F – Inequalities, Lesson 1, Solving Linear Inequalities (r. 2018)

INEQUALITIES Solving Linear Inequalities

Common Core Standard	Next Generation Standard
A-REI.B.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	 AI-A.REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. Note: Algebra I tasks do not involve solving compound inequalities.

NOTE: This lesson is closely related to, and builds upon, Expressions and Equations, Lesson 3, Solving Linear Equations.

LEARNING OBJECTIVES

Students will be able to:

- 1) Solve one step and multiple step inequalities.
- 2) Explain each step involved in solving one step and multiple step inequalities.
- 3) Do a check to see if the solution is correct.

	Overview of Lesson		
Teacher Centered Introduction	Student Centered Activities		
Overview of Lesson	guided practice { Teacher: anticipates, monitors, selects, sequences, and connects student work		
- activate students' prior knowledge	developing acceptial shills		
- vocabulary	- developing essential skills		
- learning objective(s)	- Regents exam questions		
- big ideas: direct instruction	- formative assessment assignment (exit slip, explain the math, or journal entry)		
- modeling			

VOCABULARY

big rule of inequalities equality four column strategy four general rules greater than greater than or equal to inequality inequality sign less than less than or equal to not equal to solution set

BIG IDEAS

The Big Rule for Solving Inequalities:

All the rules for solving equations apply to inequalities – plus one: <u>When an inequality is multiplied or divided by any negative number, the direction of the</u> <u>inequality sign changes.</u>

Overview of Lesson

Inequality Symbols:

- < less than > greater than
- \leq less than or equal to \geq greater than or equal to
- \neq not equal to

The <u>solution of an inequality</u> includes any values that make the inequality true. Solutions to inequalities can be graphed on a number line using open and closed dots.

Checking Solutions to Inequalities

To check the **solution** to an **inequality**, replace the **variable** in the inequality with a value in the solution set. If the value selected is a correct solution, the simplified inequality will produce a true statement. NOTE: The value selected *must* be in the solution set.

DEVELOPING ESSENTIAL SKILLS

Notes	Left Hand Expression	Sign	Right Hand Expression	
Given	$\frac{4 + \frac{2}{5}x}{4 + \frac{2}{5}x}$	>	3+x	
Multiply by 5	20 + 2x	>	15 + 5x	
Subtract 2x	20	>	15+3x	
Subtract 15	5	>	3x	
Divide by 3	$\frac{5}{\frac{5}{3}}$	>	Х	
	3			
Check	Select $\frac{4}{3}$, which is less than $\frac{5}{3}$, to test the solution.			
	$4 + \frac{2}{5}x > 3 + x$			
	$4 + \frac{2}{5}\left(\frac{4}{3}\right) > 3 + \left(\frac{4}{3}\right)$			
	$4 + \frac{8}{15} > 3 + \frac{20}{15}$			
	$\frac{60}{15} + \frac{8}{15} > \frac{45}{15} + \frac{20}{15}$			
	$\frac{68}{15} > \frac{65}{15} true$			

REGENTS EXAM QUESTIONS (through June 2018)

A.REI.B.3: Solving Linear Inequalities

138) The inequality $7 - \frac{2}{3}x < x - 8$ is equivalent to 1) x > 0

1) x > 92) $x > -\frac{3}{5}$ 3) x < 94) $x < -\frac{3}{5}$

139) Given that a > b, solve for x in terms of a and b: $b(x-3) \ge ax+7b$

140) When $3x + 2 \le 5(x - 4)$ is solved for x, the solution is

1) $x \le 3$ 3)	$x \leq -11$
2) $x \ge 3$ 4)	$x \ge 11$

141) What is the solution to 2h + 8 > 3h - 6? 1) h < 142) $h < \frac{14}{5}$

142) Solve the inequality below:

$$1.8 - 0.4y \ge 2.2 - 2y$$

3) h > 144) $h > \frac{14}{5}$

143) What is the solution to the inequality $2 + \frac{4}{9}x \ge 4 + x$?

1)	$x \le -\frac{18}{5}$	3) $x \le \frac{54}{5}$	ł
2)	$x \ge -\frac{18}{5}$	4) $x \ge \frac{54}{5}$	ł

144) The solution to 4p + 2 < 2(p + 5) is

1)	p > -6	3)	p > 4
2)	p < -6	4)	p < 4

SOLUTIONS

- 138) ANS: 1
 - Strategy: Use the four column method for solving and documenting an equation or inequality.

Notes	Left Expression	Sign	Right Expression
Given:	$7 - \frac{2}{3}x$	<	x - 8
Add +8 to both expressions (Addition property of equality)	$15 - \frac{2}{3}x$	<	x
Add $+\frac{2}{3}x$ to both expressions (Addition property of equality)	15	<	$x + \frac{2}{3}x$
Simplify	15	<	$\frac{5}{3}x$

Divide both expressions by $\frac{5}{3}$ (Division property of equality)	$\frac{\frac{15}{1}}{\frac{5}{3}}$	<	$\frac{\frac{5}{3}x}{\frac{5}{3}}$
Simplify	9	<	х
Rewrite	Х	>	9

PTS: 2

NAT: A.REI.B.3 TOP: Solving Linear Inequalities

139) ANS:

 $x \leq \frac{10b}{b-a}$

Strategy: Use the four column method. Remember that a > b.

Notes	Left Expression	Sign	Right Expression
Given	b(x-3)	≥	ax + 7b
Distributive Property	bx - 3b	N	ax + 7b
Transpose	bx – ax	\geq	10b
Factor	$\overline{x(b-a)}$	\geq	10 <i>b</i>
Divide by $(b - a)$	x	N	105
		See	$\overline{b-a}$
		NOTE	
		below	

NOTE: Since a > b, the expression (b - a) must be a negative number. When dividing an inequality by a negative number, the direction of the inequality sign must be reversed.

PTS: 2 NAT: A.REI.B.3 **TOP:** Solving Linear Inequalities 140) ANS: 4 $3x + 2 \le 5(x - 4)$ $3x + 2 \le 5x - 20$ $2 + 20 \le 5x - 3x$ $22 \le 2x$ $11 \le x$ $x \ge 11$ PTS: 2 NAT: A.REI.B.3 TOP: Solving Linear Inequalities 141) ANS: 1 2h + 8 > 3h - 62h + 14 > 3h

14 > h

142)	PTS: 2 ANS: $y \ge \frac{1}{4}$	NAT: A.RE	I.B.3
	Given	$1.8 - 0.4y \ge$	2.2 – 2y

Add (2y)	+2 y		+	-2y
Simplify	1.8 + 1.бу	N	2.2	
Subtract (1.8)	-1.8		-1.8	
Simplify		N	0.4	
	1.бу			
Divide (1.6)		N	0.4	
	1.6у		1.6	
	1.6			
Simplify			1	
		\geq	4	
	У			

 $1.8 - 0.4y \ge 2.2 - 2y$

 $1.6y \ge 0.4$

 $y \ge 0.25$

PTS: 2 NAT: A.REI.B.3

TOP: Solving Linear Inequalities

143) ANS: 1

 $2 + \frac{4}{9} x \ge 4 + x$ $18 + 4x \ge 36 + 9x$ $-5x \ge 18$ $x \le \frac{18}{-5}$ $x \le -\frac{18}{5}$

Remember to change the direction of the inequality sign when multiplying or dividing by a negative number.

PTS: 2 NAT: A.REI.B.3 TOP: Solving Linear Inequalities

144) ANS: 4

Strategy: Use order of operations.				
Notes	Left Expression	Sign	Right Expression	
Given	4p + 2	<	2(p+5)	
Divide by 2	2p + 1	<	p+5	
Subtract p	p+1	<	5	
Subtract 1	р	<	4	

PTS: 2

NAT: A.REI.B.3

TOP: Solving Linear Inequalities