

If this were an open ended question, algebraic work similar to this is required for full credit: $y = x^3 - 2$		
$x = y^3 - 2$		
$x + 2 = y^3$		
$\sqrt[3]{x+2} = y$		
Another graphical approach identifies the inverse as a reflection over the line $y = x$.		
If $f(x) = a^x$ where $a > 1$, then the inverse of the function is		
(1) $f^{-1}(x) = \log_x a$ (3) $f^{-1}(x) = \log_a x$		
(2) $f^{-1}(x) = a \log x$ (4) $f^{-1}(x) = a \log x$	$f(x) = x \log a \qquad 011917aii$	
		• 🚺 🗙
Add a Calquistor raga		.10
Add a Calculator page.	Define $f(x) = a^x$ Do	one
Enter 2.1 ctrl sto \rightarrow var <i>a</i> to store a value for $a > 1$.	Define $fI(x) = \log_{x}(a)$ Do	one
Enter menu 1, 1 to define the five functions in the question.	Define $f^2(x) = a \cdot \log (x)$ Do	one
	Define $f3(x) = \log_{a}(x)$ Do	one
		-
	1.1 1.2 ▶ *Doc RAL 6.67 ∱y	□ 🗌 🗙
Add a Graphs page.		
Enter the five functions, setting them equal to y. Also enter	$\nu = \mathbf{f3}(x)$	
the equation $y = x$.	$\mathcal{V}=\mathbf{f}(\mathbf{x})$	×
(3) is the correct response, as it represents a reflection of f	-10	10
over the line $y = x$.	$\frac{\gamma = x}{\gamma = \mathbf{f4}(x)}$	
	y = f2(x) $y = f1(x)$	
If this were an open ended question, algebraic work similar to this is required for full credit:		
$x = a^{\gamma}$		
$\log x = \log a^{y}$		
$\log x = y \log a$		
$\frac{\log x}{\log a} = y$		
$\log \frac{d}{dx}$		
For more questions, go to https://www.jmap.org/htmlstandard/F.BF.B.4.htm.		
T OF MOTE QUESTIONS, go to https://www.jmap.org/numstanuaru/T.DF.D.4.Inni.		