Examination January, 1978 Ninth Year Mathematics

Elementary Algebra

PART ONE Answer all questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Write your answers in the spaces provided.

1.	If $a = 4$, find the value of a^3 .	1
2.	Factor: $x^2 + 2x - 35$	2
3.	Express in lowest terms: $\frac{x^2 - 4}{x + 2}$	3
4.	Express as a single fraction the sum of $\frac{x+1}{2}$ and $\frac{x}{3}$.	4
5.	Express $(4n - 3)(n - 1)$ as a trinomial.	5
6. hypote		6
7. the pe	One side of a square is represented by $3x + 1$. Express rimeter of the square in terms of x .	7
8.	Solve for x: $\frac{1}{3}x - 12 = 4$	8
9.	Solve for x : $.02x = 15$	9
10.	Solve for $y: 9y + 10 - 5y = 12$	10
11.	Solve the system of equations for y: 2y + x = 8 y + x = 5	11

1

12. Solve for x in terms of a and $b: ax - b = 0$	12
13. If $\cos A = .8155$, find angle A to the nearest degree.	13
14. Solve for the positive value of x : $x^2 - 16 = 0$	14
15. A point on the graph of $y = 2x - 4$ has an x-coordinate of 3. Find the y-coordinate of this point.	ate 15
16. A ship sails r miles the first day, s miles the second data and t miles the third day. Express, in terms of r , s , and t , the average daily mileage of the ship.	
17. A freight train can travel 112 miles in 4 hours. At t same rate, how far can it travel in 6 hours?	he 17
18. A team played 54 games. If the team won 6 more games than it lost, how many games did the team lose?	18
19. Find the value of $\sqrt{62}$ to the <i>nearest tenth</i> .	19
20. What is the numerical value of $ 7 - -3 $?	20
21. If 40% of a number is 250, find the number.	21

DIRECTIONS (22-30): Write in the space provided the numeral preceding the expression that best completes each statement or answers each question.

22. The expression $\frac{8x^8}{4x^4}$ is equivalent to (1) $2x^2$ (2) $4x^2$ (3) $2x^4$ (4) $4x^4$ 22_____ 23. Which fraction is equivalent to $-2\frac{1}{4}$?

(1)
$$\frac{-9}{4}$$
 (2) $\frac{-7}{4}$ (3) $\frac{-7}{-4}$ (4) $\frac{-9}{-4}$ 23_

24. Which is true of the graph of x = -3?

(1) It has a slope of -3.

(2) It passes through the origin.

(3) It is parallel to the x-axis.

(4) It is parallel to the y-axis.

24____

25. Which is a member of the solution set of 8x - 4 > 20? (1) 1(2) 2 (3) 3 (4) 4 25_{-} 26. The sum of $\sqrt{27}$ and $\sqrt{12}$ is (2) $\sqrt{39}$ (3) $13\sqrt{3}$ (4) $5\sqrt{6}$ (1) $5\sqrt{3}$ 26 27. Which is not a member of the solution set of the equation 3x - 2y = 4? $(2) (-2, -5) \quad (3) (4, 4)$ (1) $(3.2\frac{1}{2})$ 27 (4) (-2,0)The set of rational numbers is a subset of the set of 28. (3) real numbers (1) integers (2) irrational numbers (4) whole numbers 28_ 29. If $\frac{3}{x}$ is subtracted from $\frac{4}{x}$, the result is (2) $\frac{7}{r}$ (3) $-\frac{1}{r}$ (4) $\frac{1}{r}$ 29____ (1) 130. The equation 3(2x + 1) = 6x + 3 is an illustration of the (1) associative property of addition (2) distributive property of multiplication over addition

- (3) commutative property of multiplication
- (4) commutative property of addition

PART TWO Answer four questions from this part. Show all work unless otherwise directed.

- **31.** Answer *either a* or *b* but *not* both.
- Solve graphically and check: a

$$\begin{array}{l} 2x - y = 10 \\ x + 2y = 10 \end{array} \quad [8,2]$$

b Graph the following system of inequalities and label the solution set S:

y > -3x + 6[8,2] $u \leq 2x - 4$

3

<u> 30</u> -

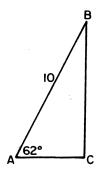
32. Answer both a and b.

a Express as a fraction in lowest terms:

$$\frac{x+y}{11} - \frac{2x+4y}{22}$$
 [5]

b Express as a fraction in lowest terms:

$$\frac{y^2 - 9}{2y + 6} \div \frac{y - 3}{y + 2} \qquad [5]$$


33. An office worker paid \$10.30 for 90 postage stamps. If some were 13¢ stamps and the rest were 9¢ stamps, how many of each kind were purchased? [Only an algebraic solution will be accepted.] [5,5]

34. Write an equation or system of equations that can be used to solve *each* of the following problems. In *each* case state what the variable or variables represent. [Solution of the equations is not required.]

- a Two men start from the same place at the same time. One travels due north at a rate of 50 miles per hour and the other travels due south at a rate of 55 miles per hour. In how many hours will they be 315 miles apart? [5]
- b One bricklayer takes twice as long as a second bricklayer to build a certain wall. Together they can build the wall in 6 hours. How long would it take each bricklayer to build the wall alone? [5]

35. The sum of a positive number and the square of its additive inverse is 30. What is the number? [Only an algebraic solution will be accepted.] [5,5]

36. The right triangle shown in the accompanying figure has hypotenuse AB = 10 and angle $A = 62^{\circ}$.

a Find AC to the nearest tenth. [5]

b Find BC to the nearest integer. [5]

37. Write the letters a through e on your answer paper and after *each* letter write the answer to the corresponding question below. [10]

- a What is the additive identity element for the set of real numbers?
- b If y is an integer, what is the solution set of |y| = 5?
- c What is the smallest positive integer?
- d What is the multiplicative inverse of 7?
- e For what value of w is $\frac{7}{8-w}$ undefined?