F.IF.C.7: Graphing Logarithmic Functions 2

1 For which value of x is $y = \log x$ undefined?

1) 0

3) π

2) $\frac{1}{10}$

4) 1.483

2 The graph of $y = \log x$ lies in Quadrant(s)

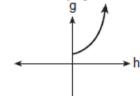
1) I and II

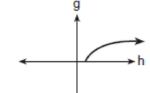
3) III and IV

2) II and III

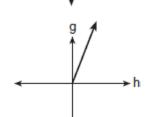
4) I and IV

3 In which function is the range equal to the domain?


1) $y = 2^x$

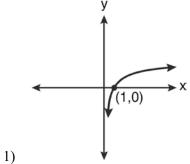

3) $y = \log x$

2) $y = x^2$

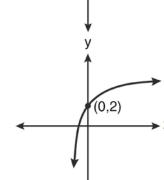

4) y = x

4 The cells of a particular organism increase logarithmically. If g represents cell growth and h represents time, in hours, which graph best represents the growth pattern of the cells of this organism?

1)


3)

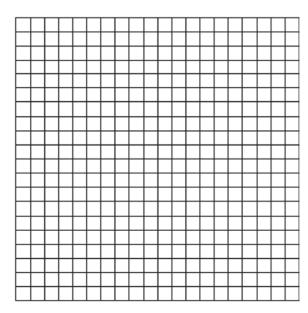
2)


2)

5 Which graph represents the function $\log_2 x = y$?

3)

(1,0)



4)

- 6 For what value of k will the graph of $y = \log_{10} x$ contain the point (1,k)?
- 7 Complete the table below for the values of y for the equation $y = \log_2 x$.

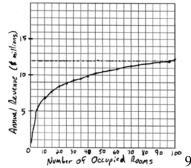
х	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4
У					

8 A hotel finds that its total annual revenue and the number of rooms occupied daily by guests can best be modeled by the function $R = 3 \log(n^2 + 10n)$, n > 0, where R is the total annual revenue, in millions of dollars, and n is the number of rooms occupied daily by guests. The hotel needs an annual revenue of \$12 million to be profitable. Graph the function on the accompanying grid over the interval $0 < n \le 100$. Calculate the minimum number of rooms that must be occupied daily to be profitable.

F.IF.C.7: Graphing Logarithmic Functions 2 **Answer Section**

1 ANS: 1 REF: 060301b 2 ANS: 4 REF: 018535siii 3 ANS: 4 REF: 088716siii 4 ANS: 3 REF: 010420b 5 ANS: 1 REF: 061211a2

6 ANS: 0


REF: 088508siii

7 ANS:

	х	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4
I	у	-2	-1	0	1	2

REF: 019742siii

8 ANS:

 $3\log(n^{2} + 10n) = 12$ $\log(n^{2} + 10n) = 4$ $x = \frac{-10 \pm \sqrt{10^{2} - 4(-1000)}}{2}$ $n^{2} + 10n = 10^{4}$ $x = \frac{-10 + \sqrt{40100}}{2} \approx 95.1$. 96 rooms must be

occupied. The other root is negative. The other root is negative.

REF: 080530b