## F - Inequalities, Lesson 2, Interpreting Solutions (r. 2018)

INEQUALITIES
Interpreting Solutions

## Common Core Standard

A-REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Next Generation Standard
AI-A.REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
Note: Algebra I tasks do not involve solving compound inequalities.

## LEARNING OBJECTIVES

Students will be able to:

1) Identify solutions to inequalities as sets of solutions that can be plotted on a number line.
2) Use proper notation to define solution sets.
3) Identify integer values within solution sets.
4) Determine if a specified integer value is within a solution set.

| Overview of Lesson |  |
| :--- | :--- |
| Teacher Centered Introduction | Student Centered Activities |
| Overview of Lesson | guided practice \&Teacher: anticipates, monitors, selects, sequences, and <br> connects student work <br> - activate students' prior knowledge <br> - vocabulary <br> - learning objective(s) <br> - big ideas: direct instruction <br> - modeling |
| - Regents exam questions essential skills <br> - formative assessment assignment (exit slip, explain the math, or journal <br> entry) |  |


|  |  | VOCABULARY |  |
| :--- | :--- | :---: | :---: |
| integer <br> solution set | open dot <br> closed dot | curved parentheses | square parentheses |

## BIG IDEAS

## Inequality Symbols:

$<$ less than $>$ greater than
$\leq$ less than or equal to $\geq$ greater than or equal to
$\neq$ not equal to
The solution of an inequality includes any values that make the inequality true.
Solutions to inequalities can be graphed on a number line using open and closed dots.
Open Dots v Closed Dots

## Square vs Curved Parentheses



## DEVELOPING ESSENTIAL SKILLS

Solve for the smallest integer value of $x: \quad 3+\frac{2}{5} x \geq 4-6 x$

| Notes | Left Hand <br> Expression$\quad$ Si | Sign | Right Hand Expression |
| :---: | :---: | :---: | :---: |
| Given | $3+x$ | $\geq$ | 4-6x |
| Add 6x | $3+7 \mathrm{x}$ | $\geq$ | 4 |
| Subtract 3 | 7x | $\geq$ | 1 |
| Divide by 7 | X | $\geq$ | $\frac{1}{7}$ |
| Answer | 1 is the smallest integer that is in the solution set. |  |  |
| Check | 0 is less than $\frac{1}{7}$ and should not be in the solution set. $\begin{aligned} 3+x & \geq 4-6 x \\ 3+(0) & \geq 4-6(0) \\ 3 & \geq 4 \text { not true } \end{aligned}$ |  | n or equal to $\frac{1}{7}$ the solution set. $\geq 4-6 x$ <br> $\geq 4-6(1)$ <br> $4-6$ <br> $\geq-2$ true |

REGENTS EXAM QUESTIONS (through June 2018)

## A.REI.B.3: Interpreting Solutions

145) Given $2 x+a x-7>-12$, determine the largest integer value of $a$ when $x=-1$.
146) Solve the inequality below to determine and state the smallest possible value for $x$ in the solution set.

$$
3(x+3) \leq 5 x-3
$$

147) Determine the smallest integer that makes $-3 x+7-5 x<15$ true.
148) Solve for $x$ algebraically: $7 x-3(4 x-8) \leq 6 x+12-9 x$

If $x$ is a number in the interval [4,8], state all integers that satisfy the given inequality. Explain how you determined these values.
149) Which value would be a solution for $x$ in the inequality $47-4 x<7$ ?

1) -13
2) 10
3)     - 10
4) 11
5) Given the set $\{x \mid-2 \leq x \leq 2$, where $x$ is an integer $\}$, what is the solution of $-2(x-5)<10$ ?
6) $0,1,2$
7) 1,2
8) $-2,-1,0$
9) $-2,-1$

## SOLUTIONS

145) ANS:

The largest integer value for $a$ is 2 .
Strategy: Use the four column method.

| Notes | Left Expression | Sign | Right Expression |
| :---: | :---: | :---: | :---: |
| Given | $2 x+a x-7$ | $>$ | -12 |
| Substitute -1 for $x$ | $2(-1)+a(-1)-7$ | $>$ | -12 |
| Simplify | $-2-a-7$ | $>$ | -12 |
| Combine like terms | $-a-9$ | $>$ | -12 |
| Add +9 to both <br> expressions <br> (Addition property of <br> equality) | $-a$ | $>$ | -3 |
| Divide both <br> expressions by -1 <br> and reverse the sign | a | $<$ | 3 |

The largest integer value that is less the 3 is 2 .
PTS: 2 NAT: A.REI.B. 3 TOP: Solving Linear Inequalities
146) ANS:

6 is the smallest possible value for $x$ in the solution set.
Strategy: Use the four column method.

| Notes | Left Expression | Sign | Right Expression |
| :---: | :---: | :---: | :---: |
| Given | $3 x+9$ | $\leq$ | $5 x-3$ |
| Subtract 3x from <br> both expressions | 9 | $\leq$ | $2 x-3$ |


| Subtraction property <br> of equality) |  |  |  |
| :---: | :---: | :---: | :---: |
| Add +3 to both <br> expressions <br> (Addition Property of <br> equality) | 12 | $\leq$ | $2 x$ |
| Divide both <br> expressions by 2 <br> (Division property of <br> equality) | 6 | $\leq$ | $x$ |
| Rewrite | x | $\geq$ | 6 |

PTS: 2
NAT: A.REI.B. 3 TOP: Solving Linear Inequalities
147)

ANS:
0 is the smallest integer in the solution set.
Strategy: Use the four column method to solve the inequality, then interpret the solution.
STEP 1: Solve the inequality.

| Notes | Left Expression | Sign | Right Expression |
| :---: | :---: | :---: | :---: |
| Given | $-3 x+7-5 x$ | $<$ | 15 |
| Simplify (Combine <br> like terms) | $-8 x+7$ | $<$ | 15 |
| Add +8x to both <br> expressions <br> (Addition Property of <br> Equality) | 7 | $<$ | $8 \mathrm{x}+15$ |
| Subtract 15 from <br> both expressions <br> (Subtraction Property <br> of Equality) | -8 | $<$ | 8 x |
| Divide both <br> expressions by +8 <br> (Division property of <br> equality) | -1 | $<$ | x |
| Rewrite | x | $>$ | -1 |

STEP 2: Interpret the solution set for the smallest integer.
The smallest integer greater than -1 is 0 .
PTS: 2 NAT: A.REI.B. 3 TOP: Solving Linear Inequalities
148) ANS:
$6,7,8$ are the numbers greater than or equal to 6 in the interval.
Strategy: Use the four column method to solve the inequality, then interpret the solution.
STEP 1: Solve the inequality.

| Notes | Left Expression | Sign | Right Expression |
| :---: | :---: | :---: | :---: |
| Given | $7 x-3(4 x-8)$ | $\leq$ | $6 x+12-9 x$ |
| Clear parentheses | $7 x-12 x+24$ | $\leq$ | $6 x+12-9 x$ |


| (Distributive <br> property) |  |  |  |
| :---: | :---: | :---: | :---: |
| Simplify <br> (Combine like terms) | $-5 x+24$ | $\leq$ | $-3 x+12$ |
| Add 5x to both <br> expressions <br> (Addition property of <br> equality) | 24 | $\leq$ | $2 x+12$ |
| Subtract 12 from <br> both expressions <br> (Subtraction property <br> of equality) | 12 | $\leq$ | 2 x |
| Divide both <br> expressions by 2 <br> (Division property of <br> equality) | 6 | $\leq$ | x |
| Rewrite | x | $\geq$ | 6 |

STEP 2: Interpret the solution set for the interval [4, 8].
The interval $[4,8]$ contains the integers $4,5,6,7$, and 8 .
If $x \geq 6$, then the solution set of integers is $\{6,7,8\}$.
PTS: 4
NAT: A.REI.B. 3 TOP: Solving Linear Inequalities
149)

ANS: 4

$$
\begin{aligned}
47-4 x & <7 \\
-4 x & <-40
\end{aligned}
$$

Remember to change the direction of the sign when multiplying or dividing an inequality by a negative number.

$$
\begin{aligned}
& x>\frac{-40}{-4} \\
& x>10
\end{aligned}
$$

11 is the only answer choice that is greater than 10 .
PTS: 2
NAT: A.REI.B. 3 TOP: Interpreting Solutions
150)

ANS: 2
STEP 1: Solve the inequality $-2(x-5)<10$

$$
\begin{aligned}
-2(x-5) & <10 \\
\frac{-2(x-5)}{-2} & <\frac{10}{-2} \\
x-5 & >-5 \\
x & >0
\end{aligned}
$$

STEP 2: Select integers from the interval $\{x \mid-2 \leq x \leq 2$, where $x$ is an integer $\}$ that satisfy the inequality.
The integers in the interval are: $\{-2,-1,0,1,2\}$.
-2 is not greater than 0
-1 is not greater than 0
0 is not greater than 0
1 is greater than 0
2 is greater than zero.


PTS: 2
NAT: A.REI.B. 3 TOP: Interpreting Solutions

