A.APR.D.7: Rational Inequalities

1. Which graph represents the solution set of \(\frac{x + 16}{x - 2} \leq 7\)?

 1)
 2)
 3)
 4)

2. The cost \(C \) of selling \(x \) calculators in a store is modeled by the equation \(C = \frac{3,200,000}{x} + 60,000 \). The store profit \(P \) for these sales is modeled by the equation \(P = 500x \). What is the minimum number of calculators that have to be sold for profit to be greater than cost?
A.APR.D.7: Rational Inequalities

Answer Section

1 ANS: 3

\[\frac{x + 16}{x - 2} - \frac{7(x - 2)}{x - 2} \leq 0 \]

-6x + 30 = 0 \hspace{1cm} x - 2 = 0

x = 2

\[\frac{-6x + 30}{x - 2} \leq 0 \]

x = 5

\[\frac{-6(1) + 30}{1 - 2} = \frac{24}{-1} = -24, \text{ which is less than } 0. \]

If \(x = 3 \), \[\frac{-6(3) + 30}{3 - 2} = \frac{12}{1} = 12, \text{ which is greater than } 0. \]

If \(x = 6 \), \[\frac{-6(6) + 30}{6 - 2} = \frac{-6}{4} = \frac{3}{2}, \text{ which is less than } 0. \]

REF: 011424a2

2 ANS:

\[\frac{3,200,000}{x} + 60,000 < 500x. \]

-500x + 60,000 + \(\frac{3,200,000}{x} \) < 0

x < 160 and x < 40

\[x - 120 - \frac{6,400}{x} > 0 \]

x < 160 and x < 40

or

\[x - 160 > 0 \text{ and } x + 40 > 0 \]

\[x^2 - 120x - 6400 > 0 \]

x > 160 and x > 40

\[(x - 160)(x + 40) > 0 \]

x > 160

REF: 080227b