F – Inequalities, Lesson 2, Interpreting Solutions (r. 2018)

INEQUALITIES Interpreting Solutions

Common Core Standard	Next Generation Standard
A-REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	 AI-A.REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. Note: Algebra I tasks do not involve solving compound inequalities.

LEARNING OBJECTIVES

Students will be able to:

- 1) Identify solutions to inequalities as sets of solutions that can be plotted on a number line.
- 2) Use proper notation to define solution sets.
- 3) Identify integer values within solution sets.
- 4) Determine if a specified integer value is within a solution set.

Overview of Lesson			
Teacher Centered Introduction	Student Centered Activities		
Overview of Lesson	guided practice T eacher: anticipates, monitors, selects, sequences, and connects student work		
- activate students' prior knowledge	- developing essential skills		
- vocabulary			
- learning objective(s)	- Regents exam questions		
- big ideas: direct instruction	- formative assessment assignment (exit slip, explain the math, or journal entry)		
- modeling			

VOCABULARY

integer solution set open dot closed dot curved parentheses square parentheses

number line

BIG IDEAS

Inequality Symbols:

< less than

> greater than

- \leq less than or equal to \geq greater than or equal to
- \neq not equal to

The <u>solution of an inequality</u> includes any values that make the inequality true. Solutions to inequalities can be graphed on a number line using open and closed dots.

Open Dots v Closed Dots

Square vs Curved Parentheses

DEVELOPING ESSENTIAL SKILLS

Solve for the smallest integer value of x:
$$3 + \frac{2}{5}x \ge 4 - 6x$$

Notes	Left Hand Expression	Si	gn	Right Hand Expression
Given	3+x	2	2	4 - 6x
Add 6x	3+7x		≥	4
Subtract 3	7x		<u>></u>	1
Divide by 7	Х		<u>></u>	1
				7
Answer	1 is the smallest integer that is in the solution set.		solution set.	
Check	0 is less than $\frac{1}{7}$ and s	should <i>not</i>	1 is greate	er than or equal to $\frac{1}{7}$
	be in the solution	n set.	and should	be in the solution set.
	$3 + x \ge 4 - 6x$		$3 + x \ge 4 - 6x$	
	$3+(0) \ge 4-6(0)$)	3+	$-(1) \ge 4 - 6(1)$
	$3 \ge 4$ not	true		$4 \ge 4 - 6$
				$4 \ge -2$ true

REGENTS EXAM QUESTIONS (through June 2018)

A.REI.B.3: Interpreting Solutions

- 145) Given 2x + ax 7 > -12, determine the largest integer value of a when x = -1.
- 146) Solve the inequality below to determine and state the smallest possible value for x in the solution set. $3(x+3) \le 5x-3$
- 147) Determine the smallest integer that makes -3x + 7 5x < 15 true.
- 148) Solve for x algebraically: $7x 3(4x 8) \le 6x + 12 9x$ If x is a number in the interval [4, 8], state all integers that satisfy the given inequality. Explain how you determined these values.
- 149) Which value would be a solution for x in the inequality 47 4x < 7?
 - 1) -13 3) 10 2) -10 4) 11
- 150) Given the set $\{x \mid -2 \le x \le 2, \text{ where } x \text{ is an integer}\}$, what is the solution of -2(x-5) < 10?
 - 3) -2, -1, 0 1) 0, 1, 2 4) -2, -1
 - 2) 1, 2

SOLUTIONS

145) ANS:

The largest integer value for *a* is 2. Strategy: Use the four column method

Strategy. Use the four			1
Notes	Left Expression	Sign	Right Expression
Given	2x + ax - 7	>	-12
Substitute -1 for <i>x</i>	$2(-1) + \alpha(-1) - 7$	>	-12
Simplify	-2 - a - 7	>	-12
Combine like terms	- <i>a</i> - 9	>	-12
Add +9 to both			
expressions	-a	>	-3
(Addition property of			
equality)			
Divide both			
expressions by -1	а	<	3
and reverse the sign			

The largest integer value that is less the 3 is 2.

PTS: 2 NAT: A.REI.B.3 **TOP:** Solving Linear Inequalities

146) ANS:

6 is the smallest possible value for *x* in the solution set.

Strategy: Use the four column method.	Strategy:	Use the four column	method.
---------------------------------------	-----------	---------------------	---------

Notes	Left Expression	Sign	Right Expression
Given	3 <i>x</i> + 9	VI	5x - 3
Subtract 3x from			
both expressions	9	M	2x - 3

(Subtraction property of equality)			
Add +3 to both			
expressions	12	\leq	2 <i>x</i>
(Addition Property of			
equality)			
Divide both			
expressions by 2	6	\leq	х
(Division property of			
equality)			
Rewrite	Х	\geq	6

PTS: 2 NAT: A.REI.B.3 TOP: Solving Linear Inequalities

147) ANS:

0 is the smallest integer in the solution set.

Strategy: Use the four column method to solve the inequality, then interpret the solution.

Notes	Left Expression	Sign	Right Expression
Given	-3x + 7 - 5x	<	15
Simplify (Combine	-8x + 7	<	15
like terms)			
Add $+8x$ to both			
expressions	7	<	8x+15
(Addition Property of			
Equality)			
Subtract 15 from			
both expressions	-8	<	8x
(Subtraction Property			
of Equality)			
Divide both			
expressions by +8	-1	<	Х
(Division property of			
equality)			
Rewrite	Х	>	-1

STEP 1: Solve the inequality.

STEP 2: Interpret the solution set for the smallest integer. The smallest integer greater than -1 is 0.

PTS: 2 NAT: A.REI.B.3 TOP: Solving Linear Inequalities

148) ANS:

6, 7, 8 are the numbers greater than or equal to 6 in the interval.

Strategy: Use the four column method to solve the inequality, then interpret the solution.

STEP 1: Solve the inequality.

Notes	Left Expression	Sign	Right Expression
Given	7x - 3(4x - 8)	N	6 <i>x</i> + 12 - 9 <i>x</i>
Clear parentheses			
	7x - 12x + 24	M	6x + 12 - 9x

(Distributive			
property)			
Simplify			
(Combine like terms)	-5x + 24	M	-3x + 12
Add 5x to both			
expressions	24	\leq	2 <i>x</i> + 12
(Addition property of			
equality)			
Subtract 12 from			
both expressions	12	\leq	2x
(Subtraction property			
of equality)			
Divide both			
expressions by 2	6	\leq	Х
(Division property of			
equality)			
Rewrite	Х	\geq	6

STEP 2: Interpret the solution set for the interval [4, 8]. The interval [4, 8] contains the integers 4, 5, 6, 7, and 8. If $x \ge 6$, then the solution set of integers is $\{6, 7, 8\}$.

PTS: 4 NAT: A.REI.B.3 TOP: Solving Linear Inequalities 149) ANS: 4

1)) 11(5)

$$47 - 4x < 7$$

$$-4x < -40$$

Remember to change the direction of the sign when multiplying or dividing an inequality by a negative

number.
$$x > \frac{-40}{-4}$$

11 is the only answer choice that is greater than 10.

PTS: 2 NAT: A.REI.B.3 TOP: Interpreting Solutions

150) ANS: 2

STEP 1: Solve the inequality -2(x-5) < 10

$$\frac{-2(x-5) < 10}{-2} < \frac{10}{-2}$$
$$\frac{x-5 > -5}{-2} < \frac{10}{-2}$$

STEP 2: Select integers from the interval $\{x \mid -2 \le x \le 2, \text{ where } x \text{ is an integer}\}\$ that satisfy the inequality. The integers in the interval are: $\{-2, -1, 0, 1, 2\}$.

-2 is not greater than 0

-1 is not greater than 0

0 is not greater than 0

1 is greater than 0

2 is greater than zero.

PTS: 2 NAT: A.REI.B.3 TOP: Interpreting Solutions