: A2.N.10 TOP: Sigma Notation
KEY: advanced

\[x^3 - 2x^2 - 9x + 18 \]
\[x^2(x - 2) - 9(x - 2) \]
\[(x^2 - 9)(x - 2) \]
\[(x + 3)(x - 3)(x - 2) \]

PTS: 2 REF: 011511a2 STA: A2.A.7 TOP: Factoring by Grouping

\[\left(\frac{1}{2} \left(\frac{1}{4} \right) \right)^2 = \frac{1}{64} \]

PTS: 2 REF: 081527a2 STA: A2.A.24 TOP: Solving Quadratics
KEY: completing the square

\[2 \cos \theta = 1 \]

\[\cos \theta = \frac{1}{2} \]

\[\theta = \cos^{-1} \frac{1}{2} = 60, 300 \]

PTS: 2 REF: 061203a2 STA: A2.A.68 TOP: Trigonometric Equations
KEY: basic
315 ANS: 4

\[
\frac{3x + y}{xy} = \frac{3x + y}{xy} \cdot \frac{xy}{2} = \frac{3x + y}{2}
\]

PTS: 2 REF: 011603a2 STA: A2.A.17 TOP: Complex Fractions

316 ANS: 3

\[
\frac{3}{\sqrt[3]{3a^2b}} = \frac{3}{a \sqrt[3]{3b}} \cdot \frac{\sqrt[3]{3b}}{3ab} = \frac{\sqrt[3]{3b}}{ab}
\]

PTS: 2 REF: 081019a2 STA: A2.A.15 TOP: Rationalizing Denominators KEY: index = 2

317 ANS: 3

\[
\frac{3y}{2y - 6} + \frac{9}{6 - 2y} = \frac{3y}{2y - 6} - \frac{9}{2y - 6} = \frac{3y - 9}{2y - 6} = \frac{3(y - 3)}{2(y - 3)} = \frac{3}{2}
\]

318 ANS: 3

\[-\sqrt{2} \sec x = 2\]

\[
\sec x = -\frac{2}{\sqrt{2}}
\]

\[
\cos x = -\frac{\sqrt{2}}{2}
\]

\[
x = 135, 225
\]

PTS: 2 REF: 011322a2 STA: A2.A.68 TOP: Trigonometric Equations KEY: reciprocal functions

319 ANS: 3

\[K = (10)(18) \sin 46 \approx 129\]

PTS: 2 REF: 081021a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area KEY: parallelograms

320 ANS: 1

\[
2 \cdot \frac{180}{\pi} = \frac{360}{\pi}
\]

PTS: 2 REF: 011220a2 STA: A2.M.2 TOP: Radian Measure KEY: degrees

321 ANS: 3 PTS: 2

REF: 061219a2 STA: A2.N.8 TOP: Conjugates of Complex Numbers
322 ANS: 4
\[
\frac{2\pi}{b} = 30
\]
\[
b = \frac{\pi}{15}
\]

PTS: 2 REF: 011227a2 STA: A2.A.72 TOP: Identifying the Equation of a Trigonometric Graph

323 ANS: 2
\[
\frac{30}{(x + 3)(x - 3)} + \frac{(x + 3)(x - 3)}{(x + 3)(x - 3)} = \frac{5(x + 3)}{(x - 3)(x + 3)}
\]
3 is an extraneous root.
\[
30 + x^2 - 9 = 5x + 15
\]
\[
x^2 - 5x + 6 = 0
\]
\[
(x - 3)(x - 2) = 0
\]
\[
x = 2
\]

PTS: 2 REF: 061417a2 STA: A2.A.23 TOP: Solving Rationals

KEY: rational solutions

324 ANS: 2
\[
-\frac{b}{a} = -\frac{6}{-3} = 2
\]

PTS: 2 REF: 011613a2 STA: A2.A.20 TOP: Roots of Quadratics

325 ANS: 3 PTS: 2 REF: 061514a2 STA: A2.A.55 TOP: Trigonometric Ratios

326 ANS: 3
\[
x^2 + y^2 - 16x + 6y + 53 = 0
\]
\[
x^2 - 16x + 64 + y^2 + 6y + 9 = -53 + 64 + 9
\]
\[
(x - 8)^2 + (y + 3)^2 = 20
\]

PTS: 2 REF: 011415a2 STA: A2.A.47 TOP: Equations of Circles

327 ANS: 4
Students entering the library are more likely to spend more time studying, creating bias.

PTS: 2 REF: fall0904a2 STA: A2.S.2 TOP: Analysis of Data

328 ANS: 3
\[
\frac{40 - 10}{6 - 1} = \frac{30}{5} = 6 \quad a_n = 6n + 4
\]
\[
a_{20} = 6(20) + 4 = 124
\]

PTS: 2 REF: 081510a2 STA: A2.A.32 TOP: Sequences
\[
\cos(x - y) = \cos x \cos y + \sin x \sin y
\]
\[
= b \cdot b + a \cdot a
\]
\[
= b^2 + a^2
\]

\[\text{PTS: 2} \quad \text{REF: 061421a2} \quad \text{STA: A2.A.76} \quad \text{TOP: Angle Sum and Difference Identities} \]
\[\text{KEY: simplifying} \]

\[\text{ANS: 2} \]

\[\sin(\theta + 90) = \sin \theta \cdot \cos 90 + \cos \theta \cdot \sin 90 = \sin \theta \cdot (0) + \cos \theta \cdot (1) = \cos \theta \]

\[\text{PTS: 2} \quad \text{REF: 061309a2} \quad \text{STA: A2.A.76} \quad \text{TOP: Angle Sum and Difference Identities} \]
\[\text{KEY: identities} \]

\[\text{ANS: 4} \]

\[x^2 + 2 = 6x \]
\[x^2 - 6x = -2 \]
\[x^2 - 6x + 9 = -2 + 9 \]
\[(x - 3)^2 = 7 \]

\[\text{PTS: 2} \quad \text{REF: 011116a2} \quad \text{STA: A2.A.24} \quad \text{TOP: Solving Quadratics} \]
\[\text{KEY: completing the square} \]

\[\text{ANS: 2} \]

\[\cos(A - B) = \left(\frac{5}{13} \right) \left(\frac{3}{5} \right) + \left(\frac{12}{13} \right) \left(\frac{4}{5} \right) = \frac{-15}{65} + \frac{48}{65} = \frac{33}{65} \]

\[\text{PTS: 2} \quad \text{REF: 011214a2} \quad \text{STA: A2.A.76} \quad \text{TOP: Angle Sum and Difference Identities} \]
\[\text{KEY: evaluating} \]

\[\sqrt{2x - 4} = x - 2 \]
\[2x - 4 = x^2 - 4x + 4 \]
\[0 = x^2 - 6x + 8 \]
\[0 = (x - 4)(x - 2) \]
\[x = 4, 2 \]

\[\text{PTS: 2} \quad \text{REF: 061406a2} \quad \text{STA: A2.A.22} \quad \text{TOP: Solving Radicals} \]
\[\text{KEY: extraneous solutions} \]
\[
x^3 + 3x^2 - 4x - 12
\]
\[
x^2(x + 3) - 4(x + 3)
\]
\[
(x^2 - 4)(x + 3)
\]
\[
(x + 2)(x - 2)(x + 3)
\]

PTS: 2 REF: 061214a2 STA: A2.A.7 TOP: Factoring by Grouping

TOP: Transformations with Functions

ANS: 1 PTS: 2 REF: 061516a2 STA: A2.A.46

TOP: Transformations with Functions

\[3C_1 \cdot 3C_2 = 3 \cdot 10 = 30\]

PTS: 2 REF: 061422a2 STA: A2.S.12 TOP: Combinations

TOP: Families of Functions

ANS: 4
\[(-3 - 2i)(-3 + 2i) = 9 - 4i^2 = 9 + 4 = 13\]

PTS: 2 REF: 011512a2 STA: A2.N.9 TOP: Multiplication and Division of Complex Numbers

TOP: Families of Functions

ANS: 3 PTS: 2 REF: 011119a2 STA: A2.A.52

TOP: Families of Functions

ANS: 1
\[5 \cdot \frac{180}{\pi} \approx 286\]

PTS: 2 REF: 011427a2 STA: A2.M.2 TOP: Radian Measure
KEY: degrees

TOP: Differentiating Permutations and Combinations

ANS: 2 PTS: 2 REF: 011417a2 STA: A2.S.9

TOP: Domain and Range
KEY: graph

ANS: 1
\[\log T = \log \frac{10x^2}{y} = \log 10 + \log x^2 - \log y = 1 + 2 \log x - \log y\]

PTS: 2 REF: 011615a2 STA: A2.A.19 TOP: Properties of Logarithms
KEY: splitting logs

TOP: Graphing Trigonometric Functions

ANS: 3 PTS: 2 REF: fall0913a2 STA: A2.A.65

TOP: Defining Functions

(1) and (4) fail the horizontal line test and are not one-to-one. Not every element of the range corresponds to only one element of the domain. (2) fails the vertical line test and is not a function. Not every element of the domain corresponds to only one element of the range.
\[
\frac{1}{2}(7.4)(3.8) \sin 126 \approx 11.4
\]

PTS: 2 REF: 011218a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: basic

348 ANS: 4 PTS: 2 REF: 061506a2 STA: A2.A.9
TOP: Negative Exponents

349 ANS: 2 PTS: 2 REF: 081502a2 STA: A2.S.8
TOP: Correlation Coefficient

350 ANS: 3
\[
\sqrt{4^3} a^{15} = 4a^5 \sqrt[3]{a}
\]

PTS: 2 REF: 061204a2 STA: A2.A.13 TOP: Simplifying Radicals
KEY: index > 2

351 ANS: 4
\[
(x + i)^2 - (x - i)^2 = x^2 + 2xi + i^2 - (x^2 - 2xi + i^2) = 4xi
\]

PTS: 2 REF: 011327a2 STA: A2.N.9
TOP: Multiplication and Division of Complex Numbers

352 ANS: 3 PTS: 2 REF: 061119a2 STA: A2.A.65
TOP: Graphing Trigonometric Functions

353 ANS: 1
\[
(4a + 4) - (2a + 1) = 2a + 3
\]

PTS: 2 REF: 011401a2 STA: A2.A.30 TOP: Sequences

354 ANS: 3
\[(3i)(2i)^2(m + i)
\]
\[(3i)(4i^2)(m + i)
\]
\[(3i)(-4)(m + i)
\]
\[(-12i)(m + i)
\]
\[-12mi - 12i^2
\]
\[-12mi + 12
\]

PTS: 2 REF: 061319a2 STA: A2.N.9
TOP: Multiplication and Division of Complex Numbers
355 ANS: 4

\[f(16) = 4(16)^{\frac{1}{2}} + 16^0 + 16^{\frac{1}{4}} \]

\[= 4(4) + 1 + \frac{1}{2} \]

\[= 17 \frac{1}{2} \]

PTS: 2 REF: 081503a2 STA: A2.N.1 TOP: Negative and Fractional Exponents

356 ANS: 1

\[2x - 1 > 5, \quad 2x - 1 < -5 \]

\[2x > 6, \quad 2x > -4 \]

\[x > 3, \quad x < -2 \]

PTS: 2 REF: 061307a2 STA: A2.A.1 TOP: Absolute Value Inequalities

357 ANS: 1

\[
\begin{array}{l|l|l|l|l}
 L1 & L2 & L3 & 3 \\
\hline
 30 & 30 & 30 & 30 \\
 29 & 29 & 29 & 29 \\
 28 & 28 & 28 & 28 \\
 27 & 27 & 27 & 27 \\
 26 & 26 & 26 & 26 \\
 25 & 25 & 25 & 25 \\
 24 & 24 & 24 & 24 \\
 23 & 23 & 23 & 23 \\
 22 & 22 & 22 & 22 \\
 21 & 21 & 21 & 21 \\
 20 & 20 & 20 & 20 \\
 19 & 19 & 19 & 19 \\
 18 & 18 & 18 & 18 \\
 17 & 17 & 17 & 17 \\
 16 & 16 & 16 & 16 \\
 15 & 15 & 15 & 15 \\
 14 & 14 & 14 & 14 \\
 13 & 13 & 13 & 13 \\
 12 & 12 & 12 & 12 \\
 11 & 11 & 11 & 11 \\
 10 & 10 & 10 & 10 \\
 9 & 9 & 9 & 9 \\
 8 & 8 & 8 & 8 \\
 7 & 7 & 7 & 7 \\
 6 & 6 & 6 & 6 \\
 5 & 5 & 5 & 5 \\
 4 & 4 & 4 & 4 \\
 3 & 3 & 3 & 3 \\
 2 & 2 & 2 & 2 \\
 1 & 1 & 1 & 1 \\
 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

PTS: 2 REF: 061225a2 STA: A2.S.8 TOP: Correlation Coefficient

358 ANS: 2 PTS: 2 REF: 011502a2 STA: A2.A.52 TOP: Identifying the Equation of a Graph

359 ANS: 2 PTS: 2 REF: 011315a2 STA: A2.A.55 TOP: Trigonometric Ratios

360 ANS: 2

\[12 - 7 = 5 \]

PTS: 2 REF: 011525a2 STA: A2.S.4 TOP: Central Tendency and Dispersion

361 ANS: 2

\[\tan 30 = \frac{\sqrt{3}}{3}, \quad \arccos \frac{\sqrt{3}}{k} = 30 \]

\[\frac{\sqrt{3}}{k} = \cos 30 \]

\[k = 2 \]

PTS: 2 REF: 061323a2 STA: A2.A.64 TOP: Using Inverse Trigonometric Functions
362 ANS: 1
\[
\frac{1}{11!} \cdot \frac{11!}{3!2!12!} = \frac{39,916,800}{48} = 831,600
\]

PTS: 2 REF: 081512a2 STA: A2.S.10 TOP: Permutations

363 ANS: 1 PTS: 2 REF: 011416a2 STA: A2.A.39
TOP: Domain and Range KEY: real domain, rational

364 ANS: 2
\[
\frac{1}{2} (22)(13) \sin 55 \approx 117
\]

PTS: 2 REF: 061403a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: basic

365 ANS: 3
\[
\sqrt{9} \sqrt{-1} \sqrt{2} - \sqrt{16} \sqrt{-1} \sqrt{2} = 3i \sqrt{2} - 4i \sqrt{2} = -i \sqrt{2}
\]

PTS: 2 REF: 061404a2 STA: A2.N.6 TOP: Square Roots of Negative Numbers

366 ANS: 1
\[
\frac{1}{11} \cdot \frac{11!}{2!2!12!} = \frac{39,916,800}{16} = 2,494,800
\]

PTS: 2 REF: 011518a2 STA: A2.S.10 TOP: Permutations

367 ANS: 4
\[
3 C_2 \left(\frac{5}{8} \right)^2 \left(\frac{3}{8} \right)^1 = \frac{225}{512}
\]

PTS: 2 REF: 011221a2 STA: A2.S.15 TOP: Binomial Probability
KEY: spinner

368 ANS: 3
\[
3x^3 - 5x^2 - 48x + 80
\]
\[
x^2(3x - 5) - 16(3x - 5)
\]
\[
(x^2 - 16)(3x - 5)
\]
\[
(x + 4)(x - 4)(3x - 5)
\]

PTS: 2 REF: 011317a2 STA: A2.A.7 TOP: Factoring by Grouping

369 ANS: 2 PTS: 2 REF: 011301a2 STA: A2.A.52
TOP: Families of Functions

370 ANS: 3
\[
\frac{x}{x - 1} + \frac{1}{2x - 2} = \frac{2x}{2(x - 1)} + \frac{1}{2(x - 1)} = \frac{2x + 1}{2(x - 1)}
\]

PTS: 2 REF: 011608a2 STA: A2.A.16 TOP: Addition and Subtraction of Rationals
\[
\sin(180 + x) = (\sin 180)(\cos x) + (\cos 180)(\sin x) = 0 + (-\sin x) = -\sin x
\]

PTS: 2
REF: 011318a2
STA: A2.A.76
TOP: Angle Sum and Difference Identities
KEY: identities

\[
\frac{1 + \cos 2A}{\sin 2A} = \frac{1 + 2 \cos^2 A - 1}{2 \sin A \cos A} = \frac{\cos A}{\sin A} = \cot A
\]

PTS: 2
REF: 061522a2
STA: A2.A.77
TOP: Double Angle Identities
KEY: simplifying

\[
\frac{2\pi}{6} = \frac{\pi}{3}
\]

PTS: 2
REF: 061413a2
STA: A2.A.69
TOP: Properties of Graphs of Trigonometric Functions
KEY: period

\[
a_4 = 3xy^3 \left(\frac{2x}{y} \right)^3 = 3xy^3 \left(\frac{8x^3}{y^3} \right) = 24x^4y^2
\]

PTS: 2
REF: 061512a2
STA: A2.A.33
TOP: Sequences

\[
1000 = 500e^{.05t}
\]

\[
2 = e^{.05t}
\]

\[
\ln 2 = \ln e^{.05t}
\]

\[
\ln 2 = .05t \cdot \ln e
\]

\[
.05 = \frac{.05 \cdot \ln e}{.05}
\]

\[
13.9 \approx t
\]

PTS: 2
REF: 061313a2
STA: A2.A.6
TOP: Exponential Growth

\[
42 = \frac{1}{2} (a)(8) \sin 61
\]

\[
42 \approx 3.5a
\]

\[
12 \approx a
\]

PTS: 2
REF: 011316a2
STA: A2.A.74
TOP: Using Trigonometry to Find Area
KEY: basic
378 ANS: 4

PTS: 2 REF: 061217a2 STA: A2.A.66 TOP: Determining Trigonometric Functions

379 ANS: 2 PTS: 2 REF: 061510a2 STA: A2.A.5

TOP: Inverse Variation

380 ANS: 3

\[x(27i^6) + x(2i^{12}) = -27x + 2x = -25x \]

PTS: 2 REF: 061510a2 STA: A2.A.5

TOP: Inverse Variation

381 ANS: 4 PTS: 2 REF: 061318a2 STA: A2.A.49

TOP: Equations of Circles

382 ANS: 2

\[\log x^2 = \log 3a + \log 2a \]

\[2 \log x = \log 6a^2 \]

\[\log x = \frac{\log 6}{2} + \frac{\log a^2}{2} \]

\[\log x = \frac{1}{2} \log 6 + \frac{2 \log a}{2} \]

\[\log x = \frac{1}{2} \log 6 + \log a \]

KEY: splitting logs

383 ANS: 2

\[x \pm \sigma \]

153 \pm 22

131 \sim 175

PTS: 2 REF: 011307a2 STA: A2.S.5 TOP: Normal Distributions

KEY: interval

384 ANS: 2 PTS: 2 REF: 061502a2 STA: A2.M.1

TOP: Radian Measure

385 ANS: 1 PTS: 2 REF: 011306a2 STA: A2.A.8

TOP: Negative and Fractional Exponents
286 ANS: 1
\[
\frac{2\pi}{2} = \pi \\
\frac{\pi}{\pi} = 1
\]

287 ANS: 4
\[
\log 2x^3 = \log 2 + \log x^3 = \log 2 + 3 \log x
\]

288 ANS: 2
The binomials are conjugates, so use FL.

PTS: 2 REF: 011206a2 STA: A2.N.3 TOP: Operations with Polynomials KEY: multiplication

289 ANS: 2
\[
\sin^{-1}(\frac{8}{17})\text{ DMS} \\
28^\circ4'20.953''
\]
\[
\sin S = \frac{8}{17} \\
S = \sin^{-1} \frac{8}{17} \\
S \approx 28^\circ4'
\]

PTS: 2 REF: 061311a2 STA: A2.A.55 TOP: Trigonometric Ratios

290 ANS: 3
\[
\frac{-b}{a} = \frac{-(-4)}{1} = 4. \text{ If the sum is 4, the roots must be 7 and } -3.
\]

PTS: 2 REF: 011418a2 STA: A2.A.21 TOP: Roots of Quadratics KEY: advanced

291 ANS: 4
\[
g(-2) = 3(-2) - 2 = -8 \quad f(-8) = 2(-8)^2 + 1 = 128 + 1 = 129
\]

PTS: 2 REF: 061503a2 STA: A2.A.42 TOP: Compositions of Functions KEY: numbers
\[
\frac{a + b}{c} = \frac{ac + b}{c} = \frac{ac + b}{cd - b} = \frac{ac + b}{cd - b}
\]

TOP: Complex Fractions

PTS: 2 REF: 011405a2 STA: A2.A.17 TOP: Complex Fractions

TOP: Identifying the Equation of a Trigonometric Graph

\[
\begin{align*}
\frac{x + 16}{x - 2} - \frac{7(x - 2)}{x - 2} & \leq 0 \\
-6x + 30 & = 0 \\
x - 2 & = 0 \\
x & = 2
\end{align*}
\]

If \(x = 1\),

\[
\begin{align*}
-6x + 30 & \leq 0 \\
x & = 2 \\
\frac{-6(1) + 30}{1 - 2} & = \frac{24}{-1} = -24, \text{ which is less than 0.}
\end{align*}
\]

If \(x = 3\),

\[
\begin{align*}
\frac{-6(3) + 30}{3 - 2} & = \frac{12}{1} = 12, \text{ which is greater than 0.}
\end{align*}
\]

If \(x = 6\),

\[
\begin{align*}
\frac{-6(6) + 30}{6 - 2} & = \frac{-6}{4} = \frac{3}{2}, \text{ which is less than 0.}
\end{align*}
\]

TOP: Rational Inequalities

PTS: 2 REF: 011424a2 STA: A2.A.23 TOP: Rational Inequalities

\[
\sec \theta = \frac{\sqrt{x^2 + y^2}}{x} = \frac{\sqrt{(-4)^2 + 0^2}}{-4} = \frac{4}{-4} = -1
\]

TOP: Determining Trigonometric Functions

PTS: 2 REF: 011520a2 STA: A2.A.62 TOP: Determining Trigonometric Functions

\[
\frac{6!}{3!2!} = \frac{720}{12} = 60
\]

TOP: Permutations

PTS: 2 REF: 011324a2 STA: A2.S.10 TOP: Permutations

\[
\cos 2\theta = 2\left(\frac{3}{4}\right)^2 - 1 = 2\left(\frac{9}{16}\right) - 1 = \frac{9}{8} - \frac{8}{8} = \frac{1}{8}
\]

TOP: Double Angle Identities

KEY: evaluating

PTS: 2 REF: 081522a2 STA: A2.A.77 TOP: Double Angle Identities

\[
\frac{4}{-2} = -2
\]

TOP: Sequences

PTS: 2 REF: 011304a2 STA: A2.A.31 TOP: Sequences
\[
\sin 120 = \frac{\sqrt{3}}{2} \quad \csc 120 = \frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}
\]

\[
\text{PTS: } 2 \quad \text{REF: } 081505a2 \quad \text{STA: } A2.A.59 \quad \text{TOP: Reciprocal Trigonometric Relationships}
\]

400 ANS: 2 PTS: 2 REF: 081010a2 STA: A2.A.55
TOP: Trigonometric Ratios

401 ANS: 3 PTS: 2 REF: 061022a2 STA: A2.A.63
TOP: Domain and Range

402 ANS: 2
\[
\log 9 - \log 20 \\
\log 3^2 - \log(10 \cdot 2) \\
2\log 3 - (\log 10 + \log 2) \\
2b - (1 + a) \\
2b - a - 1
\]

\[
\text{PTS: } 2 \quad \text{REF: } 011326a2 \quad \text{STA: } A2.A.19 \quad \text{TOP: Properties of Logarithms}
\]

KEY: expressing logs algebraically

403 ANS: 4
\[
\frac{2x + 4}{\sqrt{x + 2}} \cdot \frac{\sqrt{x + 2}}{\sqrt{x + 2}} = \frac{2(x + 2)\sqrt{x + 2}}{x + 2} = 2\sqrt{x + 2}
\]

\[
\text{PTS: } 2 \quad \text{REF: } 011122a2 \quad \text{STA: } A2.A.15 \quad \text{TOP: Rationalizing Denominators}
\]

KEY: index = 2

404 ANS: 3
\[
h(-8) = \frac{1}{2}(-8) - 2 = -4 - 2 = -6. \quad g(-6) = \frac{1}{2}(-6) + 8 = -3 + 8 = 5
\]

\[
\text{PTS: } 2 \quad \text{REF: } 011403a2 \quad \text{STA: } A2.A.42 \quad \text{TOP: Compositions of Functions}
\]

KEY: numbers

405 ANS: 4
\[
\frac{10}{4} = 2.5
\]

\[
\text{PTS: } 2 \quad \text{REF: } 011217a2 \quad \text{STA: } A2.A.29 \quad \text{TOP: Sequences}
\]
Algebra 2/Trigonometry 2 Point Regents Exam Questions
Answer Section

406 ANS:
\[K = ab\sin C = 6 \cdot 6 \sin 50 \approx 27.6 \]

PTS: 2 REF: 011429a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: parallelograms

407 ANS:
\[\sum_{n=1}^{6} (-n^2 - 4n - 5) \]

\[-104. \]

PTS: 2 REF: 011230a2 STA: A2.N.10 TOP: Sigma Notation
KEY: basic

408 ANS:
\[\binom{6}{5} \left(\frac{2}{5} \right) \left(\frac{3}{5} \right)^5 = 6 \left(\frac{32}{3125} \right) \left(\frac{3}{5} \right) = \frac{576}{15,625} \]

PTS: 2 REF: 011532a2 STA: A2.S.15 TOP: Binomial Probability
KEY: exactly

409 ANS:
\[x < -1 \] or \[x > 5. \]
\[(x - 5)(x + 1) > 0 \]
\[x > 5 \] and \[x < -1 \]
\[x < -1 \] or \[x > 1 \]

PTS: 2 REF: 011228a2 STA: A2.A.4 TOP: Quadratic Inequalities
KEY: one variable

410 ANS:
\[39,916,800. \]
\[\frac{12!}{3! \cdot 2!} = \frac{479,001,600}{12} = 39,916,800 \]

PTS: 2 REF: 081035a2 STA: A2.S.10 TOP: Permutations

411 ANS:
\[\binom{9}{2} \times \binom{20}{3} \]

\[410,480 \]

PTS: 2 REF: fall0935a2 STA: A2.S.12 TOP: Sample Space
ANS:
\[x^8 - y^6 = x(1) - y(-1) = x + y \]

PTS: 2 REF: 061533a2 STA: A2.N.7 TOP: Imaginary Numbers

413 ANS:
\[2xi(i - 4i^2) = 2xi^2 - 8xi^3 = 2xi^2 - 8xi^3 = -2x + 8xi \]

PTS: 2 REF: 011533a2 STA: A2.N.9 TOP: Multiplication and Division of Complex Numbers

414 ANS:
D: \(-5 \leq x \leq 8\). R: \(-3 \leq y \leq 2\)

PTS: 2 REF: 011132a2 STA: A2.A.51 TOP: Domain and Range

KEY: graph

415 ANS:
\[\sum_{n=1}^{15} 7n \]

PTS: 2 REF: 081029a2 STA: A2.A.34 TOP: Sigma Notation

416 ANS:
\[\frac{1}{\sin \theta} \cdot \sin^2 \theta \cdot \frac{\cos \theta}{\sin \theta} = \cos \theta \]
\[\cos \theta = \cos \theta \]

PTS: 2 REF: 011634a2 STA: A2.A.67 TOP: Proving Trigonometric Identities

417 ANS:
\[5^{4x} = \left(\frac{5^3}{3} \right)^{x-1} \]
\[4x = 3x - 3 \]
\[x = -3 \]

PTS: 2 REF: 061528a2 STA: A2.A.27 TOP: Exponential Equations

KEY: common base shown

418 ANS:
\[(x + 3)^2 + (y - 4)^2 = 25 \]

PTS: 2 REF: fall0929a2 STA: A2.A.49 TOP: Writing Equations of Circles

419 ANS:
\[a_1 = 3. a_2 = 2(3) - 1 = 5. a_3 = 2(5) - 1 = 9. \]

PTS: 2 REF: 061233a2 STA: A2.A.33 TOP: Sequences
\[\begin{align*}
3. & \quad b^2 - 4ac = 0 \\
4. & \quad k^2 - 4(1)(4) = 0 \\
5. & \quad k^2 - 16 = 0 \\
6. & \quad (k + 4)(k - 4) = 0 \\
7. & \quad k = \pm 4
\end{align*} \]

PTS: 2
REF: 061028a2
STA: A2.A.2
TOP: Using the Discriminant
KEY: determine equation given nature of roots

\[y = x^2 - 6. \quad f^{-1}(x) \text{ is not a function.} \]

\[x = y^2 - 6 \]

\[x + 6 = y^2 \]

\[\pm \sqrt{x + 6} = y \]

PTS: 2
REF: 061132a2
STA: A2.A.44
TOP: Inverse of Functions
KEY: equations

\[\begin{align*}
45, & \quad 20 \tan C - 3 = 3 \tan C - 4 \\
& \quad 1 = \tan C \\
\tan^{-1} 1 & = C \\
C & = 45, 225
\end{align*} \]

PTS: 2
REF: 081032a2
STA: A2.A.68
TOP: Trigonometric Equations
KEY: basic

\[\text{Controlled experiment because Howard is comparing the results obtained from an experimental sample against a control sample.} \]

PTS: 2
REF: 081030a2
STA: A2.S.1
TOP: Analysis of Data

\[\begin{align*}
4. & \quad a^2 b^3 = 4 \\
\end{align*} \]

PTS: 2
REF: 011231a2
STA: A2.A.13
TOP: Simplifying Radicals
KEY: index > 2

\[\begin{align*}
10 & \cdot \binom{10}{3} \cdot \frac{3,628,800}{3! \cdot 3! \cdot 2!} = \frac{3,628,800}{72} = 50,400 \]

PTS: 2
REF: 061330a2
STA: A2.S.10
TOP: Permutations
426 ANS:

\[Q_1 = 3.5 \text{ and } Q_3 = 10.5. \quad 10.5 - 3.5 = 7. \]

PTS: 2 REF: 011430a2 STA: A2.S.4 TOP: Central Tendency and Dispersion

KEY: compute

427 ANS:

\[\sqrt{2x + 1} = 4 \]

\[2x + 1 = 16 \]

\[2x = 15 \]

\[x = \frac{15}{2} \]

PTS: 2 REF: 011628a2 STA: A2.A.22 TOP: Solving Radicals

KEY: basic

428 ANS:

\[6y^3 - \frac{37}{10} y^2 - \frac{1}{5} y \cdot \left(\frac{1}{2} y^2 - \frac{1}{3} y \right) \left(12y + \frac{3}{5} \right) = 6y^3 + \frac{3}{10} y^2 - 4y^2 - \frac{1}{5} y = 6y^3 - \frac{37}{10} y^2 - \frac{1}{5} y \]

PTS: 2 REF: 061128a2 STA: A2.N.3 TOP: Operations with Polynomials

KEY: multiplication

429 ANS:

\[\frac{5}{11} \pi \left(\frac{180}{\pi} \right) = 81^\circ49' \]

PTS: 2 REF: 011531a2 STA: A2.M.2 TOP: Radian Measure

KEY: degrees

430 ANS:

\[\sec \theta \sin \theta \cot \theta = \frac{1}{\cos \theta} \cdot \sin \theta \cdot \frac{\cos \theta}{\sin \theta} = 1 \]

PTS: 2 REF: 011428a2 STA: A2.A.67 TOP: Proving Trigonometric Identities

431 ANS:

\[-4x + 5 < 13 \quad -4x + 5 > -13 \quad -2 < x < 4.5 \]

\[-4x < 8 \quad -4x > -18 \]

\[x > -2 \quad x < 4.5 \]

PTS: 2 REF: 011432a2 STA: A2.A.1 TOP: Absolute Value Inequalities

432 ANS:

\[2.5 \cdot \frac{180}{\pi} \approx 143.2^\circ \]

PTS: 2 REF: 011129a2 STA: A2.M.2 TOP: Radian Measure

KEY: degrees
433 ANS:
\[y = 180.377(0.954)^x \]

PTS: 2 REF: 061231a2 STA: A2.S.7 TOP: Regression
KEY: exponential

434 ANS:
\[\sec x = \sqrt{2} \]
\[\cos x = \frac{1}{\sqrt{2}} \]
\[\cos x = \frac{\sqrt{2}}{2} \]
\[x = 45^\circ, 315^\circ \]

PTS: 2 REF: 061434a2 STA: A2.A.68 TOP: Trigonometric Equations
KEY: reciprocal functions

435 ANS:
230. \(10 + (1^3 - 1) + (2^3 - 1) + (3^3 - 1) + (4^3 - 1) + (5^3 - 1) = 10 + 0 + 7 + 26 + 63 + 124 = 230\)

PTS: 2 REF: 011131a2 STA: A2.N.10 TOP: Sigma Notation
KEY: basic

436 ANS:
\[y = 0.488(1.116)^x \]

PTS: 2 REF: 061429a2 STA: A2.S.7 TOP: Regression
KEY: exponential

437 ANS:
594 = 32 \cdot 46 \sin C
\[\frac{594}{1472} = \sin C \]
23.8 \approx C

PTS: 2 REF: 011535a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: parallelograms

438 ANS:
\[\cot x \sin x = \frac{\cos x}{\tan x} = \frac{\cos x}{\sin x} \cdot \frac{\sin x}{1} = \cos^2 x \]

PTS: 2 REF: 061334a2 STA: A2.A.58 TOP: Reciprocal Trigonometric Relationships
83°50' \cdot \frac{\pi}{180} \approx 1.463 \text{ radians} \quad s = \theta r = 1.463 \cdot 12 \approx 17.6 \quad \text{PTS: 2} \quad \text{REF: 011435a2} \quad \text{STA: A2.A.61} \quad \text{TOP: Arc Length} \quad \text{KEY: arc length}

\frac{\sqrt{3}}{2}

\frac{6.6}{\frac{2}{3}} = 9.9 \quad \text{PTS: 2} \quad \text{REF: 061033a2} \quad \text{STA: A2.A.60} \quad \text{TOP: Unit Circle}

\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{6}}{4} \quad \text{PTS: 2} \quad \text{REF: 081532a2} \quad \text{STA: A2.A.61} \quad \text{TOP: Arc Length} \quad \text{KEY: radius}

\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{6}}{4} \quad \text{PTS: 2} \quad \text{REF: 061331a2} \quad \text{STA: A2.A.56} \quad \text{TOP: Determining Trigonometric Functions} \quad \text{KEY: degrees, common angles}
443 ANS:

PTS: 2 REF: 011234a2 STA: A2.A.53 TOP: Graphing Exponential Functions

444 ANS:

\[A = 750e^{(0.03)(8)} \approx 953 \]

PTS: 2 REF: 061229a2 STA: A2.A.12 TOP: Evaluating Exponential Expressions

445 ANS:

\[
\begin{align*}
8^{x+1} &= 16 \\
2^{3(x+1)} &= 2^4 \\
3x + 3 &= 4 \\
3x &= 1 \\
x &= \frac{1}{3}
\end{align*}
\]

PTS: 2 REF: 011630a2 STA: A2.A.28 TOP: Logarithmic Equations

446 ANS:

\[216 \left(\frac{\pi}{180} \right) \approx 3.8 \]

PTS: 2 REF: 061232a2 STA: A2.M.2 TOP: Radian Measure

447 ANS:

\[
\binom{1}{3}^4 \left(\frac{1}{3} \right)^3 = 35 \left(\frac{16}{81} \right) \left(\frac{1}{27} \right) = \frac{560}{2187}
\]

PTS: 2 REF: 081531a2 STA: A2.S.15 TOP: Binomial Probability
ANS:
$5 \csc \theta = 8$

$csc \theta = \frac{8}{5}$

$\sin \theta = \frac{5}{8}$

$\theta \approx 141$

PTS: 2 REF: 061332a2 STA: A2.A.68 TOP: Trigonometric Equations KEY: reciprocal functions

ANS:
$a_n = 9n - 4$
$S_n = \frac{20(5 + 176)}{2} = 1810$

$a_1 = 9(1) - 4 = 5$

$a_{20} = 9(20) - 4 = 176$

PTS: 2 REF: 011328a2 STA: A2.A.35 TOP: Summations KEY: arithmetic

ANS:
no. over 20 is more than 1 standard deviation above the mean. $0.159 \cdot 82 \approx 13.038$

PTS: 2 REF: 061129a2 STA: A2.S.5 TOP: Normal Distributions KEY: predict

ANS:
$sd = \frac{81 - 57}{3} = 8$

$57 + 8 = 65$

$81 - 2(8) = 65$

PTS: 2 REF: 011534a2 STA: A2.S.5 TOP: Normal Distributions KEY: mean and standard deviation

ANS:
$\frac{-b}{a} = \frac{-2}{3}$. Product $\frac{c}{a} = \frac{k}{3}$

PTS: 2 REF: 061534a2 STA: A2.A.20 TOP: Roots of Quadratics

ANS:
$\frac{5(3 + \sqrt{2})}{7} \cdot \frac{5}{3 - \sqrt{2}} \times \frac{3 + \sqrt{2}}{3 + \sqrt{2}} = \frac{5(3 + \sqrt{2})}{9 - 2} = \frac{5(3 + \sqrt{2})}{7}$

PTS: 2 REF: fall0928a2 STA: A2.N.5 TOP: Rationalizing Denominators
454 ANS:
\[(x + yi)(x - yi) = x^2 - y^2 i^2 = x^2 + y^2\]

PTS: 2 REF: 061432a2 STA: A2.N.9 TOP: Multiplication and Division of Complex Numbers

455 ANS:
\[
\frac{\sqrt{108x^3y^8}}{\sqrt{6xy^5}} = \sqrt{18x^4y^3} = 3x^2y\sqrt{2y}
\]

KEY: with variables | index = 2

456 ANS:
\[
a + 15 + 2a = 90
3a + 15 = 90
3a = 75
a = 25
\]

PTS: 2 REF: 011330a2 STA: A2.A.58 TOP: Cofunction Trigonometric Relationships

457 ANS:
7. \[4 - \sqrt{2x - 5} = 1\]
\[-\sqrt{2x - 5} = -3\]
\[2x - 5 = 9\]
\[2x = 14\]
\[x = 7\]

PTS: 2 REF: 011229a2 STA: A2.A.22 TOP: Solving Radicals

KEY: basic

458 ANS:
\[30700 = 50e^{3t}\]
\[614 = e^{3t}\]
\[\ln 614 = \ln e^{3t}\]
\[\ln 614 = 3t \ln e\]
\[\ln 614 = 3t\]
\[2.14 \approx t\]

PTS: 2 REF: 011333a2 STA: A2.A.6 TOP: Exponential Growth
10

ANS: 7.4

PTS: 2 REF: 061029a2 STA: A2.S.4 TOP: Dispersion
KEY: basic, group frequency distributions

ANS: 2,298.65.

PTS: 2 REF: fall0932a2 STA: A2.A.12 TOP: Evaluating Exponential Expressions

ANS: \(-\frac{b}{a} = -\frac{1}{12}, \quad \text{Product} \quad \frac{c}{a} = \frac{1}{2}\)

PTS: 2 REF: 061328a2 STA: A2.A.20 TOP: Roots of Quadratics

ANS: \frac{2\sqrt{3}}{3}. \quad \text{If} \ \sin60 = \frac{\sqrt{3}}{2}, \ \text{then} \ \csc60 = \frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{3} = \frac{2\sqrt{3}}{3}

PTS: 2 REF: 011235a2 STA: A2.A.59 TOP: Reciprocal Trigonometric Relationships

ANS: 2x - 3 > 5 or 2x - 3 < -5
\quad 2x > 8 \quad 2x < -2
\quad x > 4 \quad x < -1

PTS: 2 REF: 061430a2 STA: A2.A.1 TOP: Absolute Value Inequalities

ANS: (x + 1)^2 - (x + 1) = x^2 + 2x + 1 - x - 1 = x^2 + x

PTS: 2 REF: 081530a2 STA: A2.A.42 TOP: Compositions of Functions
KEY: variables

ANS: \frac{4}{9}x^2 - \frac{4}{3}x + 1. \quad \left(\frac{2}{3}x - 1\right)^2 = \left(\frac{2}{3}x - 1\right)\left(\frac{2}{3}x - 1\right) = \frac{4}{9}x^2 - \frac{2}{3}x - \frac{2}{3}x + 1 = \frac{4}{9}x^2 - \frac{4}{3}x + 1

PTS: 2 REF: 081034a2 STA: A2.N.3 TOP: Operations with Polynomials
KEY: multiplication
466 ANS:

\[
\begin{align*}
\text{Graph of a quadratic function.}
\end{align*}
\]

PTS: 2 REF: 061435a2 STA: A2.A.46 TOP: Graphing Quadratic Functions

467 ANS:

\[
197^\circ 40' \cdot \frac{180}{\pi} \approx 197^\circ 40'.
\]

PTS: 2 REF: fall0931a2 STA: A2.M.2 TOP: Radian Measure

KEY: degrees

468 ANS:

\[
\begin{align*}
10x^4 &= \frac{1}{x} + \frac{x}{4} \\
9x^4 &= \frac{1}{x} \\
9x^2 &= 4 \\
x^2 &= \frac{4}{9} \\
x &= \pm \frac{2}{3}
\end{align*}
\]

PTS: 2 REF: 081534a2 STA: A2.A.23 TOP: Solving Rationals

KEY: rational solutions

469 ANS:

\[
12t^8 - 75t^4 = 3t^4(4t^4 - 25) = 3t^4(2t^2 + 5)(2t^2 - 5)
\]

PTS: 2 REF: 061133a2 STA: A2.A.7 TOP: Factoring the Difference of Perfect Squares

470 ANS:

\[
r_A \approx 0.976 \quad r_B \approx 0.994 \quad \text{Set } B \text{ has the stronger linear relationship since } r \text{ is higher.}
\]

PTS: 2 REF: 061535a2 STA: A2.S.8 TOP: Correlation Coefficient
471 ANS:
\[r = \sqrt{2^2 + 3^2} = \sqrt{13}. \quad (x + 5)^2 + (v - 2)^2 = 13 \]

PTS: 2 REF: 011234a2 STA: A2.A.49 TOP: Writing Equations of Circles

472 ANS:
68% of the students are within one standard deviation of the mean. 16% of the students are more than one standard deviation above the mean.

PTS: 2 REF: 011134a2 STA: A2.S.5 TOP: Normal Distributions

KEY: percent

473 ANS:
\[(x + 1)^3 = 64 \]
\[x + 1 = 4 \]
\[x = 3 \]

PTS: 2 REF: 061531a2 STA: A2.A.28 TOP: Logarithmic Equations

KEY: basic

474 ANS:
\[2.5 \cdot \frac{180}{\pi} \approx 143^\circ 14' \]

PTS: 2 REF: 061431a2 STA: A2.M.2 TOP: Radian Measure

KEY: degrees

475 ANS:
\[g(10) = \left(a(10)\sqrt{1-10} \right)^2 = 100a^2(-9) = -900a^2 \]

PTS: 2 REF: 061333a2 STA: A2.A.41 TOP: Functional Notation

476 ANS:
\[K = ab \sin C = 18 \cdot 22 \sin 60 = 396 \cdot \frac{\sqrt{3}}{2} = 198\sqrt{3} \]

PTS: 2 REF: 061234a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area

KEY: parallelograms

477 ANS:
\[4xi + 5yi^2 + 6xi^3 + 2yi^4 = 4xi + 5y - 6xi + 2y = 7y - 2xi \]

PTS: 2 REF: 011433a2 STA: A2.N.7 TOP: Imaginary Numbers

478 ANS:
7. \(f(-3) = (-3)^2 - 6 = 3 \). \(g(x) = 2^3 - 1 = 7 \).

PTS: 2 REF: 061135a2 STA: A2.A.42 TOP: Compositions of Functions

KEY: numbers
$\frac{1}{2} \cdot 15 \cdot 31.6 \sin 125 \approx 194$

PTS: 2 REF: 011633a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: advanced

$3 \times \frac{180}{\pi} \approx 171.89^\circ \approx 171^\circ 53'$

PTS: 2 REF: 011335a2 STA: A2.M.2 TOP: Radian Measure
KEY: degrees

$\frac{2}{3} x^3 + \frac{11}{8} x^2 - \frac{7}{9} x - \frac{2}{9}$

PTS: 2 REF: 011635a2 STA: A2.N.3 TOP: Operations with Polynomials
KEY: subtraction

$\frac{1}{\cos^2 x} - 1 = \frac{1 - \cos^2 x}{\cos^2 x} = \frac{\sin^2 x}{\cos^2 x}$

PTS: 2 REF: 081533a2 STA: A2.A.58 TOP: Reciprocal Trigonometric Relationships

$\frac{2 \pm \sqrt{(-2)^2 - 4(6)(-3)}}{2(6)} = 2 \pm \frac{\sqrt{76}}{12} = 2 \pm \frac{\sqrt{19}}{12} = 1 \pm \frac{\sqrt{19}}{6}$

PTS: 2 REF: 011332a2 STA: A2.A.25 TOP: Solving Quadratics
KEY: quadratic formula

$\frac{(6-x)(6+x)}{(x+6)(6+x)} \cdot \frac{(x+6)(x-3)}{x-3} = 6 - x$

PTS: 2 REF: 011529a2 STA: A2.A.17 TOP: Complex Fractions
ANS: \(\frac{11!}{3! \cdot 2! \cdot 2!} = 1,663,200 \)

PTS: 2 REF: 011631a2 STA: A2.S.10 TOP: Permutations

ANS:
\[_3C_1 \left(\frac{1}{4} \right)^1 \left(\frac{3}{4} \right)^2 = 3 \cdot \frac{1}{4} \cdot \frac{9}{16} = \frac{27}{64} \]

PTS: 2 REF: 061530a2 STA: A2.S.15 TOP: Binomial Probability
KEY: exactly

ANS:
\[\frac{\sin^2 A + \cos^2 A}{\cos^2 A} = \frac{1}{\cos^2 A} \]
\[\tan^2 A + 1 = \sec^2 A \]

PTS: 2 REF: 011135a2 STA: A2.A.67 TOP: Proving Trigonometric Identities

ANS:
\[(5x - 1)^{\frac{1}{3}} = 4 \]
\[5x - 1 = 64 \]
\[5x = 65 \]
\[x = 13 \]

PTS: 2 REF: 061433a2 STA: A2.A.28 TOP: Logarithmic Equations
KEY: advanced

ANS:
\(y = -3 \sin 2x \). The period of the function is \(\pi \), the amplitude is 3 and it is reflected over the \(x \)-axis.

PTS: 2 REF: 061235a2 STA: A2.A.72 TOP: Identifying the Equation of a Trigonometric Graph

ANS:
\[3x^2 - 11x + 6 = 0 \]. Sum \(-\frac{b}{a} = \frac{11}{3} \). Product \(\frac{c}{a} = \frac{6}{3} = 2 \)

PTS: 2 REF: 011329a2 STA: A2.A.20 TOP: Roots of Quadratics

ANS:
\[12 \cdot 6 = 9w \]
\[8 = w \]

PTS: 2 REF: 011130a2 STA: A2.A.5 TOP: Inverse Variation
492 ANS:
\[x^2(x + 3) + 2(x + 3) = (x^2 + 2)(x + 3)\]

PTS: 2 REF: 011629a2 STA: A2.A.7 TOP: Factoring by Grouping

493 ANS:
\[2.5 \left(\frac{180}{\pi} \right) = 143°14'\]

PTS: 2 REF: 081528a2 STA: A2.M.2 TOP: Radian Measure

494 ANS:
\[
\begin{align*}
\text{y} &= 0
\end{align*}
\]

PTS: 2 REF: 061031a2 STA: A2.A.53 TOP: Graphing Exponential Functions

495 ANS:
\[
5\sqrt{3x^3} - 2\sqrt{27x^3} = 5\sqrt{x^2 \cdot 3x} - 2\sqrt{9x^2 \cdot 3x} = 5x\sqrt{3x} - 6x\sqrt{3x} = -x\sqrt{3x}
\]

PTS: 2 REF: 061032a2 STA: A2.N.2 TOP: Operations with Radicals

496 ANS:
\[
\binom{25}{20} = 53,130
\]

PTS: 2 REF: 011232a2 STA: A2.S.11 TOP: Combinations

497 ANS:
\[
\cos \theta \cdot \frac{1}{\cos \theta} - \cos^2 \theta = 1 - \cos^2 \theta = \sin^2 \theta
\]

PTS: 2 REF: 061230a2 STA: A2.A.58 TOP: Reciprocal Trigonometric Relationships
498 ANS:

2x - 1 = 27^{\frac{4}{3}}
2x - 1 = 81
2x = 82
x = 41

PTS: 2 REF: 061329a2 STA: A2.A.28 TOP: Logarithmic Equations
KEY: advanced

499 ANS:

\begin{align*}
\frac{12x^2}{y^9} \cdot \frac{3x^3 y^5}{(2x^2 y^{-7})^2} &= \frac{3y^5 (2x^3 y^{-7})^2}{x^4} \\
&= \frac{3y^5 (4x^6 y^{-14})}{x^4} \\
&= \frac{12x^6 y^{-9}}{x^4} \\
&= \frac{12x^2}{y^9}
\end{align*}

PTS: 2 REF: 061134a2 STA: A2.A.9 TOP: Negative Exponents

500 ANS:

K = ab \sin C = 24 \cdot 30 \sin 57 \approx 604

PTS: 2 REF: 061034a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: parallelograms

501 ANS:

10ax^2 - 23ax - 5a = a(10x^2 - 23x - 5) = a(5x + 1)(2x - 5)

PTS: 2 REF: 081028a2 STA: A2.A.7 TOP: Factoring Polynomials
KEY: multiple variables

502 ANS:

x(x + 3) = 10

x^2 + 3x - 10 = 0

(x + 5)(x - 2) = 0

x = -5, 2

PTS: 2 REF: 011431a2 STA: A2.A.3 TOP: Quadratic-Linear Systems
KEY: equations

503 ANS:

\begin{align*}
\frac{31 - 19}{7 - 4} &= \frac{12}{3} = 4 \ x + (4 - 1)4 = 19 \ a_n = 7 + (n - 1)4 \\
x + 12 &= 19 \\
x &= 7
\end{align*}

PTS: 2 REF: 011434a2 STA: A2.A.29 TOP: Sequences
ANS:
\[2^{-4} = 2^{3x-1} \]
\[-4 = 3x - 1 \]
\[-3 = 3x \]
\[-1 = x \]

PTS: 2 REF: 081529a2 STA: A2.A.27 TOP: Exponential Equations
KEY: common base shown

ANS:
Less than 60 inches is below 1.5 standard deviations from the mean.
\[0.067 \cdot 450 \approx 30 \]

PTS: 2 REF: 061428a2 STA: A2.S.5 TOP: Normal Distributions
KEY: predict

ANS:
\[i^{13} + i^{18} + i^{31} + n = 0 \]
\[i + (-1) - i + n = 0 \]
\[-1 + n = 0 \]
\[n = 1 \]

PTS: 2 REF: 061228a2 STA: A2.N.7 TOP: Imaginary Numbers

ANS:
no solution.
\[\frac{4x}{x-3} = 2 + \frac{12}{x-3} \]
\[\frac{4x - 12}{x - 3} = 2 \]
\[\frac{4(x - 3)}{x - 3} = 2 \]
\[4 \neq 2 \]

PTS: 2 REF: fall0930a2 STA: A2.A.23 TOP: Solving Rationals
KEY: rational solutions

ANS:
\[(x + 5)^2 + (y - 3)^2 = 32 \]

PTS: 2 REF: 081033a2 STA: A2.A.49 TOP: Writing Equations of Circles

ANS:
\[x^2(x - 6) - 25(x - 6) \]
\[(x^2 - 25)(x - 6) \]
\[(x + 5)(x - 5)(x - 6) \]

PTS: 2 REF: 061532a2 STA: A2.A.7 TOP: Factoring by Grouping
18

510 ANS:
\[25 \cdot 6 = 30q \]
\[5 = q \]

PTS: 2 REF: 011528a2 STA: A2.A.5 TOP: Inverse Variation

511 ANS:
\[-130 \cdot \frac{\pi}{180} \approx -2.27 \]

PTS: 2 REF: 011632a2 STA: A2.M.2 TOP: Radian Measure

512 ANS:
\[16^{2x+3} = 64^{x+2} \]
\[(4^2)^{2x+3} = (4^3)^{x+2} \]
\[4x + 6 = 3x + 6 \]
\[x = 0 \]

PTS: 2 REF: 011128a2 STA: A2.A.27 TOP: Exponential Equations

513 ANS:
\[\binom{7}{3} \left(\frac{1}{4} \right)^3 \left(\frac{3}{4} \right)^4 = 35 \left(\frac{1}{64} \right) \left(\frac{81}{256} \right) = \frac{2835}{16384} \approx 0.173 \]

PTS: 2 REF: 061335a2 STA: A2.S.15 TOP: Binomial Probability

514 ANS:
\[\ln e^{4x} = \ln 12 \]
\[4x = \ln 12 \]
\[x = \frac{\ln 12}{4} \]
\[\approx 0.62 \]

PTS: 2 REF: 011530a2 STA: A2.A.27 TOP: Exponential Equations

515 ANS:
\[-3, -5, -8, -12 \]

PTS: 2 REF: fall0934a2 STA: A2.A.33 TOP: Sequences
516 ANS:
\[
\frac{1}{d} - \frac{4}{d} = \frac{d - 8}{2d} = \frac{d - 8}{2d} \times \frac{2d^2}{2d} = \frac{d - 8}{5d}
\]

PTS: 2 REF: 061035a2 STA: A2.A.17 TOP: Complex Fractions

517 ANS:
\[y = 10.596(1.586)^x\]

PTS: 2 REF: 081031a2 STA: A2.S.7 TOP: Regression

518 ANS:
\[\frac{8}{\sin 85} = \frac{2}{\sin C} \quad 85 + 14.4 < 180 \quad 1 \text{ triangle}\]
\[C = \sin^{-1} \left(\frac{2 \sin 85}{8} \right) \quad 85 + 165.6 \geq 180\]
\[C \approx 14.4\]

PTS: 2 REF: 061529a2 STA: A2.A.75 TOP: Law of Sines - The Ambiguous Case

519 ANS:
\[x^2 - 6x - 27 = 0, \quad \frac{-b}{a} = 6. \quad \frac{c}{a} = -27. \quad \text{If} \ a = 1 \ \text{then} \ b = -6 \ \text{and} \ c = -27\]

PTS: 4 REF: 061130a2 STA: A2.A.21 TOP: Roots of Quadratics

520 ANS:
\[e^{\ln^2} = e^{\ln^2} = e^{\ln 8} = 8\]

PTS: 2 REF: 061131a2 STA: A2.A.12 TOP: Evaluating Exponential Expressions

521 ANS:
\[x - 1 + x - 4 + x - 9 + x - 16 = 4x - 30\]

PTS: 2 REF: 081535a2 STA: A2.N.10 TOP: Sigma Notation

522 ANS:
\[\frac{\sqrt{13}}{2}. \quad \sin \theta = \frac{y}{\sqrt{x^2 + y^2}} = \frac{2}{\sqrt{(-3)^2 + 2^2}} = \frac{2}{\sqrt{13}}, \quad \csc \theta = \frac{\sqrt{13}}{2}.\]

PTS: 2 REF: fall0933a2 STA: A2.A.62 TOP: Determining Trigonometric Functions
ANS: \(\frac{-b}{a} = \frac{11}{5} \). Product \(\frac{c}{a} = \frac{3}{5} \)

PTS: 2 REF: 061030a2 STA: A2.A.20 TOP: Roots of Quadratics

ANS:
Ordered, the heights are 71, 71, 72, 74, 74, 75, 78, 79, 79, 83. \(Q_1 = 72 \) and \(Q_3 = 79 \). \(79 - 72 = 7 \).

PTS: 2 REF: 011331a2 STA: A2.S.4 TOP: Central Tendency and Dispersion

ANS:
\[3 - 2x \geq 7 \quad \text{or} \quad 3 - 2x \leq -7 \]
\[-2x \geq 4 \quad \text{or} \quad -2x \leq -10 \]
\[x \leq -2 \quad x \geq 5 \]

PTS: 2 REF: 011334a2 STA: A2.A.1 TOP: Absolute Value Inequalities
Algebra 2/Trigonometry 4 Point Regents Exam Questions
Answer Section

526 ANS:

\[x^3 + 5x^2 - 4x - 20 = 0 \]

\[x^2(x + 5) - 4(x + 5) = 0 \]

\[(x^2 - 4)(x + 5) = 0 \]

\[(x + 2)(x - 2)(x + 5) = 0 \]

\[x = \pm 2, -5 \]

PTS: 4 REF: 061437a2 STA: A2.A.26 TOP: Solving Polynomial Equations

527 ANS:

\[\sin(45 + 30) = \sin 45 \cos 30 + \cos 45 \sin 30 \]

\[= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4} \]

PTS: 4 REF: 061136a2 STA: A2.A.76 TOP: Angle Sum and Difference Identities

528 ANS:

\[2\sin^2 x + 5\sin x - 3 = 0 \]

\[(2 \sin x - 1)(\sin x + 3) = 0 \]

\[\sin x = \frac{1}{2} \]

\[x = \frac{\pi}{6}, \frac{5\pi}{6} \]

PTS: 4 REF: 011436a2 STA: A2.A.68 TOP: Trigonometric Equations

529 ANS:

\[y = 215.983(1.652)^x. \quad 215.983(1.652)^7 \approx 7250 \]

PTS: 4 REF: 011337a2 STA: A2.S.7 TOP: Regression
\[\pm \frac{3}{2}, -\frac{1}{2}, \quad 8x^3 + 4x^2 - 18x - 9 = 0 \]
\[4x^2(2x + 1) - 9(2x + 1) = 0 \]
\[(4x^2 - 9)(2x + 1) = 0 \]
\[4x^2 - 9 = 0 \text{ or } 2x + 1 = 0 \]
\[(2x + 3)(2x - 3) = 0 \quad x = -\frac{1}{2} \]
\[x = \pm \frac{3}{2} \]

PTS: 4 REF: fall0937a2 STA: A2.A.26 TOP: Solving Polynomial Equations

\[(x + 4)^2 = 17x - 4 \]
\[x^2 + 8x + 16 = 17x - 4 \]
\[x^2 - 9x + 20 = 0 \]
\[(x - 4)(x - 5) = 0 \]
\[x = 4, 5 \]

PTS: 4 REF: 011336a2 STA: A2.A.28 TOP: Logarithmic Equations KEY: basic

\[80. x = 4^{2.5} = 32. \quad y = \frac{3}{2} = 125. \quad \frac{x}{y} = \frac{32}{125} \approx 0.25 \]
\[y = 125 \cdot \frac{3}{2} = \frac{1}{25} \]

\[0.468. \quad C_6^2 \left(\frac{2}{3} \right)^6 \left(\frac{1}{3} \right)^2 \approx 0.27313. \quad C_7^7 \left(\frac{2}{3} \right)^7 \left(\frac{1}{3} \right)^1 \approx 0.15607. \quad C_8^8 \left(\frac{2}{3} \right)^8 \left(\frac{1}{3} \right)^0 \approx 0.03902. \]

PTS: 4 REF: 011138a2 STA: A2.S.15 TOP: Binomial Probability KEY: at least or at most

\[a = 3, b = 2, c = 1, \quad y = 3 \cos 2x + 1. \]

PTS: 2 REF: 011538a2 STA: A2.A.72 TOP: Identifying the Equation of a Trigonometric Graph
535 ANS:

\[2 \cos^2 x - 1 = \cos x\]

\[2 \cos^2 x - \cos x - 1 = 0\]

\[(2 \cos x + 1)(\cos x - 1) = 0\]

\[\cos x = -\frac{1}{2}, 1\]

\[x = 0, 120, 240\]

PTS: 4 REF: 011638a2 STA: A2.A.68 TOP: Trigonometric Equations

KEY: double angle identities

536 ANS:

\[\frac{15}{\sin 103} = \frac{a}{\sin 42} \cdot \frac{1}{2} (15)(10.3) \sin 35 \approx 44\]

\[a \approx 10.3\]

PTS: 4 REF: 061337a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area

KEY: advanced

537 ANS:

\[x^2 + 10x + 25 = 8 + 25\]

\[(x + 5)^2 = 33\]

\[x + 5 = \pm \sqrt{33}\]

\[x = -5 \pm \sqrt{33}\]

PTS: 4 REF: 011636a2 STA: A2.A.24 TOP: Completing the Square

538 ANS:

\[y = 27.2025(1.1509)^x\]

\[y = 27.2025(1.1509)^{18} \approx 341\]

PTS: 4 REF: 011238a2 STA: A2.S.7 TOP: Regression

KEY: exponential

539 ANS:

\[\frac{3}{x} + \frac{x}{x + 2} = \frac{2}{x + 2}\]

\[\frac{x + 2}{x + 2} = \frac{3}{x}\]

\[1 = \frac{3}{x}\]

\[x = -3\]

PTS: 4 REF: 061537a2 STA: A2.A.23 TOP: Solving Rationals

KEY: rational solutions
\[
\frac{13}{x} = 10 - x
\]
\[
\cdot x = \frac{10 \pm \sqrt{100 - 4(1)(13)}}{2(1)} = \frac{10 \pm \sqrt{48}}{2} = \frac{10 \pm 4\sqrt{3}}{2} = 5 \pm 2\sqrt{3}
\]
\[
13 = 10x - x^2
\]
\[
x^2 - 10x + 13 = 0
\]

ANS:

\[
\frac{13}{x} = 10 - x
\]
\[
\cdot x = \frac{10 \pm \sqrt{100 - 4(1)(13)}}{2(1)} = \frac{10 \pm \sqrt{48}}{2} = \frac{10 \pm 4\sqrt{3}}{2} = 5 \pm 2\sqrt{3}
\]
\[
13 = 10x - x^2
\]
\[
x^2 - 10x + 13 = 0
\]

PTS: 4 **REF: 061336a2** **STA: A2.A.23** **TOP: Solving Rationals** **KEY: irrational and complex solutions**

ANS:

No. TENNESSEE: \[\frac{9P_9}{4! \cdot 2! \cdot 2!} = \frac{362,880}{96} = 3,780.\] VERMONT: \[\gamma = P_7 = 5,040\]

PTS: 4 **REF: 061038a2** **STA: A2.S.10** **TOP: Permutations**

ANS:

\[
\frac{\sin 32^\circ}{\sin B} = \frac{10}{12}
\]
\[
\cdot C \approx 180 - (32 + 26.2) \approx 121.8.
\]
\[
\frac{12}{\sin 32^\circ} = \frac{c}{\sin 121.8^\circ}
\]
\[
B = \sin^{-1} \left(\frac{12 \sin 32^\circ}{12} \right) \approx 26.2.
\]
\[
c = \frac{12 \sin 121.8^\circ}{\sin 32^\circ} \approx 19.2
\]

PTS: 4 **REF: 011137a2** **STA: A2.A.73** **TOP: Law of Sines** **KEY: basic**

ANS:

\[
y = 2.001x^{2.298}, 1,009.
\]
\[
y = 2.001(15)^{2.298} \approx 1009
\]

PTS: 4 **REF: fall0938a2** **STA: A2.S.7** **TOP: Power Regression**

ANS:

\[
3 \pm \sqrt{7}.
\]
\[
2x^2 - 12x + 4 = 0
\]
\[
x^2 - 6x + 2 = 0
\]
\[
x^2 - 6x = -2
\]
\[
x^2 - 6x + 9 = -2 + 9
\]
\[
(x - 3)^2 = 7
\]
\[
x - 3 = \pm \sqrt{7}
\]
\[
x = 3 \pm \sqrt{7}
\]

PTS: 4 **REF: fall0936a2** **STA: A2.A.24** **TOP: Solving Quadratics** **KEY: completing the square**
\[
\frac{1 + \frac{3}{x}}{1 - \frac{5}{x} - \frac{24}{x^2}} \cdot \frac{x^2}{x^2} = \frac{x^2 + 3x}{x^2 - 5x - 24} = \frac{x(x + 3)}{(x - 8)(x + 3)} \cdot \frac{x}{x - 8}
\]

PTS: 4 **REF:** 061436a2 **STA:** A2.A.17 **TOP:** Complex Fractions

\[
\frac{1}{3} \frac{1}{x + 3} - \frac{2}{3 - x} = \frac{4}{x^2 - 9}
\]

\[
\frac{1}{x + 3} + \frac{2}{x - 3} = \frac{4}{x^2 - 9}
\]

\[
\frac{x - 3 + 2(x + 3)}{(x + 3)(x - 3)} = \frac{4}{(x + 3)(x - 3)}
\]

\[
x - 3 + 2x + 6 = 4
\]

\[
3x = 1
\]

\[
x = \frac{1}{3}
\]

PTS: 4 **REF:** 081036a2 **STA:** A2.A.23 **TOP:** Solving Rationals

KEY: rational solutions

\[
\frac{100}{\sin 32} = \frac{b}{\sin 105}, \quad \frac{100}{\sin 32} = \frac{a}{\sin 43}
\]

\[
b \approx 182.3 \quad a \approx 128.7
\]

PTS: 4 **REF:** 011338a2 **STA:** A2.A.73 **TOP:** Law of Sines

KEY: basic

\[
s C_0 \cdot 0.57^0 \cdot 0.43^5 + s C_1 \cdot 0.57^1 \cdot 0.43^4 + s C_2 \cdot 0.57^2 \cdot 0.43^3 \approx 0.37
\]

PTS: 4 **REF:** 061438a2 **STA:** A2.S.15 **TOP:** Binomial Probability

KEY: at least or at most

\[
s \sigma = 14.9. \quad x = 40. \quad \text{There are 8 scores between 25.1 and 54.9.}
\]

PTS: 4 **REF:** 061237a2 **STA:** A2.S.4 **TOP:** Dispersion

KEY: advanced

\[
a_2 = 3(2)^{-2} = \frac{3}{4} \quad a_3 = 3\left(\frac{3}{4}\right)^{-2} = \frac{16}{3} \quad a_4 = 3\left(\frac{16}{3}\right)^{-2} = \frac{27}{256}
\]

PTS: 4 **REF:** 011537a2 **STA:** A2.A.33 **TOP:** Sequences
ANS:
\[
88. \quad \frac{100}{\sin 33} = \frac{x}{\sin 32} \cdot \sin 66 \approx \frac{T}{97.3}
\]
\[
x \approx 97.3 \quad t \approx 88
\]

PTS: 4
REF: 011236a2
STA: A2.A.73
TOP: Law of Sines
KEY: advanced

ANS:
\[
|3x - 5| < x + 17 \quad 3x - 5 < x + 17 \quad \text{and} \quad 3x - 5 > -x - 17 \quad -3 < x < 11
\]
\[
2x < 22 \quad 4x > -12
\]
\[
x < 11 \quad x > -3
\]

PTS: 4
REF: 081538a2
STA: A2.A.1
TOP: Absolute Value Inequalities

ANS:
\[
83^\circ 50' \cdot \frac{\pi}{180} \approx 1.463 \text{ radians} \quad s = \theta r = 1.463 \cdot 12 \approx 17.6
\]

PTS: 2
REF: 011435a2
STA: A2.A.61
TOP: Arc Length
KEY: arc length

ANS:
\[
-3|6 - x| < -15
\]
\[
|6 - x| > 5
\]
\[
6 - x > 5 \quad \text{or} \quad 6 - x < -5
\]
\[
1 > x \quad \text{or} \quad 11 < x
\]

PTS: 2
REF: 061137a2
STA: A2.A.1
TOP: Absolute Value Inequalities
KEY: graph

ANS:
\[
\begin{align*}
_5 C_4 \cdot 0.28^4 \cdot 0.72^1 + _5 C_5 \cdot 0.28^5 \cdot 0.72^0 & \approx 0.024
\end{align*}
\]

PTS: 4
REF: 011437a2
STA: A2.S.15
TOP: Binomial Probability
KEY: at least or at most

ANS:
\[
a = \sqrt{8^2 + 11^2 - 2(8)(11)\cos 82} \approx 12.67. \quad \text{The angle opposite the shortest side:} \quad \frac{8}{\sin x} = \frac{12.67}{\sin 82}
\]
\[
x \approx 38.7
\]

PTS: 4
REF: 081536a2
STA: A2.A.73
TOP: Law of Cosines
KEY: advanced
557 ANS:
\[28^2 = 7^2 + 34^2 - 2(7)(34)\cos A\]
\[784 = 3365 - 3196\cos A\]
\[-2581 = -3196\cos A\]
\[\frac{2581}{3196} = \cos A\]
\[36 \approx A\]

PTS: 4
REF: 061536a2
STA: A2.A.73
TOP: Law of Cosines
KEY: find angle

558 ANS:
\[\frac{23}{2}\cos^2 B + \sin^2 B = 1\]
\[\tan B = \frac{\sin B}{\cos B} = \frac{\frac{5}{\sqrt{41}}}{\frac{4}{\sqrt{41}}} = \frac{5}{4}\]
\[\tan(A + B) = \frac{\frac{2}{3} + \frac{5}{4}}{1 - \left(\frac{2}{3}\right)\left(\frac{5}{4}\right)} = \frac{8 + 15}{12 - 10} = \frac{23}{2}\]
\[\cos^2 B + \left(\frac{5}{\sqrt{41}}\right)^2 = 1\]
\[\cos^2 B + \frac{25}{41} = \frac{41}{41}\]
\[\cos^2 B = \frac{16}{41}\]
\[\cos B = \frac{4}{\sqrt{41}}\]

PTS: 4
REF: 081037a2
STA: A2.A.76
TOP: Angle Sum and Difference Identities
KEY: evaluating

559 ANS:
\[32x^5 - 80x^4 + 80x^3 - 40x^2 + 10x - 1 = 5C_0(2x)^5(-1)^0 = 32x^5\cdot_5C_0(2x)^4(-1)^1 = -80x^4\cdot_5C_1(2x)^3(-1)^2 = 80x^3\cdot_5C_2(2x)^2(-1)^3 = -40x^2\cdot_5C_3(2x)^1(-1)^4 = 10x\cdot_5C_4(2x)^0(-1)^5 = -1\]

PTS: 4
REF: 011136a2
STA: A2.A.36
TOP: Binomial Expansions

560 ANS:
\[0.167 \cdot 10C_8 \cdot 0.6^8 \cdot 0.4^2 + 10C_9 \cdot 0.6^9 \cdot 0.4^1 + 10C_{10} \cdot 0.6^{10} \cdot 0.4^0 \approx 0.167\]

PTS: 4
REF: 061036a2
STA: A2.S.15
TOP: Binomial Probability
KEY: at least or at most
\[y = 2.19(3.23)^x \]
\[426.21 = 2.19(3.23)^x \]
\[\frac{426.21}{2.19} = (3.23)^x \]
\[\log \frac{426.21}{2.19} = x \log(3.23) \]
\[\frac{\log 426.21}{\log(3.23)} = x \]
\[x \approx 4.5 \]

PTS: 4 REF: 011637a2 STA: A2.S.7 TOP: Exponential Regression

\[\sigma_x \approx 6.2. \text{ 6 scores are within a population standard deviation of the mean.} \quad Q_3 - Q_1 = 41 - 37 = 4 \]
\[\bar{x} \approx 38.2 \]

PTS: 4 REF: 061338a2 STA: A2.S.4 TOP: Dispersion KEY: advanced

\[26.2\% \cdot 10 \cdot C_8 \cdot 0.65^8 \cdot 0.35^2 + 10 \cdot C_9 \cdot 0.65^9 \cdot 0.35^1 + 10 \cdot C_{10} \cdot 0.65^{10} \cdot 0.35^0 \approx 0.262 \]

PTS: 4 REF: 081038a2 STA: A2.S.15 TOP: Binomial Probability KEY: at least or at most

\[y = 733.646(0.786)^x \quad 733.646(0.786)^{12} \approx 41 \]

PTS: 4 REF: 011536a2 STA: A2.S.7 TOP: Regression KEY: exponential

\[x^2(2x - 1) - 4(2x - 1) = 0 \]
\[(x^2 - 4)(2x - 1) = 0 \]
\[(x + 2)(x - 2)(2x - 1) = 0 \]
\[x = \pm 2, \quad \frac{1}{2} \]

PTS: 4 REF: 081537a2 STA: A2.A.26 TOP: Solving Polynomial Equations
\[\frac{51}{243} \cdot C_3^1 \left(\frac{1}{3} \right)^3 \left(\frac{2}{3} \right)^2 = \frac{40}{243} \]
\[\frac{10}{243} \cdot C_4^1 \left(\frac{1}{3} \right)^4 \left(\frac{2}{3} \right)^1 \]
\[\frac{1}{243} \cdot C_5^0 \left(\frac{1}{3} \right)^5 \left(\frac{2}{3} \right)^0 \]

KEY: at least or at most

\[\frac{27}{\sin 75} = \frac{F_1}{\sin 60} \cdot \frac{27}{\sin 75} = \frac{F_2}{\sin 45} \cdot \]
\[F_1 \approx 24 \quad F_2 \approx 20 \]

PTS: 4 REF: 061238a2 STA: A2.A.73 TOP: Vectors

\[5.17 \pm 84.46 \]
\[79.29 - 89.63 \]
\[5 + 7 + 5 = 17 \]

PTS: 4 REF: 061538a2 STA: A2.S.4 TOP: Dispersion
KEY: advanced, group frequency distributions

\[\frac{-(x^2 - 4)}{(x + 4)(x + 3)} \times \frac{x + 3}{2(x - 2)} = \frac{-(x + 2)(x - 2)}{x + 4} \times \frac{1}{2(x - 2)} = \frac{-(x + 2)}{2(x + 4)} \]

PTS: 4 REF: 061236a2 STA: A2.A.17 TOP: Complex Fractions
570 ANS:
0, 60, 180, 300.

\[
\sin 2\theta = \sin \theta \\
\sin 2\theta - \sin \theta = 0 \\
2 \sin \theta \cos \theta - \sin \theta = 0 \\
\sin \theta (2 \cos \theta - 1) = 0 \\
\sin \theta = 0 \quad 2 \cos \theta - 1 = 0 \\
\theta = 0, 180^\circ \quad \cos \theta = \frac{1}{2} \\
\theta = 60^\circ, 300^\circ
\]

PTS: 4 REF: 061037a2 STA: A2.A.68 TOP: Trigonometric Equations
KEY: double angle identities
Algebra 2/Trigonometry 6 Point Regents Exam Questions
Answer Section

571 ANS:

\[
81^{x^3 + 2x^2} = 27^{\frac{5x}{3}}
\]

\[
\left(3^4\right)^{x^3 + 2x^2} = \left(3^3\right)^{\frac{5x}{3}}
\]

\[
3^{4x^3 + 8x^2} = 3^{5x}
\]

\[
4x^3 + 8x^2 - 5x = 0
\]

\[
x(4x^2 + 8x - 5) = 0
\]

\[
x(2x - 1)(2x + 5) = 0
\]

\[
x = 0, \frac{1}{2}, -\frac{5}{2}
\]

PTS: 6 REF: 061239a2 STA: A2.A.27 TOP: Exponential Equations
KEY: common base not shown

572 ANS:

\[
R = \sqrt{28^2 + 40^2 - 2(28)(40)\cos 115} \approx 58 \quad \frac{58}{\sin 115} = \frac{40}{\sin x}
\]

\[
x \approx 39
\]

PTS: 6 REF: 061439a2 STA: A2.A.73 TOP: Vectors

573 ANS:

33. \(a = \sqrt{10^2 + 6^2 - 2(10)(6)\cos 80} \approx 10.7 \). \(\angle C \) is opposite the shortest side. \(\frac{6}{\sin C} = \frac{10.7}{\sin 80} \)

\[
C \approx 33
\]

KEY: advanced

574 ANS:

\[
(x + 14)(x + 22) = 800 \quad x = \frac{-36 \pm \sqrt{(-36)^2 - 4(1)(-492)}}{2(1)} = \frac{-36 \pm \sqrt{3264}}{2} \approx 10.6 \quad 10 \text{ feet increase.}
\]

\[
x^2 + 36x + 308 = 800
\]

\[
x^2 + 36x - 492 = 0
\]

PTS: 6 REF: 011539a2 STA: A2.A.25 TOP: Solving Quadratics
KEY: quadratic formula
575 ANS:

\[
\log_2 \left(\frac{x^2 - 7x + 12}{2x - 10} \right) = 3 \]

\[
x = \frac{23 \pm \sqrt{(-23)^2 - 4(1)(92)}}{2(1)} \approx 17.84, 5.16
\]

\[
\frac{x^2 - 7x + 12}{2x - 10} = 8
\]

\[
x^2 - 7x + 12 = 16x - 80
\]

\[
x^2 - 23x + 92 = 0
\]

PTS: 6 REF: 081539a2 STA: A2.A.28 TOP: Logarithmic Equations

KEY: applying properties of logarithms

576 ANS:

\[
\log_{x+3} (2x + 3)(x + 5) = 2
\]

\(-6 \) is extraneous

\[
(x + 3)^2 = (2x + 3)(x + 5)
\]

\[
x^2 + 6x + 9 = 2x^2 + 13x + 15
\]

\[
x^2 + 7x + 6 = 0
\]

\[
(x + 6)(x + 1) = 0
\]

\[
x = -1
\]

KEY: applying properties of logarithms

577 ANS:

\[
\ln(T - T_0) = -kt + 4.718 \quad \ln(T - 68) = 0.104(10) + 4.718.
\]

\[
\ln(150 - 68) = -k \approx 4.718 \quad \ln(T - 68) = 3.678
\]

\[
4.407 \approx -3k + 4.718 \quad T - 68 \approx 39.6
\]

\[
k \approx 0.104 \quad T \approx 108
\]

KEY: advanced
\[\sqrt{x^2 + x - 1} = -4x + 3 \quad -4\left(\frac{2}{3}\right) + 3 \geq 0 \]
\[x^2 + x - 1 = 16x^2 - 24x + 9 \]
\[0 = 15x^2 - 25x + 10 \quad \frac{1}{3} \geq 0 \]
\[0 = 3x^2 - 5x + 2 \quad -4(1) + 3 < 0 \]
\[0 = (3x - 2)(x - 1) \quad \text{1 is extraneuos} \]
\[x = \frac{2}{3}, \ x \neq 1 \]

PTS: 6 \quad REF: 011339a2 \quad STA: A2.A.22 \quad TOP: Solving Radicals

KEY: extraneous solutions

\[x^4 + 4x^3 + 4x^2 + 16x = 0 \]
\[x(x^3 + 4x^2 + 4x + 16) = 0 \]
\[x(x^2(x + 4) + 4(x + 4)) = 0 \]
\[x(x^2 + 4)(x + 4) = 0 \]
\[x = 0, \pm 2i, -4 \]

PTS: 6 \quad REF: 061339a2 \quad STA: A2.A.26 \quad TOP: Solving Polynomial Equations

\[r^2 = 25^2 + 85^2 - 2(25)(85) \cos 125. \]
\[r^2 \approx 10287.7 \]
\[r \approx 101.43 \]

\[\frac{2.5}{\sin x} = \frac{101.43}{\sin 125} \]
\[x \approx 12 \]

PTS: 6 \quad REF: fall0939a2 \quad STA: A2.A.73 \quad TOP: Vectors
\[\frac{16}{\sin A} = \frac{15}{\sin 40} \quad \frac{10}{\sin 50} = \frac{12}{\sin C} \quad \frac{d}{\sin 63.2} = \frac{12}{\sin 66.8} \]

\[\sin A = \frac{16 \sin 40}{15} \quad \sin C = \frac{12 \sin 50}{10} \quad d = \frac{12 \sin 63.2}{\sin 66.8} \]

\[A \approx 43.3 \quad C \approx 66.8 \quad d \approx 11.7 \]

PTS: 6
REF: 011639a2
STA: A2.A.73
TOP: Law of Sines
KEY: advanced

\[y = x + 5 \quad 4x^2 + 17x - 4 = x + 5 \]

\[y = 4x^2 + 17x - 4 \quad 4x^2 + 16x - 9 = 0 \]

\[(2x + 9)(2x - 1) = 0 \]

\[x = -\frac{9}{2} \quad \text{and} \quad x = \frac{1}{2} \]

\[y = -\frac{9}{2} + 5 = \frac{1}{2} \quad \text{and} \quad y = \frac{1}{2} + 5 = \frac{11}{2} \]

PTS: 6
REF: 061139a2
STA: A2.A.3
TOP: Quadratic-Linear Systems
KEY: algebraically

\[\frac{-2(x^2 + 6)}{x^4} \cdot \frac{x^2(x - 3) + 6(x - 3)}{x^2 - 4x} \cdot \frac{2x - 4}{x^4 - 3x^3} \cdot \frac{x^2 + 2x - 8}{16 - x^2} \]

\[\frac{(x^2 + 6)(x - 3)}{x(x - 4)} \cdot \frac{2(x - 2)}{x^3(x - 3)} \cdot \frac{4 + x)(4 - x)}{(x + 4)(x - 2)} \]

\[\frac{-2(x^2 + 6)}{x^4} \]

PTS: 6
REF: 011239a2
STA: A2.A.16
TOP: Multiplication and Division of Rationals
KEY: division
584 ANS:
\[5 \cos \theta - 2 \sec \theta + 3 = 0\]
\[5 \cos \theta - \frac{2}{\cos \theta} + 3 = 0\]
\[5 \cos^2 \theta + 3 \cos \theta - 2 = 0\]
\[(5 \cos \theta - 2)(\cos \theta + 1) = 0\]
\[\cos \theta = \frac{2}{5}, -1\]
\[\theta \approx 66.4, 293.6, 180\]

PTS: 6 REF: 061539a2 STA: A2.A.68 TOP: Trigonometric Equations
KEY: reciprocal functions

585 ANS:
\[x = \frac{-1}{3}, -1\]
\[\log_{x+3} \frac{x^3 + x - 2}{x} = 2\]
\[\frac{x^3 + x - 2}{x} = (x + 3)^2\]
\[\frac{x^3 + x - 2}{x} = x^2 + 6x + 9\]
\[x^3 + x - 2 = x^3 + 6x^2 + 9x\]
\[0 = 6x^2 + 8x + 2\]
\[0 = 3x^2 + 4x + 1\]
\[0 = (3x + 1)(x + 1)\]
\[x = \frac{-1}{3}, -1\]

KEY: basic